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SOME INEQUALITIES OF OSTROWSKI AND TRAPEZOID
TYPE FOR TRIGONOMETRICALLY p-CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some Ostrowski and Trapezoid type
integral inequalities for trigonometrically p-convex functions.

1. INTRODUCTION

In 1938, A. Ostrowski [15], proved the following inequality concerning the dis-
tance between the integral mean ;1 f; f (t) dt and the value f (z), x € [a, b].

Theorem 1 (Ostrowski). Let f : [a,b] — R be continuous on [a,b] and differ-
entiable on (a,b) such that f' : (a,b) — R is bounded on (a,b), i.e., ||f'|, =

sup |f' (¢)| < co. Then
te(a,b)

b
(1) if(x)—bia/ 7 (5t

2
1 T — atb
< 4+( b_;) 1) (b= a),

for all x € [a,b] and the constant i is the best possible.
The following result of Ostrowski type for convex functions holds.

Theorem 2 (Dragomir, 2002 [7]). Let f : [a,b] C R — R be a convex function on
[a,b]. Then for any x € [a,b] one has the inequality

(1:2) (b= ) ) @) = (@ = 0)* . ()]

N —

b
g/ f@)ydt—(b—a) f(z)
% (=) f2 () = (v =)’ £ (@)] -

IN

The constant % is sharp in both inequalities. The second inequality also holds for
r=a orz=>o
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atb e get the sharp inequalities

e () ()]0
st fron (<)

< g[f )~ £} (@) (b - a).
For various Ostrowski type inequalities see the recent survey paper [10] and the
references therein.
The following trapezoid type inequality for convex functions also holds.

In particular, for x =

(1.3) 0

IN

Theorem 3 (Dragomir, 2002 [7]). Let f : [a,b] C R — R be a convex function on
[a,b]. Then for any x € [a,b] one has the inequality

(14) S [0- 0 11 @) - =0 1 @)
S f@+ 000 [ o
1

So-2 10 - @ -0 11 @)

The constant % is sharp in both inequalities. The second inequality also holds for
r=a orz=>o

a+b

2

IN

In particular, for x = 422, we get the sharp inequalities

(1.5) 0 < ;[f+<a+b>—f’_ (”;b)}(b_@
/(@

b
< ()2 1 ®) —bia/af(t)dt

1

< SO - @l e-a).

In the following we present the basic definitions and results concerning the class
of trigonometrically p-convex function, see for example [12], [13] and [3], [5], [6],
[11], [14], [16] and [17].

Following [1], we say that a function f : I — R is trigonometrically p-convex on
I if for any closed subinterval [a, b] of I with 0 <b—a < 7 we have

sinfp(b =), sinlp(— a)]
(1.6) f(z) < mf(a) + mf(b)
for all z € [a,b].
If the inequality (1.6) holds with ” > 7, then the function will be called trigono-
metrically p-concave on 1.
Geometrically speaking, this means that the graph of f on [a,b] lies nowhere
above the p-trigonometric function determined by the equation

H (z) = H (x;a,b, ) := Acos (pz) + Bsin (px)
where A and B are chosen such that H (a) = f (a) and H (b) = f (b).
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If we take x = (1 —t)a+tb € [a,b], t € [0,1], then the condition (1.6) becomes

sinfp (L= ) (b— a)]
sinfp (b — )

sin [pt (b — a)]

smlp6—ay’

(1.7) f((1=t)a+1tb) < fla)+
for any t € [0,1].
We have the following properties of trigonometrically p-convex on I, [1].

(i) A trigonometrically p-convex function f : I — R has finite right and left
derivatives f! (x) and f’ () at every point x € I and f’ (x) < f} (x). The
function f is differentiable on I with the exception of an at most countable
set.

(ii) A necessary and sufficient condition for the function f : I — R to be
trigonometrically p-convex function on I is that it satisfies the gradient
imequality

(1.8) fy) = f(@)coslp(y — )] + Ky gsin[p(y — )]

for any @, y € I where K, 5 € [f_ (2), f} (z)] . If f is differentiable at the
point = then K, r = f' ().

(iii) A necessary and sufficient condition for the function f to be a trigonomet-
rically p-convex in I, is that the function

w@:fm+f/7mﬁ

is nondecreasing on I, where a € I.

(iv) Let f : I — R be a two times continuously differentiable function on I.
Then f is trigonometrically p-convex on I if and only if for all z € I we
have

(1.9) f" (@) +p*f (x) 2 0.

For other properties of trigonometrically p-convex functions, see [1].
As general examples of trigonometrically p-convex functions we can give the
indicator function

6
hr (0) := limsup M

T—00 T

) 96 (aaﬁ)7

where F is an entire function of order p € (0,00).

fo<p—-—a< %, then, it was shown in 1908 by Phragmén and Lindelof, see
[12], that hp is trigonometrically p-convex on («, ).

Using the condition (1.9) one can also observe that any nonnegative twice dif-
ferentiable and convex function on [ is also trigonometrically p-convex on I for any
p > 0.

There exists also concave functions on an interval that are trigonometrically
p-convex on that interval for some p > 0.

Consider for example f (z) = cosx on the interval [—g, g] , then

" (x) 4+ p°f (z) = —cosz + p® cosz = (p* — 1) cos z,

which shows that it is trigonometrically p-convex on the interval [fg, g] for all
p > 1 and trigonometrically p-concave for p € (0,1).
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Consider the function f : (0,00) — (0,00), f(x) = zP with p € R\{0}. If
p € (—00,0)U][1, 00) the function is convex and therefore trigonometrically p-convex
for any p > 0. If p € (0,1) then the function is concave and

17 @)+ 0 f (2) = PP — p(1— p)a? ™ = pPa? ™ ( - p(lp‘p)) >0

This shows that for p € (0,1) and p > 0 the function f (x) = P is trigonometrically

p-convex on (% p(1—p), oo) and trigonometrically p-concave on (O, %\/M) .
Consider the concave function f : (0,00) — R, f (z) = Inz. We observe that

9() = [ (@) + 7 f (0) = p Iz — 5, 2 >0

We have ¢’ (x) = 2%’# > 0 for z > 0 and lim,_ o4+ g (z) = —o0, lim,; o0 g (z) =
00, showing that the function g is strictly increasing on (0,00) and the equation
g (z) = 0 has a unique solution. Therefore g (z) < 0 for z € (0,z,) and g(z) > 0
for € (z,,00), where z, is the unique solution of the equation Inz = ek

In conclusion, if p > 0, then the function f (z) = Inz is trigonometrically p-
concave on (0,z,) and trigonometrically p-convex on (z,,c0).

In this paper we establish some Ostrowski and Trapezoid type integral inequal-
ities for trigonometrically p-convex functions.

2. OSTROWSKI TYPE INEQUALITIES

We have:

Theorem 4. Assume that the function f: I — R is trigonometrically p-convex on
I. Then for any a, b€ I with0 <b—a <7 andz € (a,b) we have

1) 3 [f @61 @) -0

b x b
< [rwaegt| [ e—orroas (b—t)Qf(t)dt]
—f@)(b-a)
< lrme—o - @@ -]
<l .

T b
—|—%p2 [(z—a)z/a f(t)dt+(b—x)2/z f(t)dt].

In particular, if f is differentiable in x, then we have

22 @ o-o (50

b
s/ Feyde+ 307

x b
/ (t—a)Qf(t)dzH—/ (b—t)Qf(t)dt]
—f(z)(b—a)
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1 ! 2 / 2
<5 L O 0-2 - f (@)@ - o]

T b
+%p2 [(a:—af/a f(t)dt+(b—x)2/z f(t)dt].

Proof. We use the Montgomery identity for an absolutely continuous function g :
[a,b] — C that says that

23 s@e-a- [ gds= [ s-ag - [ 6-9 6 ds

for « € (a,b). This can be proved in one line by integrating by parts on the second
term.
Using the property (iii) from Introduction we have that

(2.4) fi@) < f (s)+p2/sf(t)dt§f’_ (2) + 7 /mf(t)dt

for a.e. s € [a,x].
This implies that

f@e-as @ [ oo
<@ [ roae-o.

that is equivalent to
@0 -6 [ 10d< 66—
SP@ -0+ s-a) [ Foa-2e-a [ 1o

for a.e. s € [a,x].
If we integrate this over s € [a, 2] we get

@ [ eeaas—p oo ([ roa)a< [Cree-o
<@ [Ce-aas [Cemais [Croa [Ceoo( [ o)

that is equivalent to

25 @@=t~ [(coo ([ r0a)ass< [ 1o e

a

<

f@e-a 5 @ [ fod-2 [ 6o (/:f(t)dt)ds,

for « € (a,b).
Using the property (iii) from Introduction we also have that

[N

x s b
O R LSS ARy WOV S AURY EOL

for a.e. s € [z,b].
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This implies that

L@ b-s+ 0= [ fod
<(re+e [ roa)o-g

b
Sf’,<b)(b—s)+p2(b—s)/ ) dt

for a.e s € [z,0].
If we integrate this over s € [z,b], we get

or to

—;f’+<x><b—m>2—§p2<b—w>2/gcf<t>dt+p2/:<b—s> ([ rwa)as

Now, if we add (2.5) with (2.7) and use Montgomery identity (2.3) we get
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28 @@=t~ [s-a ([ a)as
—;ﬂwww—xf—f;w—xféﬂﬂwﬁ+wééﬂb—@(Liﬂwﬁ)w
< (@) 0

Using the integration by parts, we have

/j(s—a)(/:f(t)dt)ds—1/m(/sf dt>ds 5 — a2
( I dt)s a)? L

—§L(safﬂ@%

—a) /f dt—f/ 5 — a2f(s)ds

N)\»—l l\.')\

and

1

Qéﬂwwfﬂ@w

Foea ([ msa= ([ ros)as
([ rom)o

/(bfs) f(s)ds +;(b x)Q/;f(t)dt.

N | —
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Then by (2.8) we get
29) 374 @ @ -af =30 /f pat— g [ -0 (o)
R A YORES R O /f

b
3 [ o=t r@as+yo-0 [ f(t)dt]
b
sf(a:)(b—a)—/ £ (s)ds

+ p?

or, equivalently

(2.10) *f+()( —a)’ —*f (b) (b —=)*

Loy 22/]‘ - et [ a-Lo-are [0 w

/xbw—s) f()d8+/a (s—aﬁf(s)ds]

2P
b
<f@b-a)- [ f(s)ds
< I @) =) = 3f @) (- 0)?

for « € (a,b).
The inequality (2.10) can also be written as

1

1 ! 2 ! 2
ST @) =) 7 0) (- 2)
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—if[éxw—aff@ww+1f@—@

[\
~
—~
n
~—
S
2

| S

for « € (a,b), which proves the desired inequality (2.1). O

Corollary 1. With the assumptions of Theorem 4 we have

(2.11) Ogg( ){f+<a+b) f/(a;b)]

a+b b

g[fﬂwﬁ+§f[lz um?ﬂwﬁ+/;jbtff@m4
_f<a+b> (b—a)

(b—a) [f ()~ [} (a)] /’f

<

| =

3. TRAPEZOID TYPE INEQUALITIES

We have:

Theorem 5. Assume that the function f: I — R is trigonometrically p-convex on
I. Then for any a, b€ I with0 <b—a <% and z € (a,b) we have

(31) %ﬁi@(—w)—ff( (o= a)?

et [ sy r0a)]

S@f®ﬂ®+@f@ﬂmf/f@M%Wf/(%ﬂfﬂ$@

In particular, if f is differentiable in x, then we have

(32) f()@—@(“gb ‘)

(e —a) /f Ydt + (b ) (/f dt)]

<(z—a)f(a)+ /1f(tﬁ—fpu/(x—sff@ﬁk
1
<3

(b2 £1.0) — 54 (0) (& — @)
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Proof. We use the following identity that holds for the absolutely continuous func-
tion g : [a,b] — C

b
33) @-ag@+b-2gb) - [ gl
= [s-ng@a= [ -ng6ds- [ @95

for any = € [a,b]. This can can be proved by integrating by parts in the second
term.
Using the inequality (2.4) we get

fi(a)(w—s)Sf’(S)(w—S)+p2(x—8)/sf(t)dt
éfL(w)(w—8)+p2(fc—8)/xf(t)dt

for a.e. s € [a,x].
Integrating on [a, 2|, we have

S (@) (@~ a)?

/f x—sds—I—p/a z—s (/f dt>

1 !
<l @ -0t g0 [ fod

which is equivalent to

for any x € (a,b).
From (2.6) we have

Fi (@) (s =) + 07 ( s—x/ Ft)dt < (s — ) 1 (5) + s—x/f
< (s—a) f. () + o s—x/f

for a.e. s € [z,b].
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Integrating on [z, b] we get

AN RS UL
</:(s—x)f’(8)ds+p2/: (s — ) (/f ‘ dt)ds

(b—2)* 1L () + 507 —x/f

l\D\H

which is equivalent to

(35) 37} (@) (- o)

m)z/azf(t)dt—pg/:(s—x) </:f(t)dt) ds

S/:(s—w)f’(s)ds

s;<b—z>2f'_<b>+;pz(b—m)QLbf<t>dt—p2[Eb<s—z> ([ rwa)a

for any x € (a,b).
Adding (3.4) and (3.5) and using the identity (3.3) we get

o [a-a ([ r0a)as- 31 @@= - S e-a [0
SR @00+ 3 - [ S / s—a) ([ r0ar)as
<(z—a)f(a)+(b—a)f (b /f
< [o-a ([ roa)as- @ -
;(b—w)Qf’(b)+;pz(b—w)Q/abf(t)dt—f/:(s—x)(/:f(t)dt>ds

that is equivalent to

+

36 3546 0-a — 31 @) @ - 3P a0 [ F)a

+;p2(b—x)2/:f (t dt+p2/ab (x—s (/f (t) dt)ds

<@-a)f()+b-2)f /f

e AU RV (e W CL

+,o2/:(x—s) (/:f(t)dt)ds.
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Integrating by parts, we have

fioa([ oo ([ ras)es
=—2l@—s></.ﬂﬂﬁ> —Z;@—sff@w%
:;/ab(gc—s)zf( ds—f — ) (/f dt)

and by (3.6) we get

3@ 0= - 5 @ @0 - 3 w0 [ o

x b b
+;f®—fo.ﬂﬂﬁ+;flz@—&ff@ﬂs—é@—xff(é,ﬂﬂﬁ>

namely

%ﬁwww—xf—1f<>u—af

——p°(x—a) dt—f —x22 t)dt
57w [ 10 (/f )

b

< i@+ 62 f 0~ [ a1t [ @)

1 1,

5 (=2 fL(0) = 5fi(a) (@ —a)’,
which proves the desired result (3.1). (]

Corollary 2. With the assumptions of Theorem 5, we have

(3.7) 0<§( )[h(ﬁl)) f/(a;bﬂ

<@- /f dﬁ-p/ b—s)(s—a) f (s)ds
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