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POWER SERIES WITH APPLICATIONS FOR PERSPECTIVES
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Abstract. In this paper we obtain some identities for functions de�ned by
power series with complex coe¢ cients f(z) =

P1
n=0 �nz

n convergent on the
open disk D(0; R) � C, R > 0 or on C, for R = 1: Amongst other we show
that if A; B are bounded linear operators on the Hilbert space with A positive,
� 2 [0; 1] and kABk ;



A�BA1��

 < R; then
f (AB)A1�� = A1��f

�
A�BA1��

�
:

Applications for the noncommutative perspective

P� (B;A) := A1=2�
�
A�1=2BA�1=2

�
A1=2;

where � : J � R! C is continuous, B selfadjoint, A positive and invertible
with Sp

�
A�1=2BA�1=2

�
� J; are also given.

1. Introduction

Let � be a continuous function de�ned on the interval J of real numbers and
taking complex values, B a selfadjoint operator on the Hilbert space H and A a
positive invertible operator on H: Assume that the spectrum Sp

�
A�1=2BA�1=2

�
�

�J; the interior of J: Then by using the continuous functional calculus for selfadjoint
operators we can de�ne the perspective P� (B;A) by setting

(P) P� (B;A) := A1=2�
�
A�1=2BA�1=2

�
A1=2:

It is well known that (see [10] and [9] or [11]), if � is an operator convex (concave)
function de�ned in the positive half-line (0;1), namely

� ((1� t)C + tD) � (�) (1� t) � (C) + t� (D)

for any t 2 [0; 1] and positive invertible operators C; D; then the mapping

(B;A) 7! P� (B;A)

de�ned in pairs of positive de�nite operators, is operator convex (concave), namely
we have

P� (�B + (1� �)D;�A+ (1� �)C) � (�)�P� (B;A) + (1� �)P� (D;C)

in the operator order for any positive invertible operators A; B; C; D and � 2 [0; 1] :
In the recent paper [1] we established the following reverse inequality for the

perspective P� (B;A) of a continuous convex function �:
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Let � : [m;M ]! R be a convex function on the real interval [m;M ], A a positive
invertible operator and B a selfadjoint operator such that

(1.1) mA � B �MA;

then we have

0 � 1

M �m [� (m) (MA�B) + � (M) (B �mA)]� P� (B;A)(1.2)

�
�0� (M)� �0+ (m)

M �m �m;M (B;A)

� 1

4
(M �m)

�
�0� (M)� �0+ (m)

�
A;

where

�m;M (B;A) := A
1=2
�
M1H �A�1=2BA�1=2

��
A�1=2BA�1=2 �m1H

�
A1=2

is the perspective generated by the concave function � : [m;M ] ! R, � (t) =
(M � t) (t�m) :
Let � : J � R ! R be a twice di¤erentiable function on the interval �J , the

interior of J . Suppose that there exists the constants d; D such that

(1.3) d � �00 (t) � D for any t 2 �J:

If A is a positive invertible operator and B a selfadjoint operator such that the
condition (1.1) is valid with [m;M ] � �J; then we have the following result as well
[2]

1

2
d�m;M (B;A)(1.4)

� 1

M �m [� (m) (MA�B) + � (M) (B �mA)]� P� (B;A)

� 1

2
D�m;M (B;A) :

If d > 0; then the �rst inequality in (1.4) is better than the same inequality in
(1.2).
For other recent results for perspectives, see [3]-[8] and [12]-[15].
Further, let B be a selfadjoint operator on the Hilbert space H and A a positive

invertible operator on H: Let � be a continuous function de�ned on the interval J
and assume that Sp

�
BA�1

�
� �J; then by using the continuous functional calcu-

lus for selfadjoint operators we can also de�ne the quasi -perspective Q� (B;A) by
setting

(1.5) Q� (B;A) := A�
�
A�1B

�
:

We observe that if A and B are commutative with Sp
�
BA�1

�
� �J; then

(1.6) P� (B;A) = Q� (B;A) :

It is then natural to ask whether or not the equality (1.6) holds for some sub-
classes of continuous functions � de�ned on the interval J and non-commutative
selfadjoint operators A and B with A a positive invertible operator and

Sp
�
A�1=2BA�1=2

�
; Sp

�
BA�1

�
� �J:
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An answer to this question will be provided in the last section by the use of some
identities of interest established below for functions de�ned by power series with
complex coe¢ cients and convergent on the open disk D(0; R) � C, R > 0 or on C,
for R =1: Some other operator equalities of interest are established.

2. Main Results

We have the following identity:

Theorem 1. Let f(z) =
P1

n=0 �nz
n be a function de�ned by power series with

complex coe¢ cients and convergent on the open disk D(0; R) � C, R > 0 or on C,
for R =1: If A; B 2 B (H) with A positive, � 2 [0; 1] and kABk ;



A�BA1��

 <
R; then

(2.1) f (AB)A1�� = A1��f
�
A�BA1��

�
:

Proof. We claim that for any natural number n � 0 and � 2 [0; 1] we have
(2.2) (AB)

n
A1�� = A1��

�
A�BA1��

�n
:

For n = 0; the identity reduces to A1�� = A1�� while for n = 1 it becomes
ABA1�� = ABA1��:
Assume that it holds for "n" with n � 2 and let us prove it for "n+ 1".
We have

A1��
�
A�BA1��

�n+1
= A1��

�
A�BA1��

�n
A�BA1��

= (AB)
n
A1��A�BA1�� (by induction hypothesis)

= (AB)
n
ABA1�� = (AB)

n+1
A1��

and the identity (2.2) is thus proved.
Now, let m � 1, multiply (2.2) by �n and sum from 0 to m to get

(2.3)

 
mX
n=0

�n (AB)
n

!
A1�� = A1��

mX
n=0

�n
�
A�BA1��

�n
:

Since kABk ;


A�BA1��

 < R then the series

1X
n=0

�n (AB)
n and

1X
n=0

�n
�
A�BA1��

�n
are convergent in strong topology of B (H) and

1X
n=0

�n (AB)
n
= f (AB) and

1X
n=0

�n
�
A�BA1��

�n
= f

�
A�BA1��

�
;

then by letting m!1 in (2.3) we deduce the desired result (2.1). �

Corollary 1. With the assumptions of Theorem 1 and if A is invertible, then we
have the equality

(2.4) f (AB) = A1��f
�
A�BA1��

�
A��1

provided kABk ;


A�BA1��

 < R:

In particular,

(2.5) f (AB) = A1=2f
�
A1=2BA1=2

�
A�1=2;
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provided kABk ;


A1=2BA1=2

 < R and

(2.6) f (AB) = Af (BA)A�1

if kABk ; kBAk < R:

We also have:

Corollary 2. With the assumptions of Theorem 1 and if A is invertible with

A�1B

 ; 

A�1=2BA�1=2

 < R; then
(2.7) Af

�
A�1B

�
= A1=2f

�
A�1=2BA�1=2

�
A1=2:

Remark 1. Since kABk � kAk kBk and

A�BA1��

 � kAk� kBk kAk1�� = kAk kBk ;
then by assuming kAk kBk < R it follows that kABk < R and



A�BA1��

 < R
for any � 2 [0; 1] : Therefore, if we assume that kAk kBk < R in Theorem 1 then
we get the equality (2.1). In particular, if R = 1 and kAk ; kBk < 1; then the
conclusion of Theorem 1 remains valid. This fact provides many examples since
numerous fundamental functions de�ned as power series are convergent on the open
disk D(0; 1): Some instances of interest are provided below.

If we consider the exponential function f(z) =
P1

n=0
1
n!z

n = exp (z) ; z 2 C,
then from (2.4)-(2.6) we get

exp (AB) = A1�� exp
�
A�BA1��

�
A��1(2.8)

= A1=2 exp
�
A1=2BA1=2

�
A�1=2 = A exp (BA)A�1

for any A; B 2 B (H) with A positive and invertible and � 2 [0; 1] :
Similar equalities hold for the trigonometric functions

sin z =
1X
n=0

(�1)n

(2n+ 1)!
z2n+1; cos z =

1X
n=0

(�1)n

(2n)!
z2n

or for hyperbolic functions

sinh z =
1X
n=0

1

(2n+ 1)!
z2n+1; cosh z =

1X
n=0

1

(2n)!
z2n:

If we consider f(z) =
P1

n=0 z
n = (1� z)�1 ; z 2 D(0; 1); then for any A; B 2

B (H) with A positive and invertible, kAk ; kBk < 1 and � 2 [0; 1] ; we have

(1H �AB)�1 = A1��
�
1H �A�BA1��

��1
A��1(2.9)

= A1=2
�
1H �A1=2BA1=2

��1
A�1=2 = A (1H �BA)�1A�1:

If we consider f (z) =
P1

n=1
1
nz

n = ln(1 � z)�1; z 2 D(0; 1); then for any A;
B 2 B (H) with A positive and invertible, kAk ; kBk < 1 and � 2 [0; 1] ; we have

ln(1�AB)�1 = A1��
h
ln
�
1H �A�BA1��

��1i
A��1(2.10)

= A1=2
�
ln
�
1H �A1=2BA1=2

��1�
A�1=2

= A
h
ln (1H �BA)�1

i
A�1:
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We have:

Theorem 2. Let f(z) =
P1

n=0 �nz
n be a function de�ned by power series with

complex coe¢ cients and convergent on the open disk D(0; R) � C, R > 0 or
on C for R = 1: If A; B 2 B (H) with A positive, � 2 [0; 1] and kBAB�k ;

A�B�BA1��

 < R; then
(2.11) f (BAB�)BA1�� = BA1��f

�
A�B�BA1��

�
:

Proof. We claim that for any natural number n � 0 and � 2 [0; 1] we have
(2.12) (BAB�)

n
BA1�� = BA1��

�
A�B�BA1��

�n
:

For n = 0 the equality reduces to BA1�� = BA1�� while for n = 1 it becomes
BAB�BA1�� = BAB�BA1��:
Assume that it holds for "n" with n � 2 and let us prove it for "n+ 1".
We have

BA1��
�
A�B�BA1��

�n+1
(2.13)

= BA1��
�
A�B�BA1��

�n
A�B�BA1��

= (BAB�)
n
BA1��A�B�BA1�� (by induction hypothesis)

= (BAB�)
n
BAB�BA1�� = (BAB�)

n+1
BA1��

and the identity (2.13) is thus proved.
Now, let m � 1, multiply (2.13) by �n and sum from 0 to m to get

(2.14)

 
mX
n=0

�n (BAB
�)
n

!
BA1�� = BA1��

mX
n=0

�n
�
A�B�BA1��

�n
:

Since kBAB�k ;


A�B�BA1��

 < R then the series

1X
n=0

�n (BAB
�)
n and

1X
n=0

�n
�
A�B�BA1��

�n
are convergent in strong topology of B (H) and
1X
n=0

�n (BAB
�)
n
= f (BAB�) and

1X
n=0

�n
�
A�B�BA1��

�n
= f

�
A�B�BA1��

�
;

then by letting m!1 in (2.14) we deduce the desired result (2.11). �
Corollary 3. With the assumptions of Theorem 2 and if A and B are invertible,
then we have the equality

(2.15) f (BAB�) = BA1��f
�
A�B�BA1��

�
A��1B�1;

provided kBAB�k ;


A�B�BA1��

 < R:

In particular,

(2.16) f (BAB�) = BA1=2f
�
A1=2B�BA1=2

�
A�1=2B�1;

provided kBAB�k ;


A1=2B�BA1=2

 < R,

(2.17) f (BAB�) = BAf (B�BA)A�1B�1;

provided kBAB�k ; kB�BAk < R and
(2.18) f (BAB�) = Bf (AB�B)B�1;
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provided kBAB�k ; kAB�Bk < R:

Remark 2. We also have, by (2.16) that

f (BAB�)B = BAA�1=2f
�
A1=2B�BA1=2

�
A�1=2

or
(BA)

�1
f (BAB�)B = A�1=2f

�
A1=2B�BA1=2

�
A�1=2

namely

A�1B�1f (BAB�)B = A�1=2f
�
A1=2B�BA1=2

�
A�1=2:

If in this equality we replace A by A�1; then we get

(2.19) AB�1f
�
BA�1B�

�
B = A1=2f

�
A�1=2B�BA�1=2

�
A1=2;

provided that A and B are invertible, A is positive and

BA�1B�

 ;


A�1=2B�BA�1=2


 < R:
We also observe that, if A; B 2 B (H) with A positive and kAk kBk2 < R; then

kBAB�k ;


A�B�BA1��

 < R and the equality (2.15) holds true. In particular,

if R = 1 and kAk ; kBk < 1; then the conclusion of Theorem 2 remains valid.
This fact provides many examples since numerous fundamental functions de�ned
as power series are convergent on the open disk D(0; 1): Some instances of interest
are provided below.

If we consider the exponential function f(z) =
P1

n=0
1
n!z

n = exp (z) ; z 2 C,
then from (2.15)-(2.18) we get

exp (BAB�) = BA1�� exp
�
A�B�BA1��

�
A��1B�1(2.20)

= BA1=2 exp
�
A1=2B�BA1=2

�
A�1=2B�1

= BAf exp (B�BA)A�1B�1 = B exp (AB�B)B�1

for any invertible A; B 2 B (H) with A positive and � 2 [0; 1] :
If we consider f(z) =

P1
n=0 z

n = (1� z)�1 ; z 2 D(0; 1); then for any invertible
A; B 2 B (H) with A positive, kAk ; kBk < 1 and � 2 [0; 1] ; we have

(1H �BAB�)�1 = BA1��
�
1H �A�B�BA1��

��1
A��1B�1(2.21)

= BA1=2
�
1H �A1=2B�BA1=2

��1
A�1=2B�1

= BA (1H �B�BA)�1A�1B�1

= B (1H �AB�B)�1B�1

and by using the function f (z) =
P1

n=1
1
nz

n = ln(1 � z)�1; z 2 D(0; 1); then for
any invertible A; B 2 B (H) with A positive, kAk ; kBk < 1 and � 2 [0; 1] ; we have

ln (1H �BAB�)�1 = BA1�� ln
�
1H �A�B�BA1��

��1
A��1B�1(2.22)

= BA1=2 ln
�
1H �A1=2B�BA1=2

��1
A�1=2B�1

= BA ln (1H �B�BA)�1A�1B�1

= B ln (1H �AB�B)�1B�1:
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3. Applications

We have:

Proposition 1. Let �(z) =
P1

n=0 �nz
n be a function de�ned by power series with

complex coe¢ cients and convergent on the open disk D(0; R) � C, R > 0 or on C,
for R =1: Assume that A; B 2 B (H) with A positive and invertible, B selfadjoint
and



A�1B

 ; 

A�1=2BA�1=2

 < R; then
(3.1) P� (B;A) = Q� (B;A) :

The proof follows by Corollary 2 for f = �:

Proposition 2. Let �(z) =
P1

n=0 �nz
n be a function de�ned by power series with

complex coe¢ cients and convergent on the open disk D(0; R) � C, R > 0 or on
C, for R = 1: Assume that A; B 2 B (H) are invertible with A positive and

A�1=2B�

 ; 

BA�1=2

 < pR, then
(3.2) P�

�
jBj2 ; A

�
= AB�1f

����A�1=2B����2�B:
The proof follows by the identity (2.19) for f = �:
If we take in (3.2) B = C1=2 where C is positive and invertible, then we get

P� (C;A) = AC�1=2f
�
C1=2A�1C1=2

�
C1=2

= AC�1=2f
�
C1=2A�1C1=2

�
C�1=2C = AP�

�
A�1; C�1

�
C:

Therefore we can state the following result of interest:

Corollary 4. Let �(z) =
P1

n=0 �nz
n be a function de�ned by power series with

complex coe¢ cients and convergent on the open disk D(0; R) � C, R > 0 or on
C, for R = 1: Assume that B; A 2 B (H) are invertible, positive and



A�1B

 ;

BA�1

 < R, then
(3.3) P�

�
A�1; B�1

�
= A�1P� (B;A)B�1:

If, for instance we consider the function f(z) =
P1

n=0
1
n!z

n = exp (z) ; z 2 C,
then for A positive and invertible and B selfadjoint, we have

Pexp (B;A) := A1=2 exp
�
A�1=2BA�1=2

�
A1=2; Qexp (B;A) := A exp

�
A�1B

�
and by (3.1) we obtain

(3.4) Pexp (B;A) = Qexp (B;A) :

Moreover, if A and B are positive and invertible, then by (3.3) we get

(3.5) Pexp
�
A�1; B�1

�
= A�1Pexp (B;A)B�1:

Similar equalities hold for the trigonometric functions sin z; cos z or for hyper-
bolic functions sinh z and cosh z: The details are omitted.
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