# ARITHMETIC MEAN-GEOMETRIC MEAN INEQUALITY UNDER ADDITIONAL ASSUMPTIONS 

EUGEN J. IONAŞCU


#### Abstract

We generalize the inequality $\frac{a b+b c+a c}{3} \leq\left(\frac{a+b+c}{3}\right)^{2}$ to $n$ arbitrary positive real numbers and use that to obtain a non-homogenous version of the AM-GM inequality, given that their arithmetic average is the reciprocal of their harmonic average.


## 1. Introduction

The famous Arithmetic Mean-Geometric Mean Inequality, or simply AM-GM inequality, is perhaps the most frequent tool used in obtaining other inequalities needed in analysis or other areas of mathematics. It is stating that for arbitrary $n$ positive real numbers $\left\{a_{j}\right\}_{j=1,2, . ., n}$, we have

$$
\begin{equation*}
A M:=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \geq G M:=\left(\prod_{j=1}^{n} a_{j}\right)^{\frac{1}{n}} \tag{1}
\end{equation*}
$$

Also, equality in (1) takes place if and only if all numbers are equal to each other. In what follows we are going to assume that $\left\{a_{j}\right\}_{j=1,2, . ., n}$ is not a constant sequence. There are many proofs of this important inequality which are using various methods, ranging from induction to Lagrange multiplies (see [2] for a recent approach and [1] for whole collection of proofs). Let us observe that the inequality (1) is homogeneous. In this paper we are interested in a non-homogeneous version (1), of the form

$$
\begin{equation*}
A M \geq G M^{\alpha}, \alpha>0 \tag{2}
\end{equation*}
$$

under certain extra assumption on the numbers $\left\{a_{j}\right\}_{j=1,2, ., n}$. The extra assumption does not seem that natural, but if we introduce the Harmonic mean, defined as usual as

$$
H M:=\frac{n}{\sum_{j=1}^{n} \frac{1}{a_{j}}}
$$

then we can write this extra condition in a more meaningful way:

$$
\begin{equation*}
A M=H M^{-1} \tag{3}
\end{equation*}
$$

Since we have $H M \leq A M$ then we need to have $A M>1$ and then $H M<1$, otherwise $H M \leq$ $A M \leq 1$ which attracts $H M=A M=1$. In the last scenario, all numbers must be equal to one another and we excluded this situation. We may assume that $G M>1$, otherwise (2) becomes trivial. This is the case, if $n=2$, since $A M=H M^{-1}$ implies $G M=1$. For this reason, we are going to assume that we have at least three numbers. If $n=3$, let's say $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$. We

Key words and phrases. inequalities, induction.
AMS 2000 MATHEMATICS SUBJECT CLASSIFICATION: 26D15
can choose $a$ and $b$ arbitrary positive numbers and then solve for $c$, since the map $f:(0, \infty) \rightarrow \mathbb{R}$, $f(x)=x-\frac{1}{x}$ is a bijection. In this case, let us show that

$$
A M \geq G M^{3}
$$

This can be written as $a+b+c \geq 3 a b c$. The relation between $a, b$ and $c$ implies that $a b c=$ $\frac{a b+a c+b c}{a+b+c}$. Then the inequality above becomes $(a+b+c)^{2} \geq 3(a b+a c+b c)$ which is equivalent to $(a-b)^{2}+(b-c)^{2}+(a-c)^{2} \geq 0$. This insures that the inequality $A M \geq G M^{3}$ is true and equality takes place only if $a=b=c$. The case $n=4$ appeared as a proposed problem in [3] and that was our starting point for this note. We are interested in the following result.

Theorem 1.1. For $n \geq 3$, if $n$ positive real numbers $\left\{a_{j}\right\}_{j=1,2, . ., n}$ satisfy

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j}=\sum_{j=1}^{n} \frac{1}{a_{j}} \tag{4}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{1}{n} \sum_{j=1}^{n} a_{j} \geq \max \left(\left(\prod_{j=1}^{n} a_{j}\right)^{\frac{1}{n-2}},\left(\prod_{j=1}^{n} a_{j}\right)^{\frac{-1}{n-2}}\right) \tag{5}
\end{equation*}
$$

or

$$
A M \geq \max \left(G M^{\frac{n}{n-2}}, G M^{\frac{-n}{n-2}}\right)
$$

We observe that in proving (5), we may actually assume that none of the $a_{j}$ are equal to 1 or $a_{i} a_{j}=1$ for some $i$ and $j$ in $[n]:=\{1,2,3, \ldots, n\}$. It is interesting that for $n=4$, we found rational solutions for (3), such as $a_{1}=2, a_{2}=7, a_{3}=15$ and $a_{4}=\frac{3}{70}$, but no such solutions for $n=3$.

## 2. Proof of Theorem 1.1

Let us observe that (4) is invariant to the change $a_{j} \rightarrow 1 / a_{j}$. As a result, we only need to prove

$$
\begin{equation*}
\frac{1}{n} \sum_{j=1}^{n} a_{j} \geq\left(\prod_{j=1}^{n} a_{j}\right)^{\frac{1}{n-2}} \tag{6}
\end{equation*}
$$

Let us introduce the notation: $\widehat{a_{j}}=\frac{1}{a_{j}} \prod_{k=1}^{n} a_{k}$. From the hypothesis we have

$$
\prod_{k=1}^{n} a_{k}=\frac{\sum_{k=1}^{n} \widehat{a_{k}}}{\sum_{k=1}^{n} a_{k}}
$$

The (6) becomes equivalent to

$$
\begin{equation*}
\sum_{k=1}^{n} \widehat{a_{k}} \leq n\left(\frac{1}{n} \sum_{j=1}^{n} a_{j}\right)^{n-1} \tag{7}
\end{equation*}
$$

We observe that (7) is homogeneous. Let us show that (7) is true and independent of any other hypothesis.

Lemma 2.1. For $n \geq 3$, if $n$ positive real numbers $\left\{a_{j}\right\}_{j=1,2, . ., n}$, then the inequality (7) takes place.

To prove this, we are going to use induction. The basis case, $n=3$, was argued in the Introduction. Let us assume the inequality (7) is true for $n$ numbers $(n \geq 3)$. Let us take $n+1$ positive numbers $\left\{b_{j}\right\}_{j=1,2, . ., n, n+1}$. We need to prove that

$$
\begin{equation*}
\sum_{k=1}^{n+1} \widehat{b_{k}} \leq(n+1)\left(\frac{1}{n+1} \sum_{j=1}^{n+1} b_{j}\right)^{n} \tag{8}
\end{equation*}
$$

Since this is a homogeneous inequality we may assume that $\sum_{j=1}^{n+1} b_{j}=n+1$. So, the inequality (8) which we need to prove, becomes

$$
\begin{equation*}
\sum_{k=1}^{n+1} \widehat{b_{k}} \leq n+1 \tag{9}
\end{equation*}
$$

We observe that

$$
\sum_{k=1}^{n+1} \widehat{b_{k}}=b_{1} b_{2} \ldots b_{n}+b_{n+1} \sum_{k=1}^{n} \widetilde{b_{k}}
$$

where $\widetilde{b_{k}}$ is $\frac{1}{b_{j}} \prod_{k=1}^{n} b_{k}$. Using the induction hypothesis we get

$$
\sum_{k=1}^{n+1} \widehat{b_{k}}=b_{1} b_{2} \ldots b_{n}+b_{n+1} \sum_{k=1}^{n} \widetilde{b_{k}} \leq b_{1} b_{2} \ldots b_{n}+b_{n+1} n\left(\frac{1}{n} \sum_{j=1}^{n} b_{j}\right)^{n-1}
$$

Let us denote $b_{n+1}=x$. Also, using the AM-GM inequality, the above inequality can be continued as

$$
\sum_{k=1}^{n+1} \widehat{b_{k}} \leq\left(\frac{1}{n} \sum_{j=1}^{n} b_{j}\right)^{n}+x n\left(\frac{1}{n} \sum_{j=1}^{n} b_{j}\right)^{n-1}=\left[\frac{1}{n}(n+1-x)\right]^{n}+x n\left[\frac{1}{n}(n+1-x)\right]^{n-1}
$$

In order to show (9), it is enough to prove that

$$
\begin{equation*}
\left[\frac{1}{n}(n+1-x)\right]^{n}+x n\left[\frac{1}{n}(n+1-x)\right]^{n-1} \leq n+1 \tag{10}
\end{equation*}
$$

Let us then introduce the function $f(x)=\left[\frac{1}{n}(n+1-x)\right]^{n}+x n\left[\frac{1}{n}(n+1-x)\right]^{n-1}$ defined on $[0, n+1]$. This function can be written as

$$
f(x)=\frac{n+1}{n}\left[\frac{1}{n}(n+1-x)\right]^{n-1}[(n-1) x+1] .
$$

If we differentiate $f$, we get

$$
f^{\prime}(x)=\frac{(n+1)(n-1)}{n}\left[\frac{1}{n}(n+1-x)\right]^{n-2}\left[\frac{(n+1-x)}{n}-\frac{(n-1) x+1}{n}\right]
$$

and in factored form

$$
f^{\prime}(x)=\frac{\left(n^{2}-1\right)}{n^{n-1}}(n+1-x)^{n-2}(1-x)
$$

This implies that $f$ has a maximum at $x=1$ on $[0, n+1]$. Since $f(1)=n+1$, we obtain (10).

## References

[1] Peter S. Bullen, Handbook of means and their inequalities, Dordrecht: Kluwer Academic Foundation (2003)
2] Marian Genčev, On a proof of the inequality between the arithmetic and geometric means, Amer. Math. Monthly, 125(7), (2018), pp. 650-652
[3] Digby Smith, Problem 4340, Crux Mathematicorum 4, (2018), p. 163
Current address: Columbus State University, Mathematics Department, Columbus, GA, USA
E-mail address: math@ejionascu.ro

