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INEQUALITIES FOR HYPO-¢-NORMS ON A CARTESIAN
PRODUCT OF INNER PRODUCT SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we introduce the hypo-g-norms on a Cartesian prod-
uct of inner product spaces. A representation of these norms in terms of inner
products, the equivalence with the g-norms on a Cartesian product and some
reverse inequalities obtained via the scalar Shisha-Mond, Birnacki et al., Griiss
type inequalities, Boas-Bellman and Bombieri type inequalities are also given.

1. INTRODUCTION

Let (E, ||||) be a normed linear space over the real or complex number field K.
On K" endowed with the canonical linear structure we consider a norm |||, and
the unit ball

B(l-,) = {x= (A1, A0) € KM[IA]l, <1}
As an example of such norms we should mention the usual p-norms
max {|A1],...,|[An]} i p=oc;
(1.1) 1ALl p =

1 .
(k=1 ARl")7 if pell,o0).
The Fuclidean norm is obtained for p = 2, i.e.,

n
2
HAHn,Q = Z|)\k|
k=1

It is well known that on E™ := E x --- x E endowed with the canonical linear
structure we can define the following p-norms:

2

max {[|z1[[,..., [lzn|l} if p=o0;
(12) Il = 1
(k= llzxll®)? if pe[l,00);
where x = (21,...,2,) € E™.
Following [9], for a given norm |||, on K", we define the functional H||hn :
E™ — [0,00) given by

n
hop = SUp E Azl
XeB(I1l,,) || =1

(1.3) 1|

where x = (x1,...,2,) € E™.
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2 S.S. DRAGOMIR

It is easy to see, by the properties of the norm ||-||, that:
(i) [1xlly,,, >0 for any x € E™;
(11) HX + y||h7n S ||X||h7n + ||y||h7n fOr a‘ny X) y S ET‘L’
(i) [lexll, ,, = lal %]}, ,, for each a € K and x € E™;
and therefore [|-||;, ,, is a semi-norm on E™. This will be called the hypo-semi-
norm generated by the norm ||-||,, on E™.
We observe that [|x|[, ,, = 0 if and only if >>7_, Aja; = 0 for any (A1,...,\,) €
B (||Il,,) - If there exists A9, A =£ 0 such that ()\(1),0, ...,0), (O,)\g, 1)
(0,0,..., )\g) € B(||-],,) then the semi-norm generated by ||-||,, is a norm on E™.
If by By, , with p € [1,00] we denote the balls generated by the p-norms ||-||,, ,
on K", then we can obtain the following hypo-g-norms on E™ :

1.4 X||pno == Sup Azl
(1.4) Il g = sup 1> Aja;

np |l =1

Withq>1and%+%:1ifp>17q:1ifp:ooandq:ooifp:l.

For p = 2, we have the Euclidean ball in K", which we denote by B,,, B,, =
{)\ = (A, A) RPN < 1} that generates the hypo-Euclidean norm
on E", i.e.,

(15) Il = sup
EE’!L

n
pIRVE
j=1

Moreover, if E = H, H is a inner product space over K, then the hypo-FEuclidean
norm on H" will be denoted simply by

(1.6) ]|, := sup
AeB

n

n
E A
=1

Let (H;(-,-)) be a Hilbert space over K and n € N, n > 1. In the Cartesian
product H"™ := H X --- x H, for the n—tuples of vectors x = (z1,...,2,), y =
(y1,-..,Yyn) € H™, we can define the inner product (-,-) by
(1.7) (x,y):=> (xjy;), x yeH",

j=1
which generates the Euclidean norm |[|-||, on H", i.e.,

1

2

2 n
(1.8) elly o= { D llal* |, xeH™
Jj=1

The following result established in [9] connects the usual Euclidean norm |||
with the hypo-Euclidean norm ||-||, .

Theorem 1 (Dragomir, 2007, [9]). For any x € H™ we have the inequalities

(1.9) < lxlle < il

x|
— |IX
i Pll2

i.e., ||l and ||-||, are equivalent norms on H™.
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The following representation result for the hypo-Euclidean norm plays a key role
in obtaining various bounds for this norm:

Theorem 2 (Dragomir, 2007, [9]). For any x € H" with x = (21,...,2Zp), we
have

(1.10) x|l = sup ZI T,y

lyll<1

Motivated by the above results, in this paper we introduce the hypo-g-norms on
a Cartesian product of inner product spaces. A representation of these norms in
terms of inner products, the equivalence with the g-norms on a Cartesian product
and some reverse inequalities obtained via the scalar Shisha-Mond, Birnacki et al.
and other Griiss type inequalities are also given.

2. GENERAL RESULTS

Let (H,(-,-)) be an inner product space over the real or complex number field
K. We have the following representation result for the hypo-g-norms on H".

Theorem 3. Let (H,(-,-)) be an inner product space over the real or complex
number field K. For any x € H" with x = (x1,...,T,), we have

1/q

n

g = SUp ZI(l’j,y)
i<t | \ 5=

(2.1) Ix

wherep,q>1with%+%:1

(2.2) o3 P sup. > lzjy)
j=1

llyll<

and
(2.3) IIXII;L,,L,OOZIIXII,L,OOZ x| {H%H}

In particular,
1/2

2
(2.4) %Iy, . = ‘Sup ZI(%y)
j=1

lyll<

Proof. Using Holder’s discrete inequality for p, ¢ > 1 and % + % = 1 we have

1/p 1/q
n n n
DBy < (Dl DA I
=1 =1 j=1

which implies that

(2.5) sup Z%ﬂ <15l

llall, <1

where o = (a1,...,a,) andﬂz(ﬁl,...,ﬁn).
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For (B4,...,5,) # 0, consider & = (a1, ..., a,) with

— -2
T

n 1
OOENDR

for those j for which 3; # 0 and a; = 0, for the rest.
We observe that

; QI i 8"
O[‘ﬂ‘ _ J J ﬁ — J
Z: " j;@;::l B (S 18R

1/q

Slslt) =i,

aj =

and
— —2|P g—1\P
n B8 e (18,7
lally =) loy|” = ‘n = m
p= 210 = 2 S T T A L
n qp—p n q
= |€]| = n‘ﬁj‘ .
j=1 ( k=1 ‘ﬁkr]) j=1 ( k=1 |ﬂk§|q)
Therefore, by (2.5) we have the representation
(2.6) sup | a;8;| = |18ll,
Ha”pfl j=1

for any 8 = (64,...,05,) € K™
By the properties of inner product, we have for any v € H, u # 0 that

(2.7) lull = sup |(u,y)].
llyll<t

Let o = (a1,...,ap) € K" and x € H" with x = (21,...,2,). Then by (2.7)
we have

(2.8) Zajxj = sup <Zajzcj,y> = sup Zaj (j,9)] -
j=1

lvl<t |\

By taking the supremum in this equality we have

n

n
sup Zajxj = sup sup Zaj (@, )
j=1

» j=1 llell, <1\ [lylI<1 |5

1/2
n

n
= sup | sup | aj{zy)| | = suwp (Y [z |
Jj=1

lyll <1 \ [leell , <1 |5 lyll<1 \ 521

where for the last equality we used the representation (2.6).
This proves (2.1).
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Using the properties of the modulus, we have

n
Z a;f; < max
i=1

which implies that

(2.9) e Z%ﬂ <18l ,
where a = (a1,...,a,) and = (84,...,0,,) -
For (8,,...,0,) # 0, consider a = (e, ...,q,) with ¢ :=

which 3; # 0 and a; = 0, for the rest.
We have

_\ﬁl

Zajﬂ Z ZW | 18114
= Iﬂ 7

and

lallo = max jaj|= max
je{1,...,n} Je{1,.. JL}

and by (2.9) we get the representation

(2.10) e Zagﬁ =181,

for any 8 = (64,...,08,) € K™
By taking the supremum in the equality (2.8) we have

n

n
sup Zajxj = sup sup Zaj<xj,y>

<<t |52 ladlo<t \ llwl<1 |52

n n
= sup sup Zaj<acj,y> = sup Z|<mj,y>| ,

lyll<t \llell o<1 {527 lyll<1\ j=1

where for the last equality we used the equality (2.10), which proves the represen-
tation (2.2).
Finally, we have

n n

8, <3 oy
2 iy <D loyl _max 18,
j=1 Jj=1

which implies that

(2.11) sup_ Zagﬁ <18l 0o »

el <

where a = (a1,...,a,) and 8= (84,...,5,,)-
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For (By,...,8,) # 0, let jo € {1,...,n} such that 18]l = max;eq1,...ny |8,] =

|Bj0| . Consider a = (a1,...,a,) with o, = @A‘ and a; = 0 for j # jo. For this
Jo

choice we get

= |Bj0} = ||6HOO’

therefore by (2.11) we obtain the representation

(2.12) sup_ Zagﬁ = 18l

ey <

for any 8 = (64,...,05,) € K™
By taking the supremum in the equality (2.8) and by using the equality (2.12),
we have

n
sup Zozjwj = sup sup Zaj <$Cj,y>
lledly <1115 lall, <1\ lwll<1 5=
n
= sup sup Zaj (zj,y)| | = sup < max |<xj,y>|>
lyll<t \ llell <1557 lyll<1 \JE€{L,..,m}
== max sup i, Y = max T ,
jG{l,...,n} <|y|§1|< J >|> jG{l,...,n}{H .]H}
which proves (2.3). For the last equality we used the property (2.7). O

Corollary 1. With the assumptions of Theorem 8 we have for ¢ > 1 that

1

(213) 7z Il

for anyx € H™.
In particular, we have

(2.14) < %l pe < Il

1
n 1%l
for any x € H".
Proof. Let x € H™ with x = (x1,...,2,) and y € H with |ly|| <1, then for ¢ > 1

1/q 1/q n 1/q

n n
> gl Z Iyl llal)* ) =Myl { DNl | = Nl Il
j=1 j=1 j=1

and by taking the supremum over |ly|| < 1, we get the second inequality in (2.13).
By the properties of complex numbers, we have

1/q

max Zi, < xzi, !
s, e < (3 s
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and by taking the supremum over |y|| < 1, we get

1/q

(2.15) sup ( max }{|<xj,y>|}) < sp [l ul
j=1

lyll<t \FELLm lyll<1

and since

sup (| max (s )l}) = {sup <xj,y>|}

je{1,....,n}

llyll<1 Je{ln}t Llyli<1
= ohmax sl = 1%l o0+
then by (2.15) we get
(2.16) 1Xll,00 < 1%l4 g for any x € H™.
Since
" 1/q )
1/q
Sl | < (nlxli) T =0 X
j=1
then also
(2.17) 4 %[, < %], 00 for any x € H".

By utilising the inequalities (2.16) and (2.17) we obtain the first inequality in (2.13).
O

Remark 1. In the case of inner product spaces the inequality (2.14) has been
obtained in a different and more difficult way in [9] by employing the rotation-
invartant normalised positive Borel measure on the unit sphere.

Corollary 2. With the assumptions of Theorem 8 we have for r > q > 1 that
r—q
(2'18) ||X||h7n,r S ||X||h7n)q S n i ||X||h,n77‘

for any any x € H™.
In particular, for ¢ > 2 we have

-2
(2.19) 1%l < %l e <2 (Xl ,
and for 1 < g < 2 we have

(2.:20) [1x[l4,e < [1x]
for anyx € H™.

2—gq
h,n,q S n 24 HXHh,e

Proof. We use the following elementary inequalities for the nonnegative numbers
aj, j=1,...,nand r > ¢ > 0 (see for instance [16])

n 1/r N 1/q . 1/r
o) Sa) =[] e (e
j=1 j=1 j=1

Let x € H" with x = (x1,...,2,) and y € H with ||y|| < 1, then for r > ¢ > 1 we
have

1/r 1/q 1/r

e2) [ Ylel | < (Tl ] <o (3 lel

j=1
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By taking the supremum over y € H with ||y|| < 1 and using Theorem 3, we get
(2.18). O
Remark 2. If we take ¢ =1 in (2.18), then we get for v > 1 that

(223) ||X||h,n,'r < ||X||h,n,1 < TL% ||X||h,n,r

for anyx € H™.
In particular, for r = 2 we get

(2.24) ¢l e < Il m < VI, o
for anyx e H™.

3. SOME REVERSE INEQUALITIES

Recall the following additive reverse of Cauchy-Buniakowski-Schwarz inequality
[7] (see also [8, Theorem 5. 14])

Lemma 1. Leta, A€ R andz = (z1,...,2n), Y = (Y1,...,Yn) be two sequences
of real numbers with the property that:
(3.1) ay; < z; < Ay; for each je€{l,...,n}.
Then for any w = (w1, ...,wy) a sequence of positive real numbers, one has the
inequality
2 2

(32) 0= wizi Y jwiwi — | Y wizy; | < 1A-a > wiy;

=1 =1 =1 j=1

The constant + is sharp in (3.2).

O. Shisha and B. Mond obtained in 1967 (see [17]) the following counterparts of
(C'BS)- inequality (see also [8, Theorem 5.20 & 5.21])

Lemma 2. Assume that a = (a1,...,a,) and b = (by,...,by,) are such that there
exists a, A, b, B with the property that:

(3.3) 0<a<a; <A and 0<b<b;<B foranyjec{l,...,n},
then we have the inequality

n

2 2
n n A n n
Gy a2y (S, g<ﬁ\/;> S a3
1 =1 j=1 = =

j =
and

Lemma 3. Assume that a, b are nonnegative sequences and there exists vy, I' with
the property that

(3.5) O§7§%§F<oo forany j€{l,...,n}.
J
Then we have the inequality

" n n 2 n
) ) (T —~) 2
(3.6) 0< | Doafd b —> ab;< mjzlbj'

j=1  j=1 j=1

We have the following result:
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Theorem 4. Let (H, ||||) be an inner product space over the real or complex number
field K and x € H™ with x = (:vl,... Zn) . Then we have

1
2
(3.7) 0<%l — ||X||h n1 < g0 I%[1? o »
2 1 2

(3.8) 0< ||X||h,e T n ||X||h,n,1 > XHn,oo
and

1 1
(39) 0 <l = 7= ol 1 < 3Vl

Proof. Let x € H" with x = (v1,...,7,) and put R = max;jeqi,.. o) {75/} =
1%[l,, 00 - Ty € H with [ly[| <1 then |(z;,y)| < [yl [|z;]| < R for any j € {1,...,n}.

If we write the inequality (3.2) for z; = [(z;,y)|, wj =y; =1, A= Rand a =0,
we get

i {EJ, Z| xmy < in2R2
<1

for any y € H with ||y||
This implies that

(310) Sl < = [ Sl | + o

Jj=1 Jj=1

for any y € H with |ly|| < 1.

By taking the supremum in (3.10) over y € H with [Jy|| < 1 we get (3.7).

If we write the inequality (3.4) for a; = |(z;,y)|, b; =1, b=B=1,a =0 and
A = R, then we get

_Z ) = | Dol | <nRY N0l

for any y € H with ||y| < 1.
This implies that

Z|<xjvy>| Z Ti Y
Jj=1 Jj=1

3=

(3.11) S )l <

for any y € H with |ly|| < 1.
By taking the supremum in (3.11) over y € H with [jy|| < 1 we get (3.8).
Finally, if we write the inequality (3.6) for a; = |{(z;,y)|, b =1, b= B =1,
v =0 and I' = R, then we have

n n
2
RZ|<IJ,y>| Z‘ Tji Y |< TLR
j=1 j=1

for any y € H with ||y| < 1.
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This implies that

n n

(3.12) > Nzl Z (zj, u) + fR

i=1 i=1
for any y € H with ||y| < 1.
By taking the supremum in (3.12) over y € H with ||y|| < 1 we get (3.9). O

Further, we recall the Cebysev’s inequality for synchronous n-tuples of vectors
a=(a1,...,a,) and b = (b1,...,by), namely if (a; — ax) (b; — by) > 0 for any j,
ke{l,..,n}, then

(313) liajbj 2 liajlibj
st "= M=

In 1950, Biernacki et al. [2] obtained the following discrete version of Griiss’ in-
equality:

Lemma 4. Assume that a = (ai,...,a,) and b = (b1,...,b,) are such that there
exists real numbers a, A, b, B with the property that:
(3.14) a<a; <A and b<b; <B foranyje{l,...,n}.
Then
1o I 1¢
(3.15) *Za]‘b‘j - *ZCLJ‘*ZbJ‘
j=1 Jj=1 j=1
<l[ﬁ] 1—1[9] (A—a)(B—b)
T nl2 nl2
1

n? 1
—|(A—-a)(B—a)<-(A—a)(B-
| Ta-aE-0s<ju-aE-,
where [x] gives the largest integer less than or equal to .

The following result also holds:

Theorem 5. Let (H, ||-||) be an inner product space over the real or complex number
field K and x € H™ with x = (z1,...,2zy). Then for q, r > 1 we have

1
+
316 I < sl ] I
1 1 .
< Lt Il + S

Proof. Let x € H" with x = (v1,...,7,) and put R = max;jeqi,.. oy {/|7;]|} =
x0Tty € H with [ly] < 1 then [(z5, )| < lyll ]| < R for any j € {1, .., n}.

If we take into the inequality (3.15) a; = [(z;,y)|%, b; = [(z;,y)|", a =0, A = RY,
b=0and B = R", then we get

CEUINED SITNIIGAEED SITINILED DI e K P s

n2
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On the other hand, since the sequences {a;},_; ., {bj};_;
then by (3.13) we have

,, are synchronous,

goony

Using (3.17) we then get

318 Dl < LY [l Sl 4k |5 | R

j=1 j=1

for any y € H with ||y| < 1.
By taking the supremum in (3.18), we get

sup { > |, )

j=1

1 n n 1 TL2
<o § S el S gl p 4 4[] e

i<t | 5= ; n|4
<o 3 fmpl” p o 4D [l 5 ] Roe
<1 ; lyll<1 ; ni4

which proves the first inequality in (3.16).
The second part of (3.16) is obvious. O

Corollary 3. With the assumptions of Theorem 5 and if > 1, then we have

2 1 2 1 ’I'L2 2 1 2 1 2

hn,r n,00 = o h.n,r

In particular, for r =1 we get

1 1 [n? 1 1
2 2 2 2 2
(3.20) xw<nxu%ﬁ[4hmmwswhm+ ...

n n 4n

The first inequality in (3.20) is better than the second inequality in (3.7).

For an n-tuple of complex numbers a = (ay,...,a,) with n > 2 consider the
(n — 1)-tuple built by the aid of forward differences Aa = (Aay, ..., Aa,—1) where
Aay, = ag41 — ap where k € {1,...,n —1}. Similarly, if x = (z1,...,2,) € H"
is an n-tuple of vectors we also can consider in a similar way the (n — 1)-tuple
Ax =(Az1, ..., Axy_q).

We obtained the following Griiss’ type inequalities in terms of forward differences:
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Lemma 5. Assume that a = (a1,...,a,) and b = (by,...,b,) are n-tuples of
complex numbers. Then

1 n 1 n 1 n
(321) E;ajbj - E;ajﬁjzzlb]

1z (7 = 1) [[Aa] |Ab]| [12],

n—1,00 | n—1,00"7

IN

2_
%nn ! ||Aa||n71,a |

|Ab||n71’ﬁ where a, §>1, =+ % =1, [5],

1
% (1 - %) ”Aaanm ||Ab||n71,1 . 16].
1

1

The constants 15, & and 1 are best possible in (3.21).

The following result also holds:

Theorem 6. Let (H,(-,-)) be an inner product space over the real or complex
number field K and x € H™ with x = (x1,...,xy,). Then for q, r > 1 we have

. 1 r
(3:22) XI5 g < 2 IR g 05

+r—2 2
15 (n® = 1) x50 A,y o s

—2
+ % (n2 - 1) qr HXHZ—Z ||AX||h,n71,a HAXHh,nfl,B

where o, B> 1, é—i—%:l,

q+r—2

n,00

2
3 (n =1 ar|x| 1A 11 -

Proof. Let x € H" with x = (z1,...,2,) and y € H with |ly|| < 1. If we take into
the inequality (3.21) a; = [(z;,y)|?, b; = [(z;,y)|", then we get
1 n 1 n n
CEONED SIIRITAES SIIERVICES STl
j=1 j=1 j=1
1

5 (n? = ) maxj—y o1 [A [y, y)|! maxj—y o1 |[A (g, )]

S|

r
)

n?— n— Ve n— r B /8
Lot (A s )l !1) T (S0S 1A aw)T)

where «, 8 > 1, é—i—%:l,

IN

3 (U= 5) S5 A Gy ) 520 A g, )]

We use the following elementary inequality for powers p > 1

la? = | < pR¥ |a — b

where a, b € [0, R] .

Put R = maxjc(1, .. ny {751} = (%], o - Then for any y € H with [[y|| <1 we
have [{z;,9)| < [yl [a;]| < R for any j € {1, ..,n}.

Therefore
(3:24) ANz, )l = Iz, 1" = Koy, )l < aRH 2, 90| = g, )]
< qRT (w1, y) — (25, 9)| = qRTT (A, )]
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for any j =1,...,n — 1, where Az; = x;41 — x; is the forward difference.
On the other hand, since the sequences {a;},_, ., {bj};_, , are synchro-
nous, then we have

G25) 0= S e - 2 el Y el

(3.26) Y [{ay, )|

j=1
1 n n
SR BN
j=1 j=1
1 2 q—1 r—1
+ 13 (° = 1) ngR jomax  [(Azy,y)|rR™  max  [(Azj,y)l
1 n n
=5Z|<A%y>\q2|<mwy>l
j=1 j=1

for any y € H with ||y| < 1.

Taking the supremum over y € H with |ly|| <1 in (3.26) we get the first branch
in the inequality (3.22).

We also have, by (3.24), that

S 1/« o 1/«
PRENIETRIE < (@R [(Azy,y)|”
j=1 j=1

n—1 l/a

=qR"! [(Azj,y)|*
j=1
and, similarly,

n—1 1/8 n—1 /8
Solalznnl ) <rRTHY (A, )
j=1 j=1

Wherea,6>1,é+ =1.

1
B
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By the second inequality in (3.23) and by (3.25) we have

(3.27) [, )|
j=1
1 n n ,
;{}2 2 )Y (), 0)]
j=1 j=1
1/« S 1/B8
1 B
+2 (1) Z\A\%, ) (Al
j=1
1
< 1Syl Y e
j=1 j=1
1 n—1 L n—1 /B
Fo ) arRe (3 () Az )l
j=1 j=1
1, 1 _
ats= 1

for any y € H with ||y[| <1, where o, > 1, -
Taking the supremum over y € H with |ly|| < 1 in (3.27) we get the second
branch in the inequality (3.22).
We also have, by (3.24), that

n—1

Z|A|Ija ) < qRT 1Z|ij,

and
n—1 n—1
S oIA gy < TRy [(Azg,y)] -
j=1 j=1

By the third inequality in (3.23) and by (3.25) we have

3

n . 1 n
(3.28) > g™ < 5Z|<%7 DIy
j=1 j=1 j=1
(n—1) Z A %,yﬂqIZIAI(fﬂj,wlrl
=1 j=1

n

< EZK.’EJ,ZJH(]ZKIEJ,ZJHT

n—1 n—1
1 .
+5(n—1)grR* 2y A, ) Y (A, )|
j=1 j=1

for any y € H with |ly|| < 1.
Taking the supremum over y € H with |y|| < 1 in (3.28) we get the third branch
(]

in the inequality (3.22).
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Corollary 4. With the assumptions of Theorem 6 and if r > 1, then we have

(329) ||X||hn2r = || ||hnr
2r—2
72 (02 = D x| A,
2r—2
+ %72 (TL2 - 1) ||X||nroo | ||AXHh n—1,8

where o, B > 1, +B 1

2r—2 2
572 (= D) x5 1A%y -
In particular, for r =1 we get

52— n|Ax|2_, .,

L (n*-1) Ax|,, HAX”hn 1.8

(3.30) 115, < 09
where a, B> 1, sts=

4. FURTHER INEQUALITIES

In 1992, J. Pecari¢ [15] proved the following general inequality in inner product
spaces:

Lemma 6. Lety, x1,..., 2, € H and ¢1,..., ¢, € K. Then

2 n n
2 2
<yl* D leil® | D [wis @)
i=1 j=1

(4.1) (i, )

n n
2 2
<lyl* > el max. > i, z))]
i=1 ===

He showed that the Bombieri inequality [4] may be obtained from (4.1) for the
choice ¢; = (x;,y) (using the second inequality), the Selberg inequality [14, p. 394]
may be obtained from the first part of (4.1) for the choice

<$Ui, y)
> i1 K )l
while the Heilbronn inequality [13] may be obtained from the first part of (4.1) if
(i n}.

one chooses ¢; = (o
Theorem 7. Let (H, <~, -)) be an inner product space over the real or complex
number field K and x € H" with x = (x1,...,x,). Then for ¢ > 1 we have

ie{l,...,n};

C; =

L
2

Q

1-1/q
(4.2) 151 < 1l gy | 02 Z i, ;)]
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In particular, for ¢ =1 we get

ol

n
(4.3) ||X||hn 1> 1r£11a<xn §:1| T, ;)|
=

while for ¢ = 2 we get

N

n

. < . .
(4.4) %ll,e < | oax > 1|<oc“9cg>|
Jj=

Proof. If we take in (4.1) ¢; = (x4, y) (@5, )72, i € {1,...,n}, then we get

n 2 n n
2 2(q—1
(45) <Z|<wi,y>|q> < Nl Y- Mo w) P max $37 [, a)]
i=1 i=1 - = j=1

for any x € H" with x = (x1,...,2,) and y € H.
By taking the square root in (4.5) we get

@6 Y ley)

. 1/2 . 1/2
2(g—1)
< . o
IO SIEI) B R SR
i=1 ==" =1
for any x € H™ with x = (21,...,2,) and y € H.
If we take the supremum in (4.6) for ||y|| < 1, then we get
1/2
for any x € H" with x = (21,...,2,) and y € H.
This proves (4.2). O

In 1941, R. P. Boas [3] and in 1944, independently, R. Bellman [1] proved the
following generalization of Bessel’s inequality

Lemma 7. Ify, x1,..., x, are elements of an inner product space (H;{-,-)), then
the following inequality:

W=

(4.7) > eyl < llyl® max ||$z|| Y laiap)? ;
i=1

holds.

A generalization of the Boas-Bellman result was given in Mitrinovié-Pecarié-Fink
[14, p. 392] where they proved the following:
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Lemma 8. Ify, z1,..., ©, are as in Lemma 7 and c1,..., ¢, € K, then one has
the inequality:

[N

2 n

2 2 2 2

(48) <ol bl | e el | 32 Moo i)
=

Z (& <xia y>
=1

They also noted that if in (4.8) one chooses ¢; = (,y;), then this inequality
becomes (4.7).
Using a similar argument to the one in Theorem 7 and Lemma 8 we have:

Theorem 8. Let (H,(-,:)) be an inner product space over the real or complex
number field K and x € H" with x = (x1,...,x,). Then for ¢ > 1 we have

1
2q

[

1-1/q 2 2
(49)  xllnng < %5020 1) | e llill®+ | >0 i, 2j)l
1<i#j<n

In particular, for ¢ =1 we get

(NI
[N

2 2
(4.10) %[ 1 < 1r£?§}<n||33i|| + Z (s, 25)]
1<i#j<n

while for ¢ = 2 we get

NS
N

2 2
(2.11) Il e < | e il + D [aiay)
1<i#j<n

In [10] we obtained the following result that provides some companions to the
Boas-Bellman inequality above:

Lemma 9. Lety, x1,..., x, € H and c1,..., ¢, € K. Then

Z C; <xi, y>
=1

(4.12)

2 7 2
max {Jeil® P {0 I9ill® + Liciyn w2}

1<i<n
1
2 2
(Ealal)” { (S e1™)

9 1

< ] "

> ||yH X -+ (TL — ].)P (Zl<i;ﬁj§n |<1’171’j>| ) } ’
1 1

N——

S el { max ol + (n— 1) max |<xi,xj>|}.
1<i<n

1<i#j<n

‘We have:
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Theorem 9. Let (H,(-,-)) be an inner product space over the real or complex
number field K and x € H" with x = (x1,...,x,). Then for ¢ > 1 we have

1)
n""

1-1 n 2
max {flz: [} S il + Ccigyn Wi ai) 7

1<i<n

1
1-1/ n 2r\ "
I gy (S 1)
(413) %[0, <

1
1 Ar) 2
)+ 0D (Sicn o) |
1 1 _ 1.
where p>1,5+;f1,
1-1/q

1
9 2q
I 4 e ol = 1) e [t}

In particular, we have for ¢ =1 that

SIS

2
{2 12ll® + Ciciyen il } s

{( )’

1y3
4.14 < 1 r\ "
( ) ”Xllh,n,l = +(n-1)" (Zg#;‘gn \(xi,a?jﬂ ) } ,
where p>1,%+%:1;

-

1
2
i —1 e
{1rgza<xnﬂh|| +(n )1S111,127?<§n|<1:1,m]>} ,

while for ¢ = 2 that

N

n 2
max {llzil1} {0y ol + Sicissen s el ) s

1<i<n

-

o\ &
HX”}LJL,QP { (Z:‘L:I ”zl” T) ’

2

< r
me =)+ =07 (e @)
where p > 1,%4—%:1;

T
N

(4.15) x|

=

b

9 2
IXIIh,e{maX [[i]|” + (n = 1) max |<%$j>|} :

1<i<n 1<i#j<n
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Proof. If we take in (4.12) ¢; = (x5, y) |(zi,9)|* >, i € {1,...,n}, then we get

(4.16) (Z |<xi,y>q>
i=1
max {[(i, )" {0 il + X cin i)l

1<i<n

(S o) { (S i)
ST+ =17 (Sicimen |<mi,xj>|r>1}7

where p>1,%+%:1;

1<i<n 1<i#j<n

2(g—1
S o) P00 { s el + (0= 1) e (o)l
for any x € H™ with x = (21,...,2,) and y € H.
If we take the square root in this inequality, then we get

n

(417 Y )l

i=1

q—1 n 2 1/2
max {[(@i,9)|"" } { S0 il + iy @}

1<i<n

1

(S i) { (S bl

< Ilyl : a4
X 1 "
S = 0% (Srippellona?)

1,1 _ .
where p>1,5—|—;—1,

1<i<n 1<i#j<n

( i 2(q-1)) /2 Y2
> (i, y)| max ||z;|* + (n— 1) max |(z;,2;)| :

for any x € H"™ with x = (21,...,2,) and y € H.
If we take the supremum over y € H, |ly|| < 1, then we get

qg—1 n 2 1/2
max L)l H{EI ol + Sicisyen @iz}

1<i<n

1
n 2r\ "
IR gy (S 1)

Il . < 3 N
ma =4+ =18 (Chcisgen llmaa)l)
where p>1,%+%:1;

1/2
2
I gy e ol 4 (1) s [zl

for any x € H™ with x = (21, ...,2,), which produces the desired result (4.13). O
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The interested reader may obtain other similar results by utilising the following
inequalities obtained in [11]

Lemma 10. Let y, x1,..., T, be vectors of an inner product space (H; (-,-)) and
ci,..., ¢, € K. Then one has the inequalities:
D
2
where

n
el 52 e,z

1<k<n =

—~
3
8
<
el
S—
9
@ |
<
\Y
[t
S =
_l’_
W =
I
\‘)—‘

D= lal (el )i [Z (z

1<k<n 1<i<n \ /2

1
1 a\ 7
<Z ICklp) max fe;| | 25| 22 [{zi, ;)] : p>1, =1
k=1 l<isn i=1 \j=1

max || z x| masx (z |<xi,xj>|> :

D=
+
Q=

n » % n + t n n q % “ 1 1
g ) (Zlar) (Eier) £ (Sltwapr) | o1 iei-n
. k=1 i=1 i=1 \j=1
1 1 _ 1.
t>1, i + = 1;
P
<Z|Ck|p) Z|cz\ max Z x,,x3|> , p>1, %—!—%:1;
k=1 i =
and
S ol el Sy | max o)
1
. IN T
— n
P d S led (S0 lel™® <zi_1 o (o) | ) ,
SJisn
m > 1, % + % =1
2
(s len)” s ()]
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