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OSTROWSKI TYPE INEQUALITIES FOR GENERALIZED
RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS OF
FUNCTIONS WITH BOUNDED VARIATION

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some Ostrowski type inequalities for the
Riemann-Liouville fractional integrals of functions of bounded variation and
of Holder continuous functions. Applications for the g-mean of two numbers
are provided as well. Some particular cases for Hadamard fractional integrals
are also provided.

1. INTRODUCTION

Let (a,b) with —oo < a < b < oo be a finite or infinite interval of the real line
R and « a complex number with Re (a) > 0. Also let g be a strictly increasing
function on (a,b), having a continuous derivative ¢’ on (a,b). Following [16, p.
100], we introduce the generalized left- and right-sided Riemann-Liowville fractional
integrals of a function f with respect to another function g on [a, b] by

(1.1) o @) = — / gurmd -y

e T(@) Ja [g(@) =gt
and
(1.2) I (@)= o (1&) /: ’ f;)(t_) J; Ei))]dlta’ a<wz<b.
For g (t) = t we have the classical Riemann-Liowville fractional integrals
(1.3) T (@) = (1a) / ’ (xf_(tz)ﬁ“_a, a<e<b
and
(14 i) = i [P asa <o

while for the logarithmic function ¢ (t) = Int we have the Hadamard fractional
integrals [16, p. 111]

(1.5) H?, f(z) :F(la)/ [111 (%)r‘lf(tt)d{ 0<a<az<b

and
(L6)  HY f(z) ::I‘(la)/: {m (Dr—l f(tt)dt, 0<a<z<b.

1991 Mathematics Subject Classification. 26D15, 26D10, 26D07, 26A33.
Key words and phrases. Riemann-Liouville fractional integrals, Functions of bounded varia-
tion, Lipshitzian functions, Ostrowski type inequalities.

1

RGMIA Res. Tep. Coll. 20 (2017), Art. 58, 14 pp.



e5011831
Typewritten Text
Received 27/05/07

e5011831
Typewritten Text
RGMIA Res. Tep. Coll. 20 (2017), Art. 58, 14 pp.


2 S.S. DRAGOMIR

One can consider the function g (t) = —t~! and define the "Harmonic fractional
integrals” by

o I ft)dt
(1.7) Ry f(x) = I (o) /a ot 0<a<z<bd
and

o Tt ()t
(1.8) Ry f(z):= () /z o) et 0<a<z<b.

Also, for g (t) = exp (Bt), § > 0, we can consider the "3-Exponential fractional
integrals”

o v B[ enf@a
) Fue sl 0= 1) /a op (Ba) —ep (B ¢ TS ’
and
o B b exp (Bt) f (t) dt W<
o Ebﬁﬂ”"‘Fw%A[wpww—wpwwrﬂ’ et

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals
see [1]-[5], [14]-[25] and the references therein.

Motivated by the above results, in this paper we establish some Ostrowski type
inequalities for the generalized Riemann-Liouville fractional integrals of functions
of bounded variation, of Holder continuous functions and of Lipschitzian functions.
Applications for the g-mean of two numbers are provided as well. Some particular
cases for Hadamard fractional integrals are also provided.

2. SOME IDENTITIES OF INTEREST
‘We have:

Lemma 1. Let f : [a,b] — C be Lebesgue integrable on [a,b] and g be a strictly
increasing function on (a,b), having a continuous derivative g’ on (a,b) .
(i) For any x € (a,b) we have the representation

~ a7 (9@ -5 @I +lg )~ (@) f @)

L [ freoU@-f@id, [P gOl©-f@)d
+N®ll “f ]

2.1) 15 o f (@) + I f(x)

g (x) =g ()] lg (8) = g ()"

and
22) 12 f(@)+ 12,0 = oy (@)~ @)+ ls () =9 @)") £ (@)
L [P mU® - f@ld | [P g0 @) f @) de
+N®ll 9(t) — g (@] " +L [wmumka]'
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(ii) We have

B @+ 128,00 1 F0)+f (@)
TS e o) — g (@) S

L [ Pemu@-rold eI - f@)d
o () V 9B —g (O] + 90 —g@ |

(2.3)

Proof. (i) We observe that
oy / J L (1)~ 1 (@) di

I'(a) lg (x) - gt]lo‘
o 1 t)dt
- Ia+ g F (a / z 11—«
= 13, , (@) - 22 (i)“) Fla) =15 gf< 0 - L9 10
for a < x < b and, mmﬂarly,
L P m s @, 9 ()~ 9 )"
25w ) Tty e = @)~ SR @
for a <z <b.
If z € (a,b), then by adding the equalities (2.4) and (2.5) we get the representa-
tion (2.1).

By the definition of fractional integrals we have

= f(b)::rl)/b[gg'“)f(”dt Ca<z<b

o @ Je [g®)—g0]™ "
and
L [* g @) f)d
I a) = ,a<zx<b.
waf (@) F(a)fa 9@ gl * 75
Then
1L Py -f@ld o, W@,
e @) Tpe—garr e ety
for a < x < band
L (g @lf®) - f@ld_ ., @ -g@I",
I ol s = S WIORES L A 0
for a < x <b.

If x € (a,b), then by adding the equalities (2.6) and (2.7) we get the representa-
tion (2.1).
If we take x = b in (2.4) we get
g (t)

1 OIf @) = fOldt lg (0) — g (a)]*
29 / e = e 0) - 0
while from = = a in (2.5) we get
1 g O #)—=faldt _ ., ) —g@” .
@) ] O = g @)~ SR @),
If we add (2.8) with (2.9) and divide by 2 we get (2.3). O
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If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can define the g-mean of two numbers
a,bel as

IRy COETL))

If I =R and ¢ (t) =t is the identity function, then M, (a,b) = A(a,b) := "7“’,
the arithmetic mean. If I = (0,00) and g (t) = Int, then M, (a,b) = G (a,b) := Vab,
the geometric mean. If I = (0,00) and g (t) = 1, then M, (a,b) = H (a,b) :=

%, the harmonic mean. If I = (0,00) and g (t) = t?, p # 0, then M, (a,b) =
1/p

MP (a’b) = (%)
g (t) = expt, then

, the power mean with exponent p. Finally, if I = R and

b
M, (a,b) = LME (a,b) := In (expa;rem> |

the LogMeanExp function.

Corollary 1. Let f : [a,b] — C be Lebesgue integrable on [a,b] and g be a strictly
increasing function on (a,b), having a continuous derivative g’ on (a,b). Then we
have the equalities

(2.10) I(?—&-,gf(M‘] (a,b)) + Il?—gf(M‘] (a,0))

- e O @I (0 ()

. l /Mg“”” g O)1f () = f (M (a,b)] dt /b g’(t)[f(t)—f(Mg<a,b>>}dt]
o 9 (Mq (a,0) =g O] oty [9(5) =g (M (a,0))] ]

(211) II?/IQ((L,b)—yf(a) + 1?49((175)‘5‘79'}0([))

= e 0 9 @I (0 ()
1[N g [F @)~ f (M @bt [P g )L () — £ (M, (a,b)) dt]
() V O —g@ /Mgm,w 90— g '

Remark 1. If we take x = aTer i Lemma 1 we also have the mid-point equalities
of interest

S
+
>

(212) 12,1 ( !
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and

(213) 12 f(a)+ 120, fO)

“rar () J[ (“”)D;‘(“”)

1 g @) [f(t)—f( dt [ g - f(® ]
/a 90 —g (@] + 9o g |

) ;

3. INEQUALITIES FOR FUNCTIONS OF BOUNDED VARIATION

We have the following result:

Theorem 1. Let f : [a,b] — C be a function of bounded variation on [a,b] and
g be a strictly increasing function on (a,b), having a continuous derivative g’ on
(a,b). Then

(i) For any x € (a,b) we have the inequalities

B.1) |18, f(2) + I f(x) - F(%H) (l9(z) = g (@)” +[g (b) — g (@)]°) f (x)
1 JOVIHd P gV (f)dt]
<
~ T(a) U 9 (z) — g (] +/w 9 (t) — g ()]
x b
<z (a1+ 3 —g(a)]“\a/(f) + g () —g(x)}“\z/(f)]

[$0®) —g(@)+ (@) - 2220V (5);
1 a\ /4
L) (9@ =g (@) +(g0) =g @) (Ve '+ (Vo n)')

<
I(a+1) wz'thp,q>1,%+$:1
E

(9.(2) = g (@) +(9.(0) =g @) [LVa (1) + & V2 (F) = V2 (1)

and

1o fa) + 1%, f(b) — ﬁ (g @) — g (@] +[g () — g (@)]*) (@)

1 T g )V (f)dt b g )V (f)dt
I'(a) Va lg(t) —g(a)' ™ +/w [g(b)—g(t)}“‘]

x b
! g@I"\ () +1g®) — g @)/ (f)]

(3.2)

IN

Sm g9 ()

[50®) —g (@) + | (@) - 22520V (4);
a\1/a

<L) (@ =g@)®+g®) — g @)™ (Vi) + (Ve )
" I(a+1) withp,q>1,%+%:1;

(9.2) — g (@) + (g ) = g (@) [ VE () +

VAGEAGIE
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(ii) We have

I a I« b a
(33) b—,gf( ) ;— a+,gf( ) o F(a1+ 1) [g (b) —g (a)]a f (b) ; f( )
1 b g )V (f)dt g () VL (f) dt ]
= () V [g(b) —g ()] +/a 9 (t) —g(a) "
b
<L (g —g@)\ ()

I'(a+1)

a

Proof. (i) By the representation (2.1) and the properties of modulus, we have
1 a a
(l9 (@) —g(@)]” +[g () =g @)]") f (z)

(3.4) .
N /” g O (&)~ f(@)]dt ]

19 o @) + I f (@)~
1 g0l - f@)d
=T [/ 9 (@) — g (0] l9(t) — g @)

L [ -F@ld | g B ) <x>|dt].3x
“T V g (@) —g ()] o o g | 7@

Since f is of bounded variation, then we have for « € (a,b) that

|f(t)—f(fﬂ)|§\/(f)§\/(f) fora<t<uz

t

and

¢ b
‘f(t)_f(x)‘ﬁ\/(f)ﬁ\/(f) for z <t <b.

x

1 gV ()t b g (), (f)dt
B(x
)= I'(e) Ua lg(z) —g ()]~ +/a: [g(t)—g(x)]lo‘]
b

RN e g (t)dt g (t)dt
I'(a) [\(L/(f)/[(x) g VU / )—g(m)]la]

x

IA

1
I'a+1)

b
l9 () =g (@]*\/ () +1g (0) =g (@)]"\/ (f)] ,

a

for any x € (a,b), which proves the first two inequalities in (3.1).
Now, by making use of the elementary Holder type inequalities for positive real
numbers ¢, d, m, n >0

max {m,n} (c+d);
me+nd <

(m? +nP)? (¢t + d)Y with p, ¢ > 1, I%—F%: 1

we have

T b
—g@]*\ (H+g®) —g@)]*\/ ()



OSTROWSKI INEQUALITIES FOR RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS

max {(g () — g (@))” (9 (8) = 9 ()"} V,, ()

(9 =)~ g @)™ + (@)~ 9 @)™ (V2 ()" + (V2n))
< M )
| withp, ¢ > 1, %—I—l:l

max {VZ (), V2 (1)} (9 () = g (@) + (9 (6) ~ g (@)
[L(00) = g(@) + |9 () = 22320 "V (1);

a\ 1/4
_ ) (@) = g(@)™ + (g (®) = g @)™ (Vi ()" + (Vo (D))

) =
. 1 _
with p, ¢ > 1, 5—1—5*1

(9.=) = g (@)™ + (g (b) = g (2)*) [1 V5 () + 4

which proves the last part of (3.1).
By (2.2) we have

Iy @)+ 120 = oy (9 @) = g @ + g () = 9 (@) f (&)

L [ a0 - F@lde [P g O @)~ f @)t
I (a) V lg(t) —g(a)] ™" +/z lg (b) =g ()] 1
MR ONAG R AGL
ca | 90 —g (@) " +f 90 —g O]

b
9 (z) = g (@)™ \/ () +[g (b) = g (@)™ \/ (f)}

a

IN

IN

1
“T(a+1)

N

which proves the first two inequalities in (3.2).
The last part has been proved before.
(ii) From (2.3) we also have for = € [a, b] that

I"‘ ¢ b a
(35) gf( );_ a+gf( )_F(a1+1) [g(b)_g(a)]a f(b);f( )
1 by OIF @) - F O g D) - <a>dt1
= (@) / lg(b)—g ()" +/a lg(t) — g (a)
=:C.

Moreover, we observe that

YeWIFO - Bl P OV D\ Ty
I b —g @ " </ ) —g )" S\Q/Wt/a GO —g @

~—

and

"y WU O = f@ldt _ " g OVaHdt _(g®) =g @)\
L o—sar= =L hwosar= = e YO
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By adding these inequalities we get

Ly NI (Hdt P g V(A 2(g () — o\
Cg/ g () Vy (f)l_a +/ g ( )Va(f)l_a < 2lg() ~g(a) \/ (F) de
a [g(b) =g ()] a [g(t) —g(a)] a a
which proves the first and the second inequality in (3.3). [l
The following particular case is of interest:
Corollary 2. With the assumptions of Theorem 1 we have
« o4 [g (b) -4 (a)]@
(3.6) |Igy o f (Mg (a,b)) + I, f(Mg (a,b)) — mf (Mg (a,b))

< 1 UMQ(“")) g OV (f) dt +/b 9" () Vi, (F) ]

I 9 My (@5) — g O] Jatyta [90) g (M, (a b))
< s 00 —g(a))“\:/(f);
and
BT [y a0+ a0 — 22O 01y 0
e o
“r@ Vaw o PIoE g( <a;1(1f)°‘dt ' /z;gw,b) o
< s 00 —g(a))“\:/<f>.

Remark 2. If we take in Theorem 1 x = aT*'b, then we obtain similar mid-point
inequalities, however the details are not presented here.

4. INEQUALITIES FOR HOLDER’S CONTINUOUS FUNCTIONS

We say that the function f : [a,b] — C is r-H-Hélder continuous on [a,b] with
r € (0,1] and H > 0 if
(4.1) [f ()= f() <H[t—s]
for any ¢, s € [a,b]. If r = 1 and H = L we call the function L-Lipschitzian on
[a,0].

Theorem 2. Assume that f : [a,b] — C is r-H-Hdlder continuous on [a,b] with
r € (0,1] and H > 0, and g be a strictly increasing function on (a,b), having a
continuous derivative g’ on (a,b). Then

(i) For any x € (a,b) we have the inequalities

21 @)+ 1 0) = oy (@)~ 9 @ + 5 0) = @)/ @)

H T g () (z—t)" dt g () (t—x) dt
: I (a) Va lg(x) =g ()] " +/z [g(t)—g(l”)]l_a]

< gy 9~ g @1 ) + 1o ()~ g )" (2]

(4.2)
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and

I gf(a) + I3 4 f () = ﬁ ([g(z) =g (@) +[g(b) — g (@)]") f ()

H T g () (x—t) dt b () (t—x)" dt
ST@ V l9(t) — g (a))' *L [g(b)—g(t)]”]

< g 9@ 9 @ @) + 5 0) ~ g @ - a)].

(4.3)

(i) We have the inequalities

Ig  fa) + 12, ,f(b) 1 o [(0) +f(a)
T T O @) e

H g () (b—t)"dt b g (t) (t—a)"dt]
=20 () Ua lg(b) —g ()] +/a lg(t) —g(a)] ™

(b—a)" (g(b) — g(a))”.

(4.4)

< H
“T'(a+1)

Proof. (i) By the representation (2.1) and the properties of modulus, we have

20 0) + 1y S0) ~ s (9 0) — 0 @) + g 0) — 9 (2)°) £ 2)
Ll e mu©-relal . e @ - f )
“T( / @) —g @ " +f 9 —g@® ]
L [P g 0@ - @l [P @10~ f@)]d
=T / ) 9(0) —g (@) ]

o Ta@—g 01
H [ [* ¢ @) (-t dt bg’(t)(tx)rdt]
Ta) / oL ho—ser

g (z) =g ()" (z—a)" +[g(b) — g (@)]* (b—=)"],

“Tla+n ¥

which proves (4.2).
By (2.2) we have that

g (9@ -9 @ + )~ 9 @) S @

L[ e @O -s@ld | e O1F - <x>|dt1
F<Q>Va l9(®) =g (@] +/x l9(®) —g (0]

17 gf(a) + I3y 4 f(b) =

H g @t)(z—t)d bg’(t)(t—a:)rdt}
SF(OO /a lg(t) —g(a)]'™ +/x [g(b) — g ()]
=T (aH+ 1) [(z—a) [g(z) —g(a)]* + (b—=)" [g(b) — g ()],

which proves (4.3).
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(i) From (2.3) we also have for = € [a, b] that

I f@+ I, P 1 W f(B)+ 1 (a)
b 5 as —F(a+1)[g(b)—g(a)] —

L [Py @@ —fo)de bg’(t)lf(t)—f(a)ldtl
2T (a) /a lg(b) —g ()] +/a lg(t) —g(a) ™

H [ gd@®)®-1)dt b g (t)(t—a) dt

I (a) / g (0) — g (&))" +/a lg(1) —g<a>11‘°‘]

Sar |V L omsor=* L s
H

= 5t D (b—a)" (g(b) —g(a)”.

IN

IN
Do

‘We have:

Corollary 3. With the assumptions of Theorem 1 we have

134 g f (Mg (a,0)) + I, f (Mg (a, b)) — M
)

i Mo(@b) g/ (1) (My (a,b) = )" dt (" g (&) (t— <b>>rdt]
“T( l/ lg (M, (a,b)) — g (8)]'° +/Mg<a,b>[ (t) — g (My (a,))]" "

(4.5) 7 (M, (a, b))\

< ety 90 ~ 9 @1 [y (0.6) = a) + (= My (@0,
and
46) |15y w10 (@) 01,0 f0) ~ S 2 01y (0,0)
CH | M) g (1) (M (a,b) = ) dt g(t)(t—M(,b))Tdt]
: <>V 9 () g (a)"" +/Mg<a,b> 9 (5) —g (O]
=< % 9 (b) — g (a)]” [(My (a,b) — a)" + (b— M, (a,b))"].

Remark 3. If we take in Theorem 2 x = “er then we obtain similar mid-point
inequalities, however the details are not presented here.

The above results provide various inequalities for particular fractional integrals
by taking for g various examples of strictly increasing functions on (a,b), having
continuous derivatives ¢’ on (a,b). The case g (t) = t was considered in details in
the recent paper [13].

5. APPLICATIONS FOR HADAMARD FRACTIONAL INTEGRALS

If we take g (t) = Int and 0 < a < x < b, then by Theorem 1 for Hadamard
fractional integrals HZ, and H* we have for f : [a,b] — C a function of bounded
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variation on [a, b] that

(5.1)

1z 0+ 15 5@ - s ([ (2)] + [ (2)] ) s
[ (n (5)" Vi (Dt /b (n ()" V

<

(5.2)

@) + 12, 50) - oy (1 (2)"+ (w2 )) /@)
[ e )

t

1

and

(5.3)

BIWLELY 1, (2)) L0
d
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The following particular case of interest for = G (a,b) = V/ab also holds:

(54) |Hg, f(G(a,b)) + Hy” f(G (a,b)) — %J‘ (G (a,0))
<[ ()Y e
it o aim)] 1Y, 00
< (+(2) Vo
and
(5:5) | HGap)—f (@) + Hg o)+ F(b) = 2(_11}((2):1)]‘ (G (a,b))

Similar inequalities may be stated in the case of r- K-Holder continuous functions
f :[a,b] = C with r € (0,1] and K > 0. For instance, if we write the inequalities
(4.5)-(4.6) for the function ¢ (t) =1Int and 0 < a < b, then we get

n ()]
HEL 1O 00) + B (G ) - g7 (@)

oy [ o (252

tie oo @00 [ aem)] %

< % (G (a,b) —a) + (b= G (a,b))] [m ()} °

(5.6)




and
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n by
(5.7) |HG(ap)—f (@) + Ha ) f(0) — &f@(a b))

(1]
2]

(3]

(4]

[12]

[13]

[14]
[15]

[16]

[17]

20-1T (a + 1)

. Fl(qa)/ac(a,w @ ab) 1) [m <2>} )
b a—
“F@ fy - C0 G T

< WILI)KG(@ B~ a) + (b G (a,5))" [In ()]
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