
SOME INEQUALITIES FOR THE GENERALIZED
k-g-FRACTIONAL INTEGRALS OF FUNCTIONS UNDER

COMPLEX BOUNDEDNESS CONDITIONS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let g be a strictly increasing function on (a; b) ; having a continu-
ous derivative g0 on (a; b) : For the Lebesgue integrable function f : (a; b)! C,
we de�ne the k-g-left-sided fractional integral of f by

Sk;g;a+f (x) =

Z x

a
k (g (x)� g (t)) g0 (t) f (t) dt; x 2 (a; b]

and the k-g-right-sided fractional integral of f by

Sk;g;b�f (x) =

Z b

x
k (g (t)� g (x)) g0 (t) f (t) dt; x 2 [a; b);

where the kernel k is de�ned either on (0;1) or on [0;1) with complex values
and integrable on any �nite subinterval.

In this paper we establish some inequalities for the k-g-fractional integrals of
integrable functions satisfying some boundedness conditions. Further bounds
for absolutely continuous functions whose derivatives also satisfy some bound-
edness conditions are given as well. Examples for a general exponential frac-
tional integral are also provided.

1. Introduction

Assume that the kernel k is de�ned either on (0;1) or on [0;1) with complex
values and integrable on any �nite subinterval. We de�ne the function K : [0;1)!
C by

K (t) :=

8<:
R t
0
k (s) ds if 0 < t;

0 if t = 0:

As a simple example, if k (t) = t��1 then for � 2 (0; 1) the function k is de�ned on
(0;1) and K (t) := 1

� t
� for t 2 [0;1) : If � � 1, then k is de�ned on [0;1) and

K (t) := 1
� t
� for t 2 [0;1) :

Let g be a strictly increasing function on (a; b) ; having a continuous derivative
g0 on (a; b) : For the Lebesgue integrable function f : (a; b) ! C, we de�ne the
k-g-left-sided fractional integral of f by

(1.1) Sk;g;a+f (x) =

Z x

a

k (g (x)� g (t)) g0 (t) f (t) dt; x 2 (a; b]
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2 S. S. DRAGOMIR

and the k-g-right-sided fractional integral of f by

(1.2) Sk;g;b�f (x) =

Z b

x

k (g (t)� g (x)) g0 (t) f (t) dt; x 2 [a; b):

If we take k (t) = 1
�(�) t

��1; where � is the Gamma function, then

Sk;g;a+f (x) =
1

� (�)

Z x

a

[g (x)� g (t)]��1 g0 (t) f (t) dt(1.3)

=: I�a+;gf(x); a < x � b

and

Sk;g;b�f (x) =
1

� (�)

Z b

x

[g (t)� g (x)]��1 g0 (t) f (t) dt(1.4)

=: I�b�;gf(x); a � x < b;

which are the generalized left- and right-sided Riemann-Liouville fractional integrals
of a function f with respect to another function g on [a; b] as de�ned in [22, p. 100]
For g (t) = t in (1.4) we have the classical Riemann-Liouville fractional integrals

while for the logarithmic function g (t) = ln t we have the Hadamard fractional
integrals [22, p. 111]

(1.5) H�
a+f(x) :=

1

� (�)

Z x

a

h
ln
�x
t

�i��1 f (t) dt
t

; 0 � a < x � b

and

(1.6) H�
b�f(x) :=

1

� (�)

Z b

x

�
ln

�
t

x

����1
f (t) dt

t
; 0 � a < x < b:

One can consider the function g (t) = �t�1 and de�ne the "Harmonic fractional
integrals" by

(1.7) R�a+f(x) :=
x1��

� (�)

Z x

a

f (t) dt

(x� t)1�� t�+1
; 0 � a < x � b

and

(1.8) R�b�f(x) :=
x1��

� (�)

Z b

x

f (t) dt

(t� x)1�� t�+1
; 0 � a < x < b:

Also, for g (t) = exp (�t) ; � > 0; we can consider the "�-Exponential fractional
integrals"

(1.9) E�a+;�f(x) :=
�

� (�)

Z x

a

[exp (�x)� exp (�t)]��1 exp (�t) f (t) dt;

for a < x � b and

(1.10) E�b�;�f(x) :=
�

� (�)

Z b

x

[exp (�t)� exp (�x)]��1 exp (�t) f (t) dt;

for a � x < b:
If we take g (t) = t in (1.1) and (1.2), then we can consider the following k-

fractional integrals

(1.11) Sk;a+f (x) =

Z x

a

k (x� t) f (t) dt; x 2 (a; b]
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and

(1.12) Sk;b�f (x) =

Z b

x

k (t� x) f (t) dt; x 2 [a; b):

In [25], Raina studied a class of functions de�ned formally by

(1.13) F��;� (x) :=
1X
k=0

� (k)

� (�k + �)
xk; jxj < R; with R > 0

for �; � > 0 where the coe¢ cients � (k) generate a bounded sequence of positive real
numbers. With the help of (1.13), Raina de�ned the following left-sided fractional
integral operator

(1.14) J �
�;�;a+;wf (x) :=

Z x

a

(x� t)��1 F��;� (w (x� t)
�
) f (t) dt; x > a

where �; � > 0, w 2 R and f is such that the integral on the right side exists.
In [1], the right-sided fractional operator was also introduced as

(1.15) J �
�;�;b�;wf (x) :=

Z b

x

(t� x)��1 F��;� (w (t� x)
�
) f (t) dt; x < b

where �; � > 0, w 2 R and f is such that the integral on the right side exists.
Several Ostrowski type inequalities were also established.
We observe that for k (t) = t��1F��;� (wt�) we re-obtain the de�nitions of (1.14)

and (1.15) from (1.11) and (1.12).
In [23], Kirane and Torebek introduced the following exponential fractional in-

tegrals

(1.16) T �a+f (x) :=
1

�

Z x

a

exp

�
�1� �

�
(x� t)

�
f (t) dt; x > a

and

(1.17) T �b�f (x) :=
1

�

Z b

x

exp

�
�1� �

�
(t� x)

�
f (t) dt; x < b

where � 2 (0; 1) :
We observe that for k (t) = 1

� exp
�
� 1��

� t
�
; t 2 R we re-obtain the de�nitions of

(1.16) and (1.17) from (1.11) and (1.12).
Let g be a strictly increasing function on (a; b) ; having a continuous derivative

g0 on (a; b) : We can de�ne the more general exponential fractional integrals

(1.18) T �g;a+f (x) :=
1

�

Z x

a

exp

�
�1� �

�
(g (x)� g (t))

�
g0 (t) f (t) dt; x > a

and

(1.19) T �g;b�f (x) :=
1

�

Z b

x

exp

�
�1� �

�
(g (t)� g (x))

�
g0 (t) f (t) dt; x < b

where � 2 (0; 1) :
Let g be a strictly increasing function on (a; b) ; having a continuous derivative g0

on (a; b) : Assume that � > 0:We can also de�ne the logarithmic fractional integrals

(1.20) L�g;a+f (x) :=
Z x

a

(g (x)� g (t))��1 ln (g (x)� g (t)) g0 (t) f (t) dt;
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for 0 < a < x � b and

(1.21) L�g;b�f (x) :=
Z b

x

(g (t)� g (x))��1 ln (g (t)� g (x)) g0 (t) f (t) dt;

for 0 < a � x < b; where � > 0: These are obtained from (1.11) and (1.12) for the
kernel k (t) = t��1 ln t; t > 0:
For � = 1 we get

(1.22) Lg;a+f (x) :=
Z x

a

ln (g (x)� g (t)) g0 (t) f (t) dt; 0 < a < x � b

and

(1.23) Lg;b�f (x) :=
Z b

x

ln (g (t)� g (x)) g0 (t) f (t) dt; 0 < a � x < b:

For g (t) = t; we have the simple forms

(1.24) L�a+f (x) :=
Z x

a

(x� t)��1 ln (x� t) f (t) dt; 0 < a < x � b;

(1.25) L�b�f (x) :=
Z b

x

(t� x)��1 ln (t� x) f (t) dt; 0 < a � x < b;

(1.26) La+f (x) :=
Z x

a

ln (x� t) f (t) dt; 0 < a < x � b

and

(1.27) Lb�f (x) :=
Z b

x

ln (t� x) f (t) dt; 0 < a � x < b:

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals
see [2]-[17], [20]-[33] and the references therein.
In this paper we establish some inequalities for the k-g-fractional integrals of

integrable functions satisfying some boundedness conditions. Further bounds for
absolutely continuous functions whose derivatives also satisfy some boundedness
conditions are given as well. Examples for a general exponential fractional integral
are also provided.

2. Inequalities for Bounded Functions

For k and g as at the beginning of Introduction, we consider the mixed operator

Sk;g;a+;b�f (x)(2.1)

:=
1

2
[Sk;g;a+f (x) + Sk;g;b�f (x)]

=
1

2

"Z x

a

k (g (x)� g (t)) g0 (t) f (t) dt+
Z b

x

k (g (t)� g (x)) g0 (t) f (t) dt
#

for the Lebesgue integrable function f : (a; b)! C and x 2 (a; b) :
Observe that

(2.2) Sk;g;x+f (b) =

Z b

x

k (g (b)� g (t)) g0 (t) f (t) dt; x 2 [a; b)
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and

(2.3) Sk;g;x�f (a) =

Z x

a

k (g (t)� g (a)) g0 (t) f (t) dt; x 2 (a; b]:

We can de�ne also the mixed operator

�Sk;g;a+;b�f (x)(2.4)

:=
1

2
[Sk;g;x+f (b) + Sk;g;x�f (a)]

=
1

2

"Z b

x

k (g (b)� g (t)) g0 (t) f (t) dt+
Z x

a

k (g (t)� g (a)) g0 (t) f (t) dt
#

for any x 2 (a; b) :
The following two parameters representation for the operators Sk;g;a+;b� and

�Sk;g;a+;b� hold:

Lemma 1. With the above assumptions for k; g and f we have

Sk;g;a+;b�f (x) =
1

2
[
K (g (b)� g (x)) + �K (g (x)� g (a))](2.5)

+
1

2

Z x

a

k (g (x)� g (t)) g0 (t) [f (t)� �] dt

+
1

2

Z b

x

k (g (t)� g (x)) g0 (t) [f (t)� 
] dt

and

�Sk;g;a+;b�f (x) =
1

2
[�K (g (b)� g (x)) + 
K (g (x)� g (a))](2.6)

+
1

2

Z x

a

k (g (t)� g (a)) g0 (t) [f (t)� 
] dt

+
1

2

Z b

x

k (g (b)� g (t)) g0 (t) [f (t)� �] dt

for x 2 (a; b) and for any �; 
 2 C.

Proof. We have, by taking the derivative over t and using the chain rule, that

[K (g (x)� g (t))]0 = K 0 (g (x)� g (t)) (g (x)� g (t))0 = �k (g (x)� g (t)) g0 (t)
for t 2 (a; x) and

[K (g (t)� g (x))]0 = K 0 (g (t)� g (x)) (g (t)� g (x))0 = k (g (t)� g (x)) g0 (t)
for t 2 (x; b) :
Therefore, for any �; 
 2 C we haveZ x

a

k (g (x)� g (t)) g0 (t) [f (t)� �] dt(2.7)

=

Z x

a

k (g (x)� g (t)) g0 (t) f (t) dt� �
Z x

a

k (g (x)� g (t)) g0 (t) dt

= Sk;g;a+f (x) + �

Z x

a

[K (g (x)� g (t))]0 dt

= Sk;g;a+f (x) + � [K (g (x)� g (t))]jxa = Sk;g;a+f (x)� �K (g (x)� g (a))
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and Z b

x

k (g (t)� g (x)) g0 (t) [f (t)� 
] dt(2.8)

=

Z b

x

k (g (t)� g (x)) g0 (t) f (t) dt� 

Z b

x

k (g (t)� g (x)) g0 (t) dt

= Sk;g;b�f (x)� 

Z b

x

[K (g (t)� g (x))]0 dt

= Sk;g;b�f (x)� 
 [K (g (t)� g (x))]jbx = Sk;g;b�f (x)� 
K (g (b)� g (x))

for x 2 (a; b) :
If we add the equalities (2.7) and (2.8) and divide by 2 then we get the desired

result (2.5).
Moreover, by taking the derivative over t and using the chain rule, we have that

[K (g (b)� g (t))]0 = K 0 (g (b)� g (t)) (g (b)� g (t))0 = �k (g (b)� g (t)) g0 (t)
for t 2 (x; b) and

[K (g (t)� g (a))]0 = K 0 (g (t)� g (a)) (g (t)� g (a))0 = k (g (t)� g (a)) g0 (t)
for t 2 (a; x) :
For any �; 
 2 C we haveZ b

x

k (g (b)� g (t)) g0 (t) [f (t)� �] dt(2.9)

=

Z b

x

k (g (b)� g (t)) g0 (t) f (t) dt� �
Z b

x

k (g (b)� g (t)) g0 (t) dt

= Sk;g;x+f (b) + �

Z b

x

[K (g (b)� g (t))]0 dt

= Sk;g;x+f (b)� �K (g (b)� g (x))
and Z x

a

k (g (t)� g (a)) g0 (t) [f (t)� 
] dt(2.10)

=

Z x

a

k (g (t)� g (a)) g0 (t) f (t) dt� 

Z x

a

k (g (t)� g (a)) g0 (t) dt

=

Z x

a

k (g (t)� g (a)) g0 (t) f (t) dt� 

Z x

a

[K (g (t)� g (a))]0 dt

=

Z x

a

k (g (t)� g (a)) g0 (t) f (t) dt� 
K (g (x)� g (a))

for x 2 (a; b) :
If we add the equalities (2.9) and (2.10) and divide by 2 then we get the desired

result (2.6). �

If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can de�ne the g-mean of two numbers
a; b 2 I as

Mg (a; b) := g�1
�
g (a) + g (b)

2

�
:
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If I = R and g (t) = t is the identity function, then Mg (a; b) = A (a; b) := a+b
2 ;

the arithmetic mean. If I = (0;1) and g (t) = ln t; thenMg (a; b) = G (a; b) :=
p
ab,

the geometric mean. If I = (0;1) and g (t) = 1
t ; then Mg (a; b) = H (a; b) :=

2ab
a+b ; the harmonic mean. If I = (0;1) and g (t) = tp; p 6= 0; then Mg (a; b) =

Mp (a; b) :=
�
ap+bp

2

�1=p
; the power mean with exponent p. Finally, if I = R and

g (t) = exp t; then

Mg (a; b) = LME (a; b) := ln

�
exp a+ exp b

2

�
;

the LogMeanExp function.
Using the g-mean of two numbers we can introduce

Pk;g;a+;b�f := Sk;g;a+;b�f (Mg (a; b))(2.11)

=
1

2

Z Mg(a;b)

a

k

�
g (a) + g (b)

2
� g (t)

�
g0 (t) f (t) dt

+
1

2

Z b

Mg(a;b)

k

�
g (t)� g (a) + g (b)

2

�
g0 (t) f (t) dt:

Using the representation (2.5) we have

Pk;g;a+;b�f = K

�
g (b)� g (a)

2

�

 + �

2
(2.12)

+
1

2

Z Mg(a;b)

a

k

�
g (a) + g (b)

2
� g (t)

�
g0 (t) [f (t)� �] dt

+
1

2

Z b

Mg(a;b)

k

�
g (t)� g (a) + g (b)

2

�
g0 (t) [f (t)� 
] dt

for any �; 
 2 C.
Also, if

�Pk;g;a+;b�f := �Sk;g;a+;b�f (Mg (a; b))(2.13)

=
1

2

Z b

Mg(a;b)

k (g (b)� g (t)) g0 (t) f (t) dt

+
1

2

Z Mg(a;b)

a

k (g (t)� g (a)) g0 (t) f (t) dt:

then by (2.6) we get

�Pk;g;a+;b�f = K

�
g (b)� g (a)

2

�

 + �

2
(2.14)

+
1

2

Z Mg(a;b)

a

k (g (t)� g (a)) g0 (t) [f (t)� 
] dt

+
1

2

Z b

Mg(a;b)

k (g (b)� g (t)) g0 (t) [f (t)� �] dt

for any �; 
 2 C.
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Now, for �; � 2 C and [a; b] an interval of real numbers, de�ne the sets of
complex-valued functions

�U[a;b] (�;�)

:=
n
f : [a; b]! CjRe

h
(�� f (t))

�
f (t)� �

�i
� 0 for almost every t 2 [a; b]

o
and

��[a;b] (�;�) :=

�
f : [a; b]! Cj

����f (t)� �+�

2

���� � 1

2
j�� �j for a.e. t 2 [a; b]

�
:

The following representation result may be stated.

Proposition 1. For any �; � 2 C, � 6= �; we have that �U[a;b] (�;�) and ��[a;b] (�;�)
are nonempty, convex and closed sets and

(2.15) �U[a;b] (�;�) = ��[a;b] (�;�) :

Proof. We observe that for any z 2 C we have the equivalence����z � �+�

2

���� � 1

2
j�� �j

if and only if
Re [(�� z) (�z � �)] � 0:

This follows by the equality

1

4
j�� �j2 �

����z � �+�

2

����2 = Re [(�� z) (�z � �)]
that holds for any z 2 C.
The equality (2.15) is thus a simple consequence of this fact. �

On making use of the complex numbers �eld properties we can also state that:

Corollary 1. For any �; � 2 C, � 6= �;we have that
�U[a;b] (�;�) = ff : [a; b]! C j (Re�� Re f (t)) (Re f (t)� Re�)(2.16)

+(Im�� Im f (t)) (Im f (t)� Im�) � 0 for a.e. t 2 [a; b]g :

Now, if we assume that Re (�) � Re (�) and Im (�) � Im (�) ; then we can de�ne
the following set of functions as well:

�S[a;b] (�;�) := ff : [a; b]! C j Re (�) � Re f (t) � Re (�)
and Im (�) � Im f (t) � Im (�) for a.e. t 2 [a; b]g :

One can easily observe that �S[a;b] (�;�) is closed, convex and

; 6= �S[a;b] (�;�) � �U[a;b] (�;�) :

We also de�ne the function K : [0;1)! [0;1) by

K (t) :=

8<:
R t
0
jk (s)j ds if 0 < t;

0 if t = 0:

We observe that if k takes nonnegative values on (0;1), as it does in some of the
examples in Introduction, then K (t) = K (t) for t 2 [0;1) :
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Theorem 1. Assume that the kernel k is de�ned either on (0;1) or on [0;1)
with complex values and integrable on any �nite subinterval. Let f : [a; b]! C be a
measurable function on [a; b] such that f 2 ��[a;b] (�;�) for some �;� 2 C, � 6= �
and g be a strictly increasing function on (a; b) ; having a continuous derivative g0

on (a; b) : Then we have

(2.17)

����Sk;g;a+;b�f (x)� 12 [K (g (b)� g (x)) +K (g (x)� g (a))] �+�2
����

� 1

4
j�� �j [K (g (x)� g (a)) +K (g (b)� g (x))]

and

(2.18)

���� �Sk;g;a+;b�f (x)� 12 [K (g (b)� g (x)) +K (g (x)� g (a))] �+�2
����

� 1

4
j�� �j [K (g (x)� g (a)) +K (g (b)� g (x))]

for x 2 (a; b) :

Proof. Since f 2 ��[a;b] (�;�) ; then from (2.5) we have for x 2 (a; b) that����Sk;g;a+;b�f (x)� 12 [K (g (b)� g (x)) +K (g (x)� g (a))] �+�2
����(2.19)

� 1

2

����Z x

a

k (g (x)� g (t)) g0 (t)
�
f (t)� �+�

2

�
dt

����
+
1

2

�����
Z b

x

k (g (t)� g (x)) g0 (t)
�
f (t)� �+�

2

�
dt

�����
� 1

2

Z x

a

����k (g (x)� g (t)) g0 (t)�f (t)� �+�

2

����� dt
+
1

2

Z b

x

����k (g (t)� g (x)) g0 (t)�f (t)� �+�

2

����� dt
� 1

4
j�� �j

"Z x

a

jk (g (x)� g (t))j g0 (t) dt+
Z b

x

jk (g (t)� g (x))j g0 (t) dt
#

:= B (x)

We have, by taking the derivative over t and using the chain rule, that

[K (g (x)� g (t))]0 = K0 (g (x)� g (t)) (g (x)� g (t))0 = � jk (g (x)� g (t))j g0 (t)
for t 2 (a; x) and
[K (g (t)� g (x))]0 = K0 (g (t)� g (x)) (g (t)� g (x))0 = jk (g (t)� g (x))j g0 (t)

for t 2 (x; b) :
ThenZ x

a

jk (g (x)� g (t))j g0 (t) dt = �
Z x

a

[K (g (x)� g (t))]0 dt = K (g (x)� g (a))

andZ b

x

jk (g (t)� g (x))j g0 (t) dt =
Z b

x

[K (g (t)� g (x))]0 dt = K (g (b)� g (x)) :
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Therefore,

B (x) � 1

4
j�� �j [K (g (x)� g (a)) +K (g (b)� g (x))]

for x 2 (a; b) ; which proves (2.17).
Also, by the equality (2.6) we have���� �Sk;g;a+;b�f (x)� 12 [K (g (b)� g (x)) +K (g (x)� g (a))] �+�2

����(2.20)

� 1

2

����Z x

a

k (g (t)� g (a)) g0 (t)
�
f (t)� �+�

2

�
dt

����
+
1

2

�����
Z b

x

k (g (b)� g (t)) g0 (t)
�
f (t)� �+�

2

�
dt

�����
� 1

2

Z x

a

����k (g (t)� g (a)) g0 (t)�f (t)� �+�

2

����� dt
+
1

2

Z b

x

����k (g (b)� g (t)) g0 (t)�f (t)� �+�

2

����� dt
� 1

2

Z x

a

����k (g (t)� g (a)) g0 (t)�f (t)� �+�

2

����� dt
� 1

4
j�� �j

"Z b

x

jk (g (b)� g (t))j g0 (t) dt+
Z x

a

jk (g (t)� g (a))j g0 (t) dt
#

:= C (x)

for x 2 (a; b) :
We have, by taking the derivative over t and using the chain rule, that

[K (g (b)� g (t))]0 = K0 (g (b)� g (t)) (g (b)� g (t))0 = � jk (g (b)� g (t))j g0 (t)
for t 2 (x; b) and

[K (g (t)� g (a))]0 = K0 (g (t)� g (a)) (g (t)� g (a))0 = jk (g (t)� g (a))j g0 (t)
for t 2 (a; x) :
ThereforeZ b

x

jk (g (b)� g (t))j g0 (t) dt = �
Z b

x

[K (g (b)� g (t))]0 dt = K (g (b)� g (x))

and Z x

a

jk (g (t)� g (a))j g0 (t) dt =
Z x

a

[K (g (t)� g (a))]0 dt = K (g (x)� g (a))

and by (2.20) we get (2.18). �

Corollary 2. With the assumptions of Theorem 1 we have

(2.21)

����Pk;g;a+;b�f �K �g (b)� g (a)2

�
�+�

2

���� � 1

2
j�� �jK

�
g (b)� g (a)

2

�
and

(2.22)

���� �Pk;g;a+;b�f �K �g (b)� g (a)2

�
�+�

2

���� � 1

2
j�� �jK

�
g (b)� g (a)

2

�
:
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Remark 1. By Hölder�s integral inequality we have for p; q > 1; 1p +
1
q = 1 that

(2.23) K (t) =

Z t

0

jk (s)j ds �

8><>:
t essups2[0;t] jk (s)j

t1=p
�R t

0
jk (s)jq ds

�1=q =

8<:
t kkk[0;t];1

t1=p kkk[0;t];q

for t � 0:
By (2.17) and (2.18) we then have

(2.24)

����Sk;g;a+;b�f (x)� 12 [K (g (b)� g (x)) +K (g (x)� g (a))] �+�2
����

� 1

4
j�� �j

h
(g (x)� g (a)) kkk[0;g(x)�g(a)];1 + (g (b)� g (x)) kkk[0;g(b)�g(x)];1

i
� 1

4
j�� �j (g (b)� g (a)) kkk[0;g(b)�g(a)];1

and

(2.25)

���� �Sk;g;a+;b�f (x)� 12 [K (g (b)� g (x)) +K (g (x)� g (a))] �+�2
����

� 1

4
j�� �j

h
(g (x)� g (a)) kkk[0;g(x)�g(a)];1 + (g (b)� g (x)) kkk[0;g(b)�g(x)];1

i
� 1

4
j�� �j (g (b)� g (a)) kkk[0;g(b)�g(a)];1

for x 2 (a; b) :
In particular, we have from (2.24) and (2.25) that����Pk;g;a+;b�f �K �g (b)� g (a)2

�
�+�

2

���� � 1

4
j�� �j (g (b)� g (a)) kkk[0; g(b)�g(a)2 ];1

and���� �Pk;g;a+;b�f �K �g (b)� g (a)2

�
�+�

2

���� � 1

4
j�� �j (g (b)� g (a)) kkk[0; g(b)�g(a)2 ];1 :

By utilising the second branch in (2.23), then we also have

(2.26)

����Sk;g;a+;b�f (x)� 12 [K (g (b)� g (x)) +K (g (x)� g (a))] �+�2
����

� 1

4
j�� �j

h
(g (x)� g (a))1=p kkk[0;g(x)�g(a)];q + (g (b)� g (x))

1=p kkk[0;g(b)�g(x)];q
i

� 1

4
j�� �j (g (b)� g (a))1=p

h
kkkq[0;g(x)�g(a)];q + kkk

q
[0;g(b)�g(x)];q

i1=q
� 1

21+1=p
j�� �j (g (b)� g (a))1=p kkk[0;g(b)�g(a)];q
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and

(2.27)

���� �Sk;g;a+;b�f (x)� 12 [K (g (b)� g (x)) +K (g (x)� g (a))] �+�2
����

� 1

4
j�� �j

h
(g (x)� g (a))1=p kkk[0;g(x)�g(a)];q + (g (b)� g (x))

1=p kkk[0;g(b)�g(x)];q
i

� 1

4
j�� �j (g (b)� g (a))1=p

h
kkkq[0;g(x)�g(a)];q + kkk

q
[0;g(b)�g(x)];q

i1=q
� 1

21+1=p
j�� �j (g (b)� g (a))1=p kkk[0;g(b)�g(a)];q

for x 2 (a; b) :
Finally, from (2.21) and (2.22) we derive the simple inequalities

(2.28)

����Pk;g;a+;b�f �K �g (b)� g (a)2

�
�+�

2

����
� 1

21+1=p
j�� �j (g (b)� g (a))1=p kkk[0; g(b)�g(a)2 ];q

and

(2.29)

���� �Pk;g;a+;b�f �K �g (b)� g (a)2

�
�+�

2

����
� 1

21+1=p
j�� �j (g (b)� g (a))1=p kkk[0; g(b)�g(a)2 ];q ;

where p; q > 1; 1p +
1
q = 1:

3. Inequalities for Bounded Derivatives

We start with the following two parameters representations incorporated in:

Lemma 2. With the above assumptions for k; g and if f : [a; b]! C is absolutely
continuous on [a; b] ; then we have for x 2 (a; b) that

(3.1) Sk;g;a+;b�f (x) =
1

2
[K (g (x)� g (a)) f (a) + [K (g (b)� g (x))] f (b)]

+
1

2
�

Z x

a

K (g (x)� g (t)) dt� 1
2



Z b

x

K (g (t)� g (x)) dt

+
1

2

Z x

a

K (g (x)� g (t)) [f 0 (t)� �] dt+ 1
2

Z b

x

K (g (t)� g (x)) [
 � f 0 (t)] dt

and

(3.2) �Sk;g;a+;b�f (x) =
1

2
[K (g (b)� g (x)) +K (g (x)� g (a))] f (x)

+
1

2



Z b

x

K (g (b)� g (t)) dt� 1
2
�

Z x

a

K (g (t)� g (a)) dt

+
1

2

Z b

x

K (g (b)� g (t)) [f 0 (t)� 
] dt+ 1
2

Z x

a

K (g (t)� g (a)) [�� f 0 (t)] dt

for any �; 
 2 C.
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Proof. Using the integration by parts formula, we haveZ x

a

k (g (x)� g (t)) g0 (t) f (t) dt(3.3)

= �
Z x

a

[K (g (x)� g (t))]0 f (t) dt

= �
�
K (g (x)� g (t)) f (t)jxa �

Z x

a

K (g (x)� g (t)) f 0 (t) dt
�

= K (g (x)� g (a)) f (a) +
Z x

a

K (g (x)� g (t)) f 0 (t) dt

and Z b

x

k (g (t)� g (x)) g0 (t) f (t) dt(3.4)

=

Z b

x

[K (g (t)� g (x))]0 f (t) dt

= [K (g (t)� g (x))] f (t)jbx �
Z b

x

[K (g (t)� g (x))] f 0 (t) dt

= [K (g (b)� g (x))] f (b)�
Z b

x

[K (g (t)� g (x))] f 0 (t) dt

for any x 2 (a; b) :
From (3.3) and (3.4) we get

Z x

a

k (g (x)� g (t)) g0 (t) f (t) dt(3.5)

= K (g (x)� g (a)) f (a) + �
Z x

a

K (g (x)� g (t)) dt

+

Z x

a

K (g (x)� g (t)) [f 0 (t)� �] dt

and Z b

x

k (g (t)� g (x)) g0 (t) f (t) dt(3.6)

= [K (g (b)� g (x))] f (b)� 

Z b

x

K (g (t)� g (x)) dt

�
Z b

x

K (g (t)� g (x)) [f 0 (t)� 
] dt

for any x 2 (a; b) :
If we add the equalities (3.5) and (3.6) and divide by 2 then we get the desired

result (3.1).
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Using the integration by parts formula, we haveZ b

x

k (g (b)� g (t)) g0 (t) f (t) dt(3.7)

= �
Z b

x

[K (g (b)� g (t))]0 f (t) dt

= �
"
K (g (b)� g (t)) f (t)jbx �

Z b

x

K (g (b)� g (t)) f 0 (t) dt
#

= K (g (b)� g (x)) f (x) +
Z b

x

K (g (b)� g (t)) f 0 (t) dt

and Z x

a

k (g (t)� g (a)) g0 (t) f (t) dt(3.8)

=

Z x

a

[K (g (t)� g (a))]0 f (t) dt

= K (g (t)� g (a)) f (t)jxa �
Z x

a

K (g (t)� g (a)) f 0 (t) dt

= K (g (x)� g (a)) f (x)�
Z x

a

K (g (t)� g (a)) f 0 (t) dt

for any x 2 (a; b) :
From (3.7) and (3.8) we haveZ b

x

k (g (b)� g (t)) g0 (t) f (t) dt(3.9)

= K (g (b)� g (x)) f (x) + 

Z b

x

K (g (b)� g (t)) dt

+

Z b

x

K (g (b)� g (t)) [f 0 (t)� 
] dt

and Z x

a

k (g (t)� g (a)) g0 (t) f (t) dt(3.10)

= K (g (x)� g (a)) f (x)� �
Z x

a

K (g (t)� g (a)) dt

�
Z x

a

K (g (t)� g (a)) [f 0 (t)� �] dt

for any x 2 (a; b) :
If we add the equalities (3.9) and (3.10) and divide by 2 then we get the desired

result (3.2). �
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Corollary 3. With the assumptions of Lemma 2 we have

(3.11) Pk;g;a+;b�f = K

�
g (b)� g (a)

2

�
f (a) + f (b)

2

+
1

2
�

Z Mg(a;b)

a

K

�
g (a) + g (b)

2
� g (t)

�
dt�1

2



Z b

Mg(a;b)

K

�
g (t)� g (a) + g (b)

2

�
dt

+
1

2

Z Mg(a;b)

a

K

�
g (a) + g (b)

2
� g (t)

�
[f 0 (t)� �] dt

+
1

2

Z b

Mg(a;b)

K

�
g (t)� g (a) + g (b)

2

�
[
 � f 0 (t)] dt

and

(3.12) �Pk;g;a+;b�f = K

�
g (b)� g (a)

2

�
f (Mg (a; b))

+
1

2



Z b

Mg(a;b)

K (g (b)� g (t)) dt� 1
2
�

Z Mg(a;b)

a

K (g (t)� g (a)) dt

+
1

2

Z b

Mg(a;b)

K (g (b)� g (t)) [f 0 (t)� 
] dt

+
1

2

Z Mg(a;b)

a

K (g (t)� g (a)) [�� f 0 (t)] dt

for any �; 
 2 C.

The following error estimates result can be stated:

Theorem 2. Assume that the kernel k is de�ned either on (0;1) or on [0;1) with
complex values and integrable on any �nite subinterval. Let f : [a; b] ! C be an
absolutely function on [a; b] such that f 0 2 ��[a;b] ( ;	) for some  ; 	 2 C,  6= 	
and g be a strictly increasing function on (a; b) ; having a continuous derivative g0

on (a; b) : Then we have

(3.13)

����Sk;g;a+;b�f (x)� 12 [K (g (x)� g (a)) f (a) + [K (g (b)� g (x))] f (b)]
+
1

2

 Z b

x

K (g (t)� g (x)) dt�
Z x

a

K (g (x)� g (t)) dt
!
 +	

2

�����
� 1

4
j	�  j

"Z x

a

jK (g (x)� g (t))j dt+
Z b

x

jK (g (t)� g (x))j dt
#

� 1

4
j	�  j

"Z b

x

K (g (t)� g (x)) dt+
Z x

a

K (g (x)� g (t)) dt
#



16 S. S. DRAGOMIR

and

(3.14)

���� �Sk;g;a+;b�f (x)� 12 [K (g (b)� g (x)) +K (g (x)� g (a))] f (x)
+
1

2

 Z x

a

K (g (t)� g (a)) dt�
Z b

x

K (g (b)� g (t)) dt
!
 +	

2

�����
� 1

4
j	�  j

"Z b

x

jK (g (b)� g (t))j dt+
Z x

a

jK (g (t)� g (a))j dt
#

� 1

4
j	�  j

"Z b

x

K (g (b)� g (t)) dt+
Z x

a

K (g (t)� g (a)) dt
#

for x 2 (a; b) :

Proof. Using the identity (3.1) and the fact that f 0 2 ��[a;b] ( ;	) ; then we have
for x 2 (a; b) that

(3.15)

����Sk;g;a+;b�f (x)� 12 [K (g (x)� g (a)) f (a) + [K (g (b)� g (x))] f (b)]
+
1

2

 Z b

x

K (g (t)� g (x)) dt�
Z x

a

K (g (x)� g (t)) dt
!
 +	

2

�����
� 1

2

����Z x

a

K (g (x)� g (t))
�
f 0 (t)�  +	

2

�
dt

����
+
1

2

�����
Z b

x

K (g (t)� g (x))
�
 +	

2
� f 0 (t)

�
dt

�����
� 1

2

Z x

a

����K (g (x)� g (t))�f 0 (t)�  +	

2

����� dt
+
1

2

Z b

x

����K (g (t)� g (x))� +	2 � f 0 (t)
����� dt

� 1

4
j	�  j

"Z x

a

jK (g (x)� g (t))j dt+
Z b

x

jK (g (t)� g (x))j dt
#
;

which proves the �rst inequality in (3.13).
The last part follows by the fact that

jK (t)j =
����Z t

0

k (s) ds

���� � Z t

0

jk (s)j ds = K (t) for t � 0:
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Using the identity (3.2) we also have

(3.16)

���� �Sk;g;a+;b�f (x)� 12 [K (g (b)� g (x)) +K (g (x)� g (a))] f (x)
+
1

2

 Z x

a

K (g (t)� g (a)) dt�
Z b

x

K (g (b)� g (t)) dt
!
 +	

2

�����
� 1

2

�����
Z b

x

K (g (b)� g (t))
�
f 0 (t)�  +	

2

�
dt

�����
+
1

2

����Z x

a

K (g (t)� g (a))
�
 +	

2
� f 0 (t)

�
dt

����
� 1

4
j	�  j

"Z b

x

jK (g (b)� g (t))j dt+
Z x

a

jK (g (t)� g (a))j dt
#

for x 2 (a; b) ; which proves (3.14). �

Corollary 4. With the assumptions of Theorem 2 we have

(3.17)

����Pk;g;a+;b�f �K �g (b)� g (a)2

�
f (a) + f (b)

2

+
1

2

 Z b

Mg(a;b)

K

�
g (t)� g (a) + g (b)

2

�
dt�

Z Mg(a;b)

a

K

�
g (a) + g (b)

2
� g (t)

�
dt

!

� +	
2

����
� 1

4
j	�  j

�
"Z Mg(a;b)

a

K

�
g (a) + g (b)

2
� g (t)

�
dt+

Z b

Mg(a;b)

K

�
g (t)� g (a) + g (b)

2

�
dt

#
and

(3.18)

���� �Pk;g;a+;b�f �K �g (b)� g (a)2

�
f (Mg (a; b))

+
1

2

 Z Mg(a;b)

a

K (g (t)� g (a)) dt�
Z b

Mg(a;b)

K (g (b)� g (t)) dt
!
 +	

2

�����
� 1

4
j	�  j

"Z b

Mg(a;b)

K (g (b)� g (t)) dt+
Z Mg(a;b)

a

K (g (t)� g (a)) dt
#
:

Remark 2. Using the �rst branch in (2.23) we haveZ x

a

K (g (x)� g (t)) dt �
Z x

a

(g (x)� g (t)) kkk[0;g(x)�g(t)];1 dt

� kkk[0;g(x)�g(a)];1
Z x

a

(g (x)� g (t)) dt
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and Z b

x

K (g (t)� g (x)) dt �
Z b

x

(g (t)� g (x)) kkk[0;g(t)�g(x)];1 dt

� kkk[0;g(b)�g(x)];1
Z b

x

(g (t)� g (x)) dt:

Therefore

Z x

a

K (g (x)� g (t)) dt+
Z b

x

K (g (t)� g (x)) dt

� kkk[0;g(x)�g(a)];1
Z x

a

(g (x)� g (t)) dt+ kkk[0;g(b)�g(x)];1
Z b

x

(g (t)� g (x)) dt

�
"Z x

a

(g (x)� g (t)) dt+
Z b

x

(g (t)� g (x)) dt
#
kkk[0;g(b)�g(a)];1

=

"
g (x) (x� a)� g (x) (b� x) +

Z b

x

g (t) dt�
Z x

a

g (t) dt

#
kkk[0;g(b)�g(a)];1

=

"
g (x) (2x� a� b) +

Z b

x

g (t) dt�
Z x

a

g (t) dt

#
kkk[0;g(b)�g(a)];1

and by (3.13) we get

(3.19)

����Sk;g;a+;b�f (x)� 12 [K (g (x)� g (a)) f (a) + [K (g (b)� g (x))] f (b)]
+
1

2

 Z b

x

K (g (t)� g (x)) dt�
Z x

a

K (g (x)� g (t)) dt
!
 +	

2

�����
� 1

2
j	�  j

"
g (x)

�
x� a+ b

2

�
+
1

2

 Z b

x

g (t) dt�
Z x

a

g (t) dt

!#
kkk[0;g(b)�g(a)];1

for x 2 (a; b) :
In particular, for x = a+b

2 we get

(3.20)

����Sk;g;a+;b�f �a+ b2
�

� 1
2

�
K

�
g

�
a+ b

2

�
� g (a)

�
f (a) +

�
K

�
g (b)� g

�
a+ b

2

���
f (b)

�
+
1

2

 Z b

a+b
2

K

�
g (t)� g

�
a+ b

2

��
dt�

Z a+b
2

a

K

�
g

�
a+ b

2

�
� g (t)

�
dt

!
 +	

2

�����
� 1

4
j	�  j

"Z b

a+b
2

g (t) dt�
Z a+b

2

a

g (t) dt

#
kkk[0;g(b)�g(a)];1 :
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AlsoZ b

x

K (g (b)� g (t)) dt+
Z x

a

K (g (t)� g (a)) dt

�
Z b

x

(g (b)� g (t)) kkk[0;g(b)�g(t)];1 dt+

Z x

a

(g (t)� g (a)) kkk[0;g(t)�g(a)];1 dt

� kkk[0;g(b)�g(x)];1
Z b

x

(g (b)� g (t)) dt+ kkk[0;g(x)�g(a)];1
Z x

a

(g (t)� g (a)) dt

�
"Z b

x

(g (b)� g (t)) dt+
Z x

a

(g (t)� g (a)) dt
#
kkk[0;g(b)�g(a)];1

=

"
g (b) (b� x)� g (a) (x� a) +

Z x

a

g (t) dt�
Z b

x

g (t) dt

#
kkk[0;g(b)�g(a)];1

and by (3.14) we get

(3.21)

���� �Sk;g;a+;b�f (x)� 12 [K (g (b)� g (x)) +K (g (x)� g (a))] f (x)
+
1

2

 Z x

a

K (g (t)� g (a)) dt�
Z b

x

K (g (b)� g (t)) dt
!
 +	

2

�����
� 1

4
j	�  j kkk[0;g(b)�g(a)];1

�
"
g (b) (b� x)� g (a) (x� a) +

Z x

a

g (t) dt�
Z b

x

g (t) dt

#
;

for x 2 (a; b) :
In particular, for x = a+b

2 we get

(3.22)

���� �Sk;g;a+;b�f �a+ b2
�

� 1
2

�
K

�
g (b)� g

�
a+ b

2

��
+K

�
g

�
a+ b

2

�
� g (a)

��
f

�
a+ b

2

�
+
1

2

 Z a+b
2

a

K (g (t)� g (a)) dt�
Z b

a+b
2

K (g (b)� g (t)) dt
!
 +	

2

�����
� 1

4
j	�  j

"
g (b)� g (a)

2
(b� a) +

Z a+b
2

a

g (t) dt�
Z b

a+b
2

g (t) dt

#
kkk[0;g(b)�g(a)];1 :

Similar inequalities may be stated on using the second branch of the inequality
(2.23). The details are omitted.

4. Example for an Exponential Kernel

The above inequalities may be written for all the particular fractional integrals
introduced in the introduction. We consider here only an example for a general
exponential kernel that generalizes the transforms (1.16) and (1.17).
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For �; � 2 R we consider the kernel k (t) := exp [(�+ �i) t] ; t 2 R. We have

K (t) =
exp [(�+ �i) t]� 1

(�+ �i)
; if t 2 R

for �; � 6= 0:
Also, we have

jk (s)j := jexp [(�+ �i) s]j = exp (�s) for s 2 R
and

K (t) =

Z t

0

exp (�s) ds =
exp (�t)� 1

�
if 0 < t;

for � 6= 0:
Let f : [a; b]! C be an integrable function on [a; b] and g be a strictly increasing

function on (a; b) ; having a continuous derivative g0 on (a; b) : We have

E�+�ig;a+;b�f (x) =
1

2

Z x

a

exp [(�+ �i) (g (x)� g (t))] g0 (t) f (t) dt(4.1)

+
1

2

Z b

x

exp [(�+ �i) (g (t)� g (x))] g0 (t) f (t) dt

for x 2 (a; b) :
If g = lnh where h : [a; b] ! (0;1) is a strictly increasing function on (a; b) ;

having a continuous derivative h0 on (a; b) ; then we can consider the following
operator as well

��+�ih;a+;b�f (x)(4.2)

:= E�+�ilnh;a+;b�f (x)

=
1

2

"Z x

a

�
h (x)

h (t)

��+�i
h0 (t)

h (t)
f (t) dt+

Z b

x

�
h (t)

h (x)

��+�i
h0 (t)

h (t)
f (t) dt

#
;

for x 2 (a; b) :
Let f : [a; b]! C be an integrable function on [a; b] and g be a strictly increasing

function on (a; b) ; having a continuous derivative g0 on (a; b) : We have

G�+�ig;a+;b�f (x) =
1

2

Z b

x

exp [(�+ �i) (g (b)� g (t))] g0 (t) f (t) dt(4.3)

+
1

2

Z x

a

exp [(�+ �i) (g (t)� g (a))] g0 (t) f (t) dt

for x 2 (a; b) :
If g = lnh where h : [a; b] ! (0;1) is a strictly increasing function on (a; b) ;

having a continuous derivative h0 on (a; b) ; then we can consider the following
operator as well

H�+�i
h;a+;b�f (x)(4.4)

:= G�+�ilnh;a+;b�f (x)

=
1

2

"Z x

a

�
h (t)

h (a)

��+�i
h0 (t)

h (t)
f (t) dt+

Z b

x

�
h (b)

h (t)

��+�i
h0 (t)

h (t)
f (t) dt

#
;

for x 2 (a; b) :
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Assume that � > 0, then

kkk[0;g(b)�g(a)];1 = sup
s2[0;g(b)�g(a)]

exp (�s) = exp (� [g (b)� g (a)]) :

By using the inequalities (2.24) and (2.25) we have

(4.5)
���E�+�ig;a+;b�f (x)

�1
2

�
exp [(�+ �i) (g (b)� g (x))] + exp [(�+ �i) (g (x)� g (a))]� 2

(�+ �i)

�
�+�

2

����
� 1

4
j�� �j [(g (x)� g (a)) exp (� [g (x)� g (a)]) + (g (b)� g (x)) exp (� [g (b)� g (x)])]

� 1

4
j�� �j (g (b)� g (a)) exp (� [g (b)� g (a)])

and

(4.6)
���G�+�ig;a+;b�f (x)

�1
2

�
exp [(�+ �i) (g (b)� g (x))] + exp [(�+ �i) (g (x)� g (a))]� 2

(�+ �i)

�
�+�

2

����
� 1

4
j�� �j [(g (x)� g (a)) exp (� [g (x)� g (a)]) + (g (b)� g (x)) exp (� [g (b)� g (x)])]

� 1

4
j�� �j (g (b)� g (a)) exp (� [g (b)� g (a)])

for x 2 (a; b) :
If we take in (4.5) and (4.6) g = lnh; where h : [a; b] ! (0;1) is a strictly

increasing function on (a; b) ; having a continuous derivative h0 on (a; b) ; then we

(4.7)

���������+�ih;a+;b�f (x)�
1

2

264
�
h(b)
h(x)

��+�i
+
�
h(x)
h(a)

��+�i
� 2

(�+ �i)

375 �+�
2

�������
� 1

4
j�� �j

��
h (x)

h (a)

��
ln

�
h (x)

h (a)

�
+

�
h (b)

h (x)

��
ln

�
h (b)

h (x)

��
� 1

4
j�� �j

�
h (b)

h (a)

��
ln

�
h (b)

h (a)

�
and

(4.8)

�������H�+�i
h;a+;b�f (x)�

1

2

264
�
h(b)
h(x)

��+�i
+
�
h(x)
h(a)

��+�i
� 2

(�+ �i)

375 �+�
2

�������
� 1

4
j�� �j

��
h (x)

h (a)

��
ln

�
h (x)

h (a)

�
+

�
h (b)

h (x)

��
ln

�
h (b)

h (x)

��
� 1

4
j�� �j

�
h (b)

h (a)

��
ln

�
h (b)

h (a)

�
for x 2 (a; b) :
Similar results may be stated for the inequalities (3.19) and (3.21). However,

the details are not presented here.
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