
SOME INEQUALITIES OF HERMITE-HADAMARD TYPE FOR
CONVEX FUNCTIONS AND RIEMANN-LIOUVILLE

FRACTIONAL INTEGRALS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish several upper and lower bounds for the
functions

1

2
� (�)

"
J�a+f (x)

(x� a)�
+
J�b�f (x)

(b� x)�

#
and

1

2
� (�)

�
J�x�f (a)

(x� a)�
+
J�x+f (b)

(b� x)�
�

in the case of Riemann-Liouville fractional integrals J���; for convex functions
f : [a; b] ! R, for � > 0 and x 2 (a; b) : Some particular cases of interest are
examined. Various Hermite-Hadamard type inequalities are also provided.

1. Introduction

The following integral inequality

(1.1) f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt � f (a) + f (b)

2
;

which holds for any convex function f : [a; b] ! R; is well known in the literature
as the Hermite-Hadamard inequality.
There is an extensive amount of literature devoted to this simple and nice result

which has many applications in the Theory of Special Means and in Information
Theory for divergence measures, from which we would like to refer the reader to
the monograph [8], the recent survey paper [7] and the references therein.
Let f : [a; b]! C be a complex valued Lebesgue integrable function on the real

interval [a; b] : The Riemann-Liouville fractional integrals are de�ned for � > 0 by

J�a+f (x) =
1

� (�)

Z x

a

(x� t)��1 f (t) dt

for a < x � b and

J�b�f (x) =
1

� (�)

Z b

x

(t� x)��1 f (t) dt

for a � x < b; where � is the Gamma function. For � = 0; they are de�ned as

J0a+f (x) = J
0
b�f (x) = f (x) for x 2 (a; b) :
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In [18] Sarikaya et al. established the following Hermite-Hadamard type inequal-
ity for � > 0

(1.2) f

�
a+ b

2

�
� � (�+ 1)

2 (b� a)�
�
J�a+f (b) + J

�
b�f (a)

�
� f (a) + f (b)

2

provided f : [a; b]! R is a convex function.
A di¤erent version was also obtained by Sarikaya and Yildirim in [19] as follows

(1.3) f

�
a+ b

2

�
� 2��1� (�+ 1)

(b� a)�
h
J�a+b

2 +
f (b) + J�a+b

2 �f (a)
i
� f (a) + f (b)

2

provided f : [a; b]! R is a convex function.
For other Hermite-Hadamard type inequalities for the Riemann-Liouville frac-

tional integrals, see [1]-[3], [10]-[23] and the references therein.
Motivated by the above results, we establish in this paper several upper and

lower bounds for the functions

1

2
� (�)

�
J�a+f (x)

(x� a)� +
J�b�f (x)

(b� x)�
�
and

1

2
� (�)

�
J�x�f (a)

(x� a)� +
J�x+f (b)

(b� x)�
�

in the case of convex functions f : [a; b] ! R for � > 0 and x 2 (a; b) : Some par-
ticular cases of interest are examined. Other Hermite-Hadamard type inequalities
are also provided.

2. Some Preliminary Facts

In 1906, Fejér [9], while studying trigonometric polynomials, obtained the fol-
lowing inequalities which generalize that of Hermite & Hadamard:

Theorem 1 (Fejér�s Inequality). Consider the integral
R b
a
h (x) g (x) dx, where h

is a convex function in the interval (a; b) and g is a positive function in the same
interval such that

g (a+ t) = g (b� t) ; 0 � t � 1

2
(b� a) ;

i.e., g (�) is symmetric. Under those conditions the following inequalities are valid:

(2.1) h

�
a+ b

2

�Z b

a

g (t) dt �
Z b

a

h (t) g (t) dx � h (a) + h (b)

2

Z b

a

g (t) dt:

If h is concave on (a; b), then the inequalities reverse in (2.1).

Clearly, for g (x) � 1 on [a; b] we get (1.1).
Since we have the representation

(2.2) J�a+f (b) + J
�
b�f (a) =

1

� (�)

Z b

a

h
(b� t)��1 + (t� a)��1

i
f (t) dt;

the function g : [a; b]! R

g (t) =
1

� (�)

h
(b� t)��1 + (t� a)��1

i
is positive and symmetric on [a; b] andZ b

a

g (t) dt =
1

� (�)

Z b

a

h
(b� t)��1 + (t� a)��1

i
dt =

2

� (�+ 1)
(b� a)� ;



SOME INEQUALITIES FOR RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS 3

then by Fejér�s inequality (2.1) we have (1.2). This is a simpler proof than the one
in [18].
We have

J�a+b
2 +

f (b) + J�a+b
2 �f (a)

=
1

� (�)

Z b

a+b
2

(b� t)��1 f (t) dt+ 1

� (�)

Z a+b
2

a

(t� a)��1 f (t) dt:

Using the change of variable t = a+ b� u; we have dt = �du andZ b

a+b
2

(b� t)��1 f (t) dt =
Z a+b

2

a

(u� a)��1 f (a+ b� u) du:

Therefore we have the representation

1

2

h
J�a+b

2 +
f (b) + J�a+b

2 �f (a)
i

(2.3)

=
1

� (�)

Z a+b
2

a

(t� a)��1 f (t) + f (a+ b� t)
2

dt

for � > 0:
Since f is convex on [a; b] then, see for instance [6],

(2.4) f

�
a+ b

2

�
� f (t) + f (a+ b� t)

2
� f (a) + f (b)

2

for any t 2 [a; b] :
If we multiply this inequality by 1

�(�) (t� a)
��1 and integrate on

�
a; a+b2

�
; then

we get

f

�
a+ b

2

�
1

� (�)

Z a+b
2

a

(t� a)��1 dt(2.5)

� 1

2

h
J�a+b

2 +
f (b) + J�a+b

2 �f (a)
i

� f (a) + f (b)

2

1

� (�)

Z a+b
2

a

(t� a)��1 dt

and since

1

� (�)

Z a+b
2

a

(t� a)��1 dt = 1

�� (�)

�
b� a
2

��
=

1

� (�+ 1) 2�
(b� a)� ;

then by (2.5) we recapture (1.3). This is a di¤erent and perhaps a simpler proof
than the one from [19].

3. Main Results

The following result holds:
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Theorem 2. Let f be a convex function on the interval [a; b] : If � > 0; then we
have

1

2
� (�)

�
J�a+f (x)

(x� a)� +
J�b�f (x)

(b� x)�
�
�
Z 1

0

(1� s)��1 f
�
sx+ (1� s) a+ b

2

�
ds(3.1)

� 1

�
f

�
�

�+ 1

�
x

�
+
a+ b

2

��
and

(3.2)
1

�+ 1

�
1

�
f (x) +

f (a) + f (b)

2

�
� 1

2
� (�)

�
J�a+f (x)

(x� a)� +
J�b�f (x)

(b� x)�
�

for any x 2 (a; b) :

As a particular case of interest we have:

Corollary 1. With the assumptions in Theorem 2, we have

f (a) + f (b)

2
� �

�+ 1

�
1

�
f

�
a+ b

2

�
+
f (a) + f (b)

2

�
(3.3)

� 2��1� (�+ 1)

(b� a)�
�
J�a+f

�
a+ b

2

�
+ J�b�f

�
a+ b

2

��
� f

�
a+ b

2

�
for any � > 0:

We also have the dual results:

Theorem 3. Let f be a convex function on the interval [a; b] : If � > 0; then we
have

1

2
� (�)

�
J�x�f (a)

(x� a)� +
J�x+f (b)

(b� x)�
�
�
Z 1

0

s��1f

�
sx+ (1� s) a+ b

2

�
ds(3.4)

� 1

�
f

�
�

�+ 1

�
x+

1

�

a+ b

2

��
and

(3.5)
1

�+ 1

�
f (x) +

1

�

f (a) + f (b)

2

�
� 1

2
� (�)

�
J�x�f (a)

(x� a)� +
J�x+f (b)

(b� x)�
�

for any x 2 (a; b) :

As a particular case of interest we also have:

Corollary 2. With the assumptions in Theorem 2, we have

f (a) + f (b)

2
� �

�+ 1

�
f

�
a+ b

2

�
+
1

�

f (a) + f (b)

2

�
(3.6)

� 2��1� (�+ 1)

(b� a)�
h
J�a+b

2 �f (a) + J
�
a+b
2 +

f (b)
i
� f

�
a+ b

2

�
;

for any � > 0:

The �rst inequality in (3.6) is improving the second inequality in (1.3).
From a di¤erent perspective we also have:
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Theorem 4. Let f be a convex function on the interval [a; b] : If � > 0; then we
have

(3.7)
1

2

� (�+ 1)

(x� a)�
�
J�a+f (x) + J

�
b�f (a+ b� x)

�
� f

�
a+ b

2

�
and

f (a) + f (b)

2
� �

�+ 1

�
f (a) + f (b)

2
+
f (x) + f (a+ b� x)

2�

�
(3.8)

� 1

2

� (�+ 1)

(x� a)�
�
J�a+f (x) + J

�
b�f (a+ b� x)

�
for a < x � b:

We observe that if we take x = b in Theorem 4, then we get the inequality (1.2).
If we take x = a+b

2 in Theorem 4, then we also get the inequality (3.3). We also
observe that, by swapping x with a+ b� x in (3.7) and (3.8), we get

(3.9)
1

2

� (�+ 1)

(b� x)�
�
J�a+f (a+ b� x) + J�b�f (x)

�
� f

�
a+ b

2

�
and

f (a) + f (b)

2
� �

�+ 1

�
f (a) + f (b)

2
+
f (x) + f (a+ b� x)

2�

�
(3.10)

� 1

2

� (�+ 1)

(b� x)�
�
J�a+f (a+ b� x) + J�b�f (x)

�
for a � x < b and � > 0:

4. Proofs

If we use the change of variable t = (1� s) a + sx for s 2 [0; 1] and a < x � b
then we have dt = (x� a) ds, x� t = (1� s) (x� a) and

J�a+f (x) =
1

� (�)

Z x

a

(x� t)��1 f (t) dt(4.1)

=
1

� (�)
(x� a)�

Z 1

0

(1� s)��1 f ((1� s) a+ sx) ds

for a < x � b:
If we use the change of variable t = (1� u)x + ub for u 2 [0; 1] and a � x < b;

then we have dt = (b� x) ds, t� x = u (b� x) and

J�b�f (x) =
1

� (�)

Z b

x

(t� x)��1 f (t) dt(4.2)

=
1

� (�)
(b� x)�

Z 1

0

u��1f ((1� u)x+ ub) du

for a � x < b:
If we make the change of variable s = 1� u we also have

(4.3) J�b�f (x) =
1

� (�)
(b� x)�

Z 1

0

(1� s)��1 f (sx+ (1� s) b) ds

for a � x < b:
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From (4.1) and (4.3) we get

1

2
� (�)

�
J�a+f (x)

(x� a)� +
J�b�f (x)

(b� x)�
�

(4.4)

=

Z 1

0

(1� s)��1
�
f ((1� s) a+ sx) + f (sx+ (1� s) b)

2

�
ds

for any x 2 (a; b) :
By using the convexity of f we have

(4.5)
f ((1� s) a+ sx) + f (sx+ (1� s) b)

2
� f

�
sx+ (1� s) a+ b

2

�
and

(4.6) sf (x) + (1� s) f (a) + f (b)
2

� f ((1� s) a+ sx) + f (sx+ (1� s) b)
2

for any s 2 [0; 1] and x 2 (a; b) :
If we multiply (4.5) by (1� s)��1 and integrate over s 2 [0; 1] we get by (4.4)

that

(4.7)
1

2
� (�)

�
J�a+f (x)

(x� a)� +
J�b�f (x)

(b� x)�
�
�
Z 1

0

(1� s)��1 f
�
sx+ (1� s) a+ b

2

�
ds

for any x 2 (a; b) : This proves the �rst inequality in (3.1).
Using Jensen�s weighted integral inequality for the convex function f and the

nonnegative weight w (s) = (1� s)��1 ; s 2 [0; 1] we haveR 1
0
(1� s)��1 f

�
sx+ (1� s) a+b2

�
dsR 1

0
(1� s)��1 ds

(4.8)

� f
 R 1

0
(1� s)��1

�
sx+ (1� s) a+b2

�
dsR 1

0
(1� s)��1 ds

!
for any x 2 (a; b) :
Since

R 1
0
(1� s)��1 ds = 1

� ,Z 1

0

(1� s)��1 sds =
Z 1

0

s��1 (1� s) ds = 1

� (�+ 1)

and Z 1

0

(1� s)��1
�
sx+ (1� s) a+ b

2

�
ds =

1

�+ 1

�
x

�
+
a+ b

2

�
:

Then by (4.8) we get

(4.9)
Z 1

0

(1� s)��1 f
�
sx+ (1� s) a+ b

2

�
ds � 1

�
f

�
�

�+ 1

�
x

�
+
a+ b

2

��
or any x 2 (a; b) : This proves the second inequality in (3.1).
If we multiply (4.6) by (1� s)��1 and integrate over s 2 [0; 1] we get by (4.4)

that Z 1

0

(1� s)��1
�
sf (x) + (1� s) f (a) + f (b)

2

�
ds

� 1

2
� (�)

�
J�a+f (x)

(x� a)� +
J�b�f (x)

(b� x)�
�
;
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which is equivalent to the desired result (3.2).
The �rst inequality in (3.3) is equivalent to

f (a) + f (b)

2
� f

�
a+ b

2

�
:

Now, if we take x = a+b
2 in (3.1) and (3.2) we get

2��1� (�)

"
J�a+f

�
a+b
2

�
(b� a)� +

J�b�f
�
a+b
2

�
(b� a)�

#

�
Z 1

0

(1� s)��1 f
�
s
a+ b

2
+ (1� s) a+ b

2

�
ds =

1

�
f

�
a+ b

2

�
and

1

�+ 1

�
1

�
f

�
a+ b

2

�
+
f (a) + f (b)

2

�
� 2��1� (�)

"
J�a+f

�
a+b
2

�
(b� a)� +

J�b�f
�
a+b
2

�
(b� a)�

#
for any � > 0: If we multiply these inequalities by � and take into account that
�� (�) = � (�+ 1) ; we get the desired result (3.3).
Using the de�nition of fractional integrals we have

J�x�f (a) =
1

� (�)

Z x

a

(t� a)��1 f (t) dt

for a < x � b and

J�x+f (b) =
1

� (�)

Z b

x

(b� t)��1 f (t) dt

for a � x < b:
Performing in the �rst integral the change of variable t = (1� s) a+sx; s 2 [0; 1]

we have dt = (x� a) ds; t� a = s (x� a) and

(4.10) J�x�f (a) =
1

� (�)
(x� a)�

Z 1

0

s��1f ((1� s) a+ sx) ds

for a < x � b:
By the change of variable t = (1� u)x+ ub; u 2 [0; 1] we have dt = (b� x) du;

b� t = b� (1� u)x� ub = (1� u) (b� x) and

J�x+f (b) =
1

� (�)
(b� x)�

Z 1

0

(1� u)��1 f ((1� u)x+ ub) dt:

Moreover, by changing the variable u = 1� s; we also have

(4.11) J�x+f (b) =
1

� (�)
(b� x)�

Z 1

0

s��1f (sx+ (1� s) b) dt;

for a � x < b:
If we multiply the inequality (4.5) by s��1 and integrate over s on [0; 1] we get

(4.12)
1

2
� (�)

�
J�x�f (a)

(x� a)� +
J�x+f (b)

(b� x)�
�
�
Z 1

0

s��1f

�
sx+ (1� s) a+ b

2

�
ds

for a < x < b:
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Using Jensen�s weighted integral inequality for the convex function f and the
nonnegative weight w (s) = s��1; s 2 [0; 1] we haveR 1

0
s��1f

�
sx+ (1� s) a+b2

�
dsR 1

0
s��1ds

� f
 R 1

0
s��1

�
sx+ (1� s) a+b2

�
dsR 1

0
s��1ds

!

= f

 
1

�+1x+
1

�(�+1)
a+b
2

1
�

!

= f

�
�

�+ 1

�
x+

1

�

a+ b

2

��
;

namely Z 1

0

s��1f

�
sx+ (1� s) a+ b

2

�
ds � 1

�
f

�
�

�+ 1

�
x+

1

�

a+ b

2

��
for a < x < b: These prove (3.4).
If we multiply the inequality (4.6) by s��1 and integrate over s 2 [0; 1] ; then we

getZ 1

0

s��1
�
sf (x) + (1� s) f (a) + f (b)

2

�
ds � 1

2
� (�)

�
J�x�f (a)

(x� a)� +
J�x+f (b)

(b� x)�
�
;

which is equivalent to (3.5).
The proof of inequalities in (3.6) follow by Theorem 3 for x = a+b

2 :
Now, observe that by the representations (4.1) and (4.2) we have for a < x � b

that

1

2

�
J�a+f (x) + J

�
b�f (a+ b� x)

�
(4.13)

=
1

2� (�)
(x� a)�

Z 1

0

(1� s)��1 f ((1� s) a+ sx) ds

+
1

2� (�)
(x� a)�

Z 1

0

(1� s)��1 f (s (a+ b� x) + (1� s) b) ds

=
1

� (�)
(x� a)�

�
Z 1

0

(1� s)��1
�
f ((1� s) a+ sx) + f (s (a+ b� x) + (1� s) b)

2

�
ds;

were � > 0:
By the convexity of f we have

f ((1� s) a+ sx) + f (s (a+ b� x) + (1� s) b)
2

� f
�
(1� s) a+ sx+ s (a+ b� x) + (1� s) b

2

�
= f

�
a+ b

2

�
for any a < x � b and s 2 [0; 1] :
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Then by the representation (4.13) we get

1

2

�
J�a+f (x) + J

�
b�f (a+ b� x)

�
� 1

� (�)
(x� a)� f

�
a+ b

2

�Z 1

0

(1� s)��1 ds

=
1

�� (�)
(x� a)� f

�
a+ b

2

�
=

1

� (�+ 1)
(x� a)� f

�
a+ b

2

�
;

for any a < x � b; which proves (3.7).
By the convexity of f we also have

f ((1� s) a+ sx) + f (s (a+ b� x) + (1� s) b)
2

� 1

2
[(1� s) f (a) + sf (x) + sf (a+ b� x) + (1� s) f (b)]

= (1� s) f (a) + f (b)
2

+ s

�
f (x) + f (a+ b� x)

2

�
for any a < x � b and s 2 [0; 1] :
Then by the representation (4.13) we get

1

2

�
J�a+f (x) + J

�
b�f (a+ b� x)

�
� 1

� (�)
(x� a)�

�
Z 1

0

(1� s)��1
�
(1� s) f (a) + f (b)

2
+ s

�
f (x) + f (a+ b� x)

2

��
=

1

� (�)
(x� a)�

�
�
f (a) + f (b)

2

Z 1

0

(1� s)� ds+
�
f (x) + f (a+ b� x)

2

� Z 1

0

(1� s)��1 sds
�

=
1

� (�)
(x� a)�

�
f (a) + f (b)

2 (�+ 1)
+
f (x) + f (a+ b� x)

2� (�+ 1)

�
=

1

� (�) (�+ 1)
(x� a)�

�
f (a) + f (b)

2
+
f (x) + f (a+ b� x)

2�

�
=

�

� (�+ 1) (�+ 1)
(x� a)�

�
f (a) + f (b)

2
+
f (x) + f (a+ b� x)

2�

�
which proves the second inequality in (3.8).
By the convexity of f we have

f (x) = f

�
(b� x) a+ (x� a) b

b� a

�
� (b� x) f (a) + (x� a) f (b)

b� a
and

f (a+ b� x) � (x� a) f (a) + (b� x) f (b)
b� a

for a � x � b; which by addition give
f (x) + f (a+ b� x) � f (a) + f (b)

for a � x � b:
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Therefore

f (a) + f (b)

2
+
f (x) + f (a+ b� x)

2�
� f (a) + f (b)

2
+
f (a) + f (b)

2�

=
f (a) + f (b)

2

�
�+ 1

�

�
;

which proves the �rst part of (3.8).

5. Further HH-Type Inequalities

In [4] and [5] we introduced the following mapping associated to a Lebesgue
integrable function f : [a; b]! R

(5.1) Hf (t) :=
1

b� a

Z b

a

f

�
tx+ (1� t) a+ b

2

�
dx; t 2 [0; 1] :

It has been shown in the above papers that, if f is convex on [a; b] ; then Hf is
convex on [0; 1]; Hf increases monotonically on [0; 1], we have the bounds

inf
t2[0;1]

Hf (t) = Hf (0) = f

�
a+ b

2

�
;

sup
t2[0;1]

Hf (t) = Hf (1) =
1

b� a

Z b

a

f (x) dx

and the inequalities

f

�
a+ b

2

�
� 2

b� a

Z a+3b
4

3a+b
4

f (x) dx(5.2)

�
Z 1

0

H (t) dt

� 1

2

"
f

�
a+ b

2

�
+

1

b� a

Z b

a

f (x) dx

#
:

By (4.1) we have for an integrable function f : [a; b]! R that

(5.3)
J�a+f (x)

(x� a)� =
1

� (�)

Z 1

0

(1� s)��1 f ((1� s) a+ sx) ds

for a < x � b: The function

[a; b] 3 x 7! 1

� (�)

Z 1

0

(1� s)��1 f ((1� s) a+ sx) ds

is integrable and by Fubini�s theorem we have

1

� (�)

1

b� a

Z b

a

�Z 1

0

(1� s)��1 f ((1� s) a+ sx) ds
�
dx

=
1

� (�)

Z 1

0

(1� s)��1
 

1

b� a

Z b

a

f ((1� s) a+ sx) dx
!
ds:
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By (5.3) we then have

1

b� a

Z b

a

J�a+f (x)

(x� a)� dx(5.4)

=
1

� (�)

Z 1

0

(1� s)��1
 

1

b� a

Z b

a

f ((1� s) a+ sx) dx
!
ds:

By (4.3) we also have

1

b� a

Z b

a

J�b�f (x)

(b� x)� dx(5.5)

=
1

� (�)

Z 1

0

(1� s)��1
 

1

b� a

Z b

a

f (sx+ (1� s) b) dx
!
ds:

Proposition 1. Let f be a convex function on the interval [a; b] : If � > 0; then
we have

1

2
� (�+ 1)

"
1

b� a

Z b

a

J�a+f (x)

(x� a)� dx+
1

b� a

Z b

a

J�b�f (x)

(b� x)� dx
#

(5.6)

� �
Z 1

0

(1� s)��1Hf (s) ds

� 1

b� a

Z b

a

f

�
�

�+ 1

�
x

�
+
a+ b

2

��
dx � f

�
a+ b

2

�
and

f (a) + f (b)

2
(5.7)

� �

�+ 1

"
1

�

1

b� a

Z b

a

f (x) dx+
f (a) + f (b)

2

#

� 1

2
� (�+ 1)

"
1

b� a

Z b

a

J�a+f (x)

(x� a)� dx+
1

b� a

Z b

a

J�b�f (x)

(b� x)� dx
#

for any x 2 (a; b) :
The proofs of the �rst and second inequality in (5.6) follow by (3.4). The last

part follows by Jensen�s inequality.
The �rst inequality in (5.7) is obvious by the fact that f(a)+f(b)2 � 1

b�a
R b
a
f (x) dx;

while the second inequality follows by (3.2).
By using Theorem 3 we have:

Proposition 2. Let f be a convex function on the interval [a; b] : If � > 0; then
we have

1

2
� (�+ 1)

"
1

b� a

Z b

a

J�x�f (a)

(x� a)� dx+
1

b� a

Z b

a

J�x+f (b)

(b� x)� dx
#

(5.8)

� �
Z 1

0

s��1Hf (s) ds

� 1

b� a

Z b

a

f

�
�

�+ 1

�
x+

1

�

a+ b

2

��
dx � f

�
a+ b

2

�
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and

f (a) + f (b)

2
(5.9)

� �

�+ 1

"
1

b� a

Z b

a

f (x) dx+
1

�

f (a) + f (b)

2

#

� 1

2
� (�+ 1)

"
1

b� a

Z b

a

J�x�f (a)

(x� a)� dx+
1

b� a

Z b

a

J�x+f (b)

(b� x)� dx
#
:

From (3.7) and (3.8) we have

(5.10)
1

2
� (�+ 1)

�
J�a+f (x) + J

�
b�f (a+ b� x)

�
� f

�
a+ b

2

�
(x� a)�

and

f (a) + f (b)

2
(x� a)�(5.11)

� �

�+ 1

�
f (a) + f (b)

2
(x� a)� + f (x) + f (a+ b� x)

2�
(x� a)�

�
� 1

2
� (�+ 1)

�
J�a+f (x) + J

�
b�f (a+ b� x)

�
for any x 2 (a; b) :
By taking the integral mean in (5.10) we have

1

2
� (�+ 1)

"
1

b� a

Z b

a

J�a+f (x) dx+
1

b� a

Z b

a

J�b�f (a+ b� x) dx
#

(5.12)

� f
�
a+ b

2

�
(b� a)�
�+1

and since
1

b� a

Z b

a

J�b�f (a+ b� x) dx =
1

b� a

Z b

a

J�b�f (x) dx;

then by (5.12) we have

(5.13)
1

2

� (�+ 2)

(b� a)�

"
1

b� a

Z b

a

J�a+f (x) dx+
1

b� a

Z b

a

J�b�f (x) dx

#
� f

�
a+ b

2

�
:

By taking the integral mean in (5.11) we have

f (a) + f (b)

2

(b� a)�

�+ 1
(5.14)

� �

�+ 1

�
f (a) + f (b)

2

(b� a)�

�+ 1

+
1

� (b� a)

Z b

a

f (x) + f (a+ b� x)
2

(x� a)� dx
#

� 1

2
� (�+ 1)

"
1

b� a

Z b

a

J�a+f (x) dx+
1

b� a

Z b

a

J�b�f (x) dx

#
:
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Since
R b
a
f (a+ b� x) (x� a)� dx =

R b
a
f (x) (b� x)� dx thenZ b

a

f (x) + f (a+ b� x)
2

(x� a)� dx =
Z b

a

(x� a)� + (b� x)�

2
f (x) dx

and by (5.14) we get

f (a) + f (b)

2
(5.15)

� �

(b� a)�
�
f (a) + f (b)

2

(b� a)�

�+ 1

+
1

� (b� a)

Z b

a

(x� a)� + (b� x)�

2
f (x) dx

#

� 1

2

� (�+ 2)

(b� a)�

"
1

b� a

Z b

a

J�a+f (x) dx+
1

b� a

Z b

a

J�b�f (x) dx

#
:

We �nally have:

Proposition 3. Let f be a convex function on the interval [a; b] : If � > 0; then
we have

(5.16)
� (�+ 2)

(b� a)�+1
Z b

a

J�a+f (x) + J
�
b�f (x)

2
dx � f

�
a+ b

2

�
and

f (a) + f (b)

2
� �

(b� a)�
�
f (a) + f (b)

2

(b� a)�

�+ 1
(5.17)

+
1

� (b� a)

Z b

a

(x� a)� + (b� x)�

2
f (x) dx

#

� � (�+ 2)

(b� a)�+1
Z b

a

J�a+f (x) + J
�
b�f (x)

2
dx:
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