LOCAL EXTREME POINTS AND A YOUNG-TYPE INEQUALITY

LOREDANA CIURDARIU

Abstract

In this paper is presented a Young-type inequality and then as an application is given a corresponding Holder-type inequality for isotonic linear functionals.

1. Introduction

The classical inequality of Young is

$$
a^{\nu} b^{1-\nu}<\nu a+(1-\nu) b
$$

where a and b are distinct positive real numbers and $0<\nu<1$, see [14].
In [1] are given new results which extend many generalizations of Young's inequality given before. The following inequality is a refinement of the left-hand side of a refinement of the inequality of Young proved in 2010 and 2011 by Kittaneh and Manasrah in [12], [13]. Many generalizations and refinements of Young's inequality are presented also in [10], [8], [9] and references therein.

Theorem $\mathbf{A}([1])$ Let λ, ν and τ be real numbers with $\lambda \geq 1$ and $0<\nu<\tau<1$. Then

$$
\left(\frac{\nu}{\tau}\right)^{\lambda}<\frac{A_{\nu}(a, b)^{\lambda}-G_{\nu}(a, b)^{\lambda}}{A_{\tau}(a, b)^{\lambda}-G_{\tau}(a, b)^{\lambda}}<\left(\frac{1-\nu}{1-\tau}\right)^{\lambda}
$$

for all positive and distinct real numbers a and b. Moreover, both bounds are sharp.
The following important definition is given in [3], [5] and we need to recall it here in order to help us to give new Young-type inequalities for isotonic linear functionals in Section 3.

Let E be a nonempty set and L be a class of real-valued functions $f: E \rightarrow \mathbf{R}$ having the following properties:
(L1) If $f, g \in L$ and $a, b \in \mathbf{R}$, then $(a f+b g) \in L$.
(L2) If $f(t)=1$ for all $t \in E$, then $f \in L$.
An isotonic linear functional is a functional $A: L \rightarrow \mathbf{R}$ having the following properties:
(A1) If $f, g \in L$ and $a, b \in \mathbf{R}$, then $A(a f+b g)=a A(f)+b A(g)$.
(A2) If $f \in L$ and $f(t) \geq 0$ for all $t \in E$, then $A(f) \geq 0$.
The mapping A is said to be normalised if

Date: Augusty 22, 2018.
2000 Mathematics Subject Classification. 26D15.
Key words and phrases. Young-type inequalities, arithmetic mean, geometric mean, isotonic linear functionals.
RGMIA Res. Rep. Coll. 21 (2018), Art. 110, 9 pp. Received 17/09/18
$(\mathrm{A} 3) A(\mathbf{1})=1$.
New inequalities concerning isotonic linear functionals can be also found in [7], [3], [5], [6] and referinces therein.

2. Local extreme points and a Young-type inequality for three numbers

In this section is given a new Young-type inequalitiy for three positive numbers which satisfies some conditions in Theorem 1 using the Lemma 1, where are stated several conditions for finding the local extreme point for a special function.
Lemma 1. Let $p_{1}, p_{2}, p_{3}, p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}$ be strictly positive real numbers which satisfies the conditions, $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}=1, \frac{1}{p_{1}^{\prime}}+\frac{1}{p_{2}^{\prime}}+\frac{1}{p_{3}^{\prime}}=1$ and

$$
p_{1}^{\prime}\left(1-\frac{1}{p_{2}^{\prime}}\right) \neq p_{1}\left(1-\frac{1}{p_{2}}\right) .
$$

(i) If $p_{1}^{\prime}<p_{1}$ and

$$
\left(\frac{1}{p_{1}^{\prime}}-\frac{1}{p_{1}}\right)\left[-\frac{1}{p_{2}}\left(\frac{1}{p_{2}}-1\right)+\frac{p_{1}^{\prime}}{p_{1}} \frac{1}{p_{2}^{\prime}}\left(\frac{1}{p_{2}^{\prime}}-1\right)\right]>\frac{1}{p_{1}}\left(\frac{1}{p_{2}}-\frac{1}{p_{2}^{\prime}}\right)^{2} .
$$

then $A(1,1)$ is a local minimum point for the function

$$
f(x, y)=\frac{1}{p_{1}} x+\frac{1}{p_{2}} y+\frac{1}{p_{3}}-x^{\frac{1}{p_{1}}} y^{\frac{1}{p_{2}}}-\frac{p_{1}^{\prime}}{p_{1}}\left(\frac{1}{p_{1}^{\prime}} x+\frac{1}{p_{2}^{\prime}} y+\frac{1}{p_{3}^{\prime}}-x^{\frac{1}{p_{1}^{\prime}}} y^{\frac{1}{p_{2}^{\prime}}}\right)
$$

defined on the interval $(0, \infty) \times(0, \infty)$.
(ii) If $p_{1}^{\prime}>p_{1}$ and

$$
\left(\frac{1}{p_{1}^{\prime}}-\frac{1}{p_{1}}\right)\left[-\frac{1}{p_{2}}\left(\frac{1}{p_{2}}-1\right)+\frac{p_{1}^{\prime}}{p_{1}} \frac{1}{p_{2}^{\prime}}\left(\frac{1}{p_{2}^{\prime}}-1\right)\right]>\frac{1}{p_{1}}\left(\frac{1}{p_{2}}-\frac{1}{p_{2}^{\prime}}\right)^{2}
$$

then $A(1,1)$ is a local maximum point for the function

$$
f(x, y)=\frac{1}{p_{1}} x+\frac{1}{p_{2}} y+\frac{1}{p_{3}}-x^{\frac{1}{p_{1}}} y^{\frac{1}{p_{2}}}-\frac{p_{1}^{\prime}}{p_{1}}\left(\frac{1}{p_{1}^{\prime}} x+\frac{1}{p_{2}^{\prime}} y+\frac{1}{p_{3}^{\prime}}-x^{\frac{1}{p_{1}^{\prime}}} y^{\frac{1}{p_{2}^{\prime}}}\right)
$$

defined on the interval $(0, \infty) \times(0, \infty)$.
Proof. (i) We consider the function,

$$
f(x, y)=\frac{1}{p_{1}} x+\frac{1}{p_{2}} y+\frac{1}{p_{3}}-x^{\frac{1}{p_{1}}} y^{\frac{1}{p_{2}}}-\frac{p_{1}^{\prime}}{p_{1}}\left(\frac{1}{p_{1}^{\prime}} x+\frac{1}{p_{2}^{\prime}} y+\frac{1}{p_{3}^{\prime}}-x^{\frac{1}{p_{1}^{\prime}}} y^{\frac{1}{p_{2}^{\prime}}}\right)
$$

where the numbers $p_{1}, p_{2}, p_{3}, p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}$ satisfies the hypothesis and x, y are strictly positive real number with $x>0$, and $y>0$.

First, it is necessary to find the stationary points of f on $(0, \infty) \times(0, \infty)$ and for that we compute its first derivative, $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$. We have,

$$
\frac{\partial f}{\partial x}=-\frac{1}{p_{1}} x^{\frac{1}{p_{1}}-1} y^{\frac{1}{p_{2}}}+\frac{1}{p_{1}} x^{\frac{1}{p_{1}^{\prime}}-1} y^{\frac{1}{p_{2}^{\prime}}}
$$

and

$$
\frac{\partial f}{\partial y}=\frac{1}{p_{2}}-\frac{1}{p_{2}} x^{\frac{1}{p_{1}}} y^{\frac{1}{p_{2}}-1}-\frac{p_{1}^{\prime}}{p_{1}} \frac{1}{p_{2}^{\prime}}+\frac{p_{1}^{\prime}}{p_{1}} \frac{1}{p_{2}^{\prime}} x^{\frac{1}{p_{1}^{\prime}}} y^{\frac{1}{p_{2}^{\prime}}-1}
$$

and then we obtain the following system

$$
\left\{\begin{array}{l}
x^{\frac{1}{p_{1}}} y^{\frac{1}{p_{2}}}=x^{\frac{1}{p_{1}^{\prime}}} y^{\frac{1}{p_{2}^{\prime}}} \tag{1}\\
\frac{1}{p_{2}}\left(1-x^{\frac{1}{p_{1}}} y^{\frac{1}{p_{2}}-1}\right)=\frac{p_{1}^{\prime}}{p_{1}} \frac{1}{p_{2}^{\prime}}\left(1-x^{\frac{1}{p_{1}^{\prime}}} y^{\frac{1}{p_{2}^{\prime}}-1}\right)
\end{array}\right.
$$

Using now the hypothesis, $\frac{p_{2}^{\prime}}{p_{2}}-\frac{p_{1}^{\prime}}{p_{1}}>0$ we get from the equation,

$$
\left(1-x^{\frac{1}{p_{1}}} y^{\frac{1}{p_{2}}-1}\right)\left(\frac{1}{p_{2}}-\frac{p_{1}^{\prime}}{p_{1}} \frac{1}{p_{2}^{\prime}}\right)=0
$$

that

$$
x^{\frac{1}{p_{1}}} y^{\frac{1}{p_{2}}}=y
$$

where p_{1}, p_{2} satisfy the hypothesis, being arbitrary numbers. Last equation becomes

$$
x^{\frac{1}{p_{1}}}=y^{1-\frac{1}{p_{2}}}
$$

when $x, y>0$.
Therefore, the last system will be

$$
\left\{\begin{array}{l}
y^{p_{1}^{\prime}\left(1-\frac{1}{p_{2}^{\prime}}\right)}=y^{p_{1}\left(1-\frac{1}{p_{2}}\right)} \\
y^{p_{1}\left(1-\frac{1}{p_{2}}\right)}=y^{\frac{1}{\frac{1}{p_{2}}-\frac{1}{p_{2}}}}{ }^{\frac{1}{p_{1}}-\frac{1}{p_{1}^{\prime}}}
\end{array}\right.
$$

Then we have

$$
\left\{\begin{array}{l}
p_{1}^{\prime}\left(1-\frac{1}{p_{2}^{\prime}}\right)=p_{1}\left(1-\frac{1}{p_{2}}\right) \\
p_{1}\left(1-\frac{1}{p_{2}}\right)=\frac{\frac{1}{p_{2}^{\prime}}-\frac{1}{p_{2}}}{\frac{1}{p_{1}}-\frac{1}{p_{1}^{\prime}}}
\end{array}\right.
$$

when $y \neq 1$, or the solution $x=y=1$. So we obtain in the second case, the stationary point $A(1,1)$.

First case, when $y \neq 1$, it is not interesting here because our hypothesis are not satisfied, i. e. from last system we have,

$$
p_{2}^{\prime}=\frac{1}{1-\frac{p_{1}}{p_{1}^{\prime}}\left(1-\frac{1}{p_{2}}\right)}
$$

(which is already a restriction of p_{2}^{\prime}), and in this way the second equation of last system in checked, but this is not our hypothesis.

We study now if $A(1,1)$ is an extreme point for the function f on the interval $(0, \infty) \times(0, \infty)$. For that we compute the second derivative of the function and then its hessian matrix in $A(1,1)$. We have,

$$
\begin{gathered}
\frac{\partial^{2} f}{\partial x^{2}}=-\frac{1}{p_{1}}\left(\frac{1}{p_{1}}-1\right) x^{\frac{1}{p_{1}}-2} y^{\frac{1}{p_{2}}}+\frac{1}{p_{1}}\left(\frac{1}{p_{1}^{\prime}}-1\right) x^{\frac{1}{p_{1}^{\prime}}}-2 y^{\frac{1}{p_{2}^{\prime}}} \\
\frac{\partial^{2} f}{\partial x^{2}}(1,1)=\frac{1}{p_{1}}\left(\frac{1}{p_{1}^{\prime}}-\frac{1}{p_{1}}\right) \\
\frac{\partial^{2} f}{\partial y^{2}}=-\frac{1}{p_{2}}\left(\frac{1}{p_{2}}-1\right) x^{\frac{1}{p_{1}}} y^{\frac{1}{p_{2}}-2}+\frac{p_{1}^{\prime}}{p_{1}} \frac{1}{p_{2}^{\prime}}\left(\frac{1}{p_{2}^{\prime}}-1\right) x^{\frac{1}{p_{1}^{\prime}}} y^{\frac{1}{p_{2}^{\prime}}-2}, \\
\frac{\partial^{2} f}{\partial y^{2}}(1,1)=-\frac{1}{p_{2}}\left(\frac{1}{p_{2}}-1\right)+\frac{p_{1}^{\prime}}{p_{1}} \frac{1}{p_{2}^{\prime}}\left(\frac{1}{p_{2}^{\prime}}-1\right),
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial^{2} f}{\partial x \partial y}=-\frac{1}{p_{1} p_{2}} x^{\frac{1}{p_{1}}-1} y^{\frac{1}{p_{2}}-1}+\frac{1}{p_{1} p_{2}^{\prime}} x^{\frac{1}{p_{1}^{\prime}}-1} y^{\frac{1}{p_{2}^{\prime}}-1} \\
\frac{\partial^{2} f}{\partial x \partial y}(1,1)=\frac{1}{p_{1}}\left(\frac{1}{p_{2}^{\prime}}-\frac{1}{p_{2}}\right)
\end{gathered}
$$

and also

$$
\frac{\partial^{2} f}{\partial y \partial x}(1,1)=\frac{1}{p_{1}}\left(\frac{1}{p_{2}^{\prime}}-\frac{1}{p_{2}}\right)
$$

Now we can write the hessian matrix in $A(1,1)$,

$$
H(1,1)=\left(\begin{array}{cc}
\frac{1}{p_{1}}\left(\frac{1}{p_{1}^{\prime}}-\frac{1}{p_{1}}\right) & \frac{1}{p_{1}}\left(\frac{1}{p_{2}^{\prime}}-\frac{1}{p_{2}}\right) \\
\frac{1}{p_{1}}\left(\frac{1}{p_{2}^{\prime}}-\frac{1}{p_{2}}\right) & -\frac{1}{p_{2}}\left(\frac{1}{p_{2}}-1\right)+\frac{p_{1}^{\prime}}{p_{1}} \frac{1}{p_{2}^{\prime}}\left(\frac{1}{p_{2}^{\prime}}-1\right)
\end{array}\right)
$$

and if

$$
\Delta_{1}=\frac{1}{p_{1}}\left(\frac{1}{p_{1}^{\prime}}-\frac{1}{p_{1}}\right)>0
$$

and

$$
\Delta_{2}=\left(\frac{1}{p_{1}^{\prime}}-\frac{1}{p_{1}}\right)\left[-\frac{1}{p_{2}}\left(\frac{1}{p_{2}}-1\right)+\frac{p_{1}^{\prime}}{p_{1}} \frac{1}{p_{2}^{\prime}}\left(\frac{1}{p_{2}^{\prime}}-1\right)\right]-\frac{1}{p_{1}}\left(\frac{1}{p_{2}}-\frac{1}{p_{2}^{\prime}}\right)^{2}>0
$$

then $A(1,1)$ is the local extreme point for the function f defined before.
For (ii) the proof is the same

Example 1. (i) We take into account the particular case for the function f when $p_{1}=5, p_{2}=6, p_{3}=\frac{30}{19}$ and $p_{1}^{\prime}=4, p_{2}^{\prime}=5, p_{3}^{\prime}=\frac{20}{11}$, see also in Figures 1 and 2. We can easily notice that the conditions from hypothesis (i) are fulfilled for the function f, so that the point $A(1,1)$ is a local minimum point for f.
(ii) Now, if we replace p_{1} by 4 and p_{1}^{\prime} by 7 in previous particular case, we can easily see that the conditions from hypothesis (ii) are satisfied for the function f, so the point $A(1,1)$ is a local maximum point for f.

Theorem 1. Let $M>1$ and $p_{1}, p_{2}, p_{3}, p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}$ be positive real numbers which satisfies the conditions, $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}=1, \frac{1}{p_{1}^{\prime}}+\frac{1}{p_{2}^{\prime}}+\frac{1}{p_{3}^{\prime}}=1, \frac{p_{3}^{\prime}}{p_{3}}>1>\frac{p_{2}^{\prime}}{p_{2}}$ and $p_{2}^{\prime}\left(1-\frac{p_{1}^{\prime}}{p_{1}}\right)>\frac{p_{2}^{\prime}}{p_{2}}-\frac{p_{1}^{\prime}}{p_{1}}>0$.
(i) If x and y are two real numbers with $1<x<M, 1<y<M$ then the following inequality holds:

$$
\frac{1}{p_{1}} x+\frac{1}{p_{2}} y+\frac{1}{p_{3}}-x^{\frac{1}{p_{1}}} y^{\frac{1}{p_{2}}}>\frac{p_{1}^{\prime}}{p_{1}}\left(\frac{1}{p_{1}^{\prime}} x+\frac{1}{p_{2}^{\prime}} y+\frac{1}{p_{3}^{\prime}}-x^{\frac{1}{p_{1}^{\prime}}} y^{\frac{1}{p_{2}^{\prime}}}\right) .
$$

(ii) Moreover, if a, b, c are three real numbers, $a>0, b>0, c>0$ so that $c<a<M c$ and $c<b<M c$ then the following inequality takes place:

$$
\frac{1}{p_{1}} a+\frac{1}{p_{2}} b+\frac{1}{p_{3}} c-a^{\frac{1}{p_{1}}} b^{\frac{1}{p_{2}}} c^{\frac{1}{p_{3}}}>\frac{p_{1}^{\prime}}{p_{1}}\left(\frac{1}{p_{1}^{\prime}} a+\frac{1}{p_{2}^{\prime}} b+\frac{1}{p_{3}^{\prime}} c-a^{\frac{1}{p_{1}^{\prime}}} b^{\frac{1}{p_{2}^{\prime}}} c^{\frac{1}{p_{3}^{\prime}}}\right)
$$

Figure 1. The function $\mathrm{f}(\mathrm{x}, \mathrm{y})$ on $[0,8] \times[0,8]$ when $p_{1}=5, p_{2}=$ $6, p_{3}=\frac{30}{19}$ and $p_{1}^{\prime}=4, p_{2}^{\prime}=5, p_{3}^{\prime}=\frac{20}{11}$.

Proof. Using Lemma 1, we know that $A(1,1)$ is a local minimum point for the function f on the interval $(1, M) \times(1, M)$, which it is the interior of the close interval $[1, M] \times[1, M]$. We study how will be the function on the frontier of the above interval. We see that the frontier of this interval from \mathbb{R}^{2} is given by the sets, $\{x=1, y \in[1, M]\}, \quad\{x=M, y \in[1, M]\},\{x \in[1 . M], y=1\}$ and $\{x \in[1, M], y=$ $M\}$.

When $x=1, y \in[1, M]$ then

$$
f(1, y)=y \frac{1}{p_{2}^{\prime}}\left(\frac{p_{2}^{\prime}}{p_{2}}-\frac{p_{1}^{\prime}}{p_{1}}\right)+\frac{1}{p_{3}^{\prime}}\left(\frac{p_{3}^{\prime}}{p_{3}}-\frac{p_{1}^{\prime}}{p_{1}}\right)+\frac{p_{1}^{\prime}}{p_{1}} y^{\frac{1}{p_{2}^{\prime}}}-y^{\frac{1}{p_{2}}} .
$$

This function is increasing, as a function of variable y, from hypothesis of the above theorem, and then $f(1,1)<f(1, y)$, because $1<y$. Therefore, we find that $f(1, y)>f(1,1)=0$. Last function is increasing because its first derivative,
$f^{\prime}(1, y)=\frac{1}{p_{2}}\left(1-y^{\frac{1}{p_{2}}-1}\right)-\frac{p_{1}^{\prime}}{p_{1}} \frac{1}{p_{2}^{\prime}}\left(1-y^{\frac{1}{p_{2}^{\prime}}-1}\right)>\frac{1}{p_{2}^{\prime}}\left(\frac{p_{2}^{\prime}}{p_{2}}-\frac{p_{1}^{\prime}}{p_{1}}\right)\left(1-y^{\frac{1}{p_{2}^{\prime}}-1}\right)>0$.

Figure 2. The function $\mathrm{f}(\mathrm{x}, \mathrm{y})$ on $[1,8] \times[1,8]$ when $p_{1}=5, p_{2}=$ $6, p_{3}=\frac{30}{19}$ and $p_{1}^{\prime}=4, p_{2}^{\prime}=5, p_{3}^{\prime}=\frac{20}{11}$.

Now, for $y=1, x \in[1, M]$, we have,

$$
f(x, 1)=1-\frac{p_{1}^{\prime}}{p_{1}}-x^{\frac{1}{p_{1}}}+\frac{p_{1}^{\prime}}{p_{1}} x^{\frac{1}{p_{1}^{\prime}}}
$$

This function is increasing because its first derivative,

$$
f^{\prime}(x, 1)=\frac{1}{p_{1}}\left(x^{\frac{1}{p_{1}^{\prime}}-1}-x^{\frac{1}{p_{1}}-1}\right)>0
$$

, see hypothesis of our previous theorem. Thus we also have, $f(x, 1)>f(1,1)=0$.
If $x \in[1, M], y=M$ then we obtain,

$$
f(x, M)=M \frac{1}{p_{2}^{\prime}}\left(\frac{p_{2}^{\prime}}{p_{2}}-\frac{p_{1}^{\prime}}{p_{1}}\right)+\frac{1}{p_{3}^{\prime}}\left(\frac{p_{3}^{\prime}}{p_{3}}-\frac{p_{1}^{\prime}}{p_{1}}\right)+\frac{p_{1}^{\prime}}{p_{1}} x^{\frac{1}{p_{1}^{\prime}}} M^{\frac{1}{p_{2}^{\prime}}}-x^{\frac{1}{p_{1}}} M^{\frac{1}{p_{2}}}
$$

and this function is increasing in x when $x \in[1, M]$, because

$$
f^{\prime}(x, M)=\frac{1}{p_{1}}\left(x^{\frac{1}{p_{1}^{\prime}}-1} M^{\frac{1}{p_{2}^{\prime}}}-x^{\frac{1}{p_{1}}-1} M^{\frac{1}{p_{2}}}\right)>0
$$

From here, we get,

$$
f(x, M)>f(1, M)>0
$$

and we obtained this inequality before, see the case when $x=1, y \in[1, M]$.
Last case, when $x=M, y \in[1, M]$ we have the function,

$$
f(M, y)=y \frac{1}{p_{2}^{\prime}}\left(\frac{p_{2}^{\prime}}{p_{2}}-\frac{p_{1}^{\prime}}{p_{1}}\right)+\frac{1}{p_{3}^{\prime}}\left(\frac{p_{3}^{\prime}}{p_{3}}-\frac{p_{1}^{\prime}}{p_{1}}\right)+\frac{p_{1}^{\prime}}{p_{1}} M^{\frac{1}{p_{1}^{\prime}}} y^{\frac{1}{p_{2}^{\prime}}}-M^{\frac{1}{p_{1}}} y^{\frac{1}{p_{2}}}
$$

which is increasing as a function of variable y, because its first derivative,

$$
\begin{aligned}
& f^{\prime}(M, y)=\frac{1}{p_{2}^{\prime}}\left(\frac{p_{2}^{\prime}}{p_{2}}-\frac{p_{1}^{\prime}}{p_{1}}\right)+\frac{p_{1}^{\prime}}{p_{1}} \frac{1}{p_{2}^{\prime}} M^{\frac{1}{p_{1}^{\prime}}} y^{\frac{1}{p_{2}^{\prime}}-1}-\frac{1}{p_{2}} M^{\frac{1}{p_{1}}} y^{\frac{1}{p_{2}}-1}= \\
& \quad=\frac{1}{p_{2}^{\prime}}\left[\frac{p_{2}^{\prime}}{p_{2}}\left(1-M^{\frac{1}{p_{1}}} y^{\frac{1}{p_{2}}-1}\right)-\frac{p_{1}^{\prime}}{p_{1}}\left(1-M^{\frac{1}{p_{1}^{\prime}}} y^{\frac{1}{p_{2}^{\prime}}-1}\right)\right]>0
\end{aligned}
$$

We used here that $\frac{p_{2}^{\prime}}{p_{2}}>\frac{p_{1}^{\prime}}{p_{1}}$ and $M^{\frac{1}{p_{1}^{\prime}}-\frac{1}{p_{1}}}>1>y^{\frac{1}{p_{2}}-\frac{1}{p_{2}^{\prime}}}$.
From the second case we get

$$
f(M, 1)=1-\frac{p_{1}^{\prime}}{p_{1}}+\frac{p_{1}^{\prime}}{p_{1}} M^{\frac{1}{p_{1}^{\prime}}}-M^{\frac{1}{p_{1}}}>0
$$

and then

$$
f(M, y)>f(M, 1)>0
$$

Therefore the point $A(1,1)$ is the global minimum of the function f on the interval $[1, M] \times[1, M]$.

Taking into account hypothesis from Lemma 1, (i) and denoting by $a, \frac{p_{1}^{\prime}}{p_{1}}$, by b, $\frac{p_{2}^{\prime}}{p_{2}}$ and by $c, \frac{p_{3}^{\prime}}{p_{3}}$, we get $c>1, a<b<1$.

Condition $\Delta_{2}>0$ from the proof of Lemma 1 becomes,

$$
\left(\frac{p_{1}}{p_{1}^{\prime}}-1\right)\left[-\frac{p_{2}^{\prime}}{p_{2}}\left(\frac{p_{2}^{\prime}}{p_{2}}-p_{2}^{\prime}\right)+\frac{p_{1}^{\prime}}{p_{1}}\left(1-p_{2}^{\prime}\right)\right]>\left(\frac{p_{2}^{\prime}}{p_{2}}-1\right)^{\prime} 2
$$

or

$$
\left(\frac{1}{a}-1\right)\left[-b\left(b-p_{2}^{\prime}\right)+a\left(1-p_{2}^{\prime}\right)\right]>(b-1)^{2}
$$

and by calculus, we have:

$$
p_{2}^{\prime}(1-a)>b-a
$$

, i. e. the condition

$$
p_{2}^{\prime}\left(1-\frac{p_{1}^{\prime}}{p_{1}}\right)>\frac{p_{2}^{\prime}}{p_{2}}-\frac{p_{1}^{\prime}}{p_{1}}
$$

from our hypothesis.
(ii) We replace $x \in[1, M]$ by $\frac{a}{c}$ and $y \in[1, M]$ by $\frac{b}{c}$ and because $\frac{a}{c} \in[1, M]$ and $\frac{b}{c} \in[1, M]$ the inequality from (i) becomes:

$$
\frac{1}{p_{1}} \frac{a}{c}+\frac{1}{p_{2}} \frac{b}{c}+\frac{1}{p_{3}}-\left(\frac{a}{c}\right)^{\frac{1}{p_{1}}}\left(\frac{b}{c}\right)^{\frac{1}{p_{2}}}>\frac{p_{1}^{\prime}}{p_{1}}\left[\frac{1}{p_{1}^{\prime}} \frac{a}{c}+\frac{1}{p_{2}^{\prime}} \frac{b}{c}+\frac{1}{p_{3}^{\prime}}-\left(\frac{a}{c}\right)^{\frac{1}{p_{1}^{\prime}}}\left(\frac{b}{c}\right)^{\frac{1}{p_{2}}}\right]
$$

and multiplying by $c>0$ we get the desired inequality.

Example 2. The particular case from Example 1 (i) satisfies the conditions of Theorem 1 (i), and then the point $A(1,1)$ is the global minimum for the function f and the inequality from Theorem 1 (i) takes place.

3. Holder-type inequality for three functions

The following result is obtained as a consequence of Theorem 1 (ii) for isotonic linear functionals, being a Holder-type inequality in the case of three functions.

Theorem 2. Let $M>1$ and $p_{1}, p_{2}, p_{3}, p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}$ be positive real numbers which satisfies the conditions, $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}=1, \frac{1}{p_{1}^{\prime}}+\frac{1}{p_{2}^{\prime}}+\frac{1}{p_{3}^{\prime}}=1, \frac{p_{3}^{\prime}}{p_{3}}>1>\frac{p_{2}^{\prime}}{p_{2}}$ and $p_{2}^{\prime}\left(1-\frac{p_{1}^{\prime}}{p_{1}}\right)>\frac{p_{2}^{\prime}}{p_{2}}-\frac{p_{1}^{\prime}}{p_{1}}>0, L$ satisfying conditions L1, L2 and A satisfying A1, A2 on the set E. Considering the nonnegative functions f, g, h with $f g h, f^{\frac{p_{1}}{p_{1}}} g^{\frac{p_{2}}{p_{2}}} h^{\frac{p_{3}}{p_{3}}}, f^{p_{1}}, g^{p_{2}}, h^{p_{3}} \in L$ and $A\left(f^{p_{1}}\right)>0, A\left(g^{p_{2}}\right)>0, A\left(\left(h^{p_{3}}\right)>0\right.$, if in addition, $\frac{h^{p_{3}}}{A\left(h^{p_{3}}\right)}<\frac{f^{p_{1}}}{A\left(f^{p_{1}}\right)}<M \frac{h^{p_{3}}}{A\left(h^{p_{3}}\right)}$ and $\frac{h^{p_{3}}}{A\left(h^{p_{3}}\right)}<\frac{g^{p_{2}}}{A\left(g^{p_{2}}\right)}<M \frac{h^{p_{3}}}{A\left(h^{p_{3}}\right)}$ we will have,

$$
1-\frac{A(f g h)}{A^{\frac{1}{p_{1}}}\left(f^{p_{1}}\right) A^{\frac{1}{p_{2}}}\left(g^{p_{2}}\right) A^{\frac{1}{p_{3}}}\left(h^{p_{3}}\right)}>\frac{p_{1}^{\prime}}{p_{1}}\left(1-\frac{A\left(f^{\frac{p_{1}}{p_{1}^{\prime}}} g^{\frac{p_{2}}{p_{2}^{\prime}}} h^{\frac{p_{3}}{p_{3}^{\prime}}}\right)}{A^{\frac{1}{p_{1}^{\prime}}}\left(f^{p_{1}}\right) A^{\frac{1}{p_{2}^{\prime}}}\left(g^{p_{2}}\right) A^{\frac{1}{p_{3}^{\prime}}}\left(h^{p_{3}}\right)}\right)
$$

Proof. We use inequality from Theorem 1 (ii), for $a=\frac{f^{p_{1}}}{A\left(f^{p_{1}}\right)}, b=\frac{g^{p_{2}}}{A\left(g^{p_{2}}\right)}$ and $c=\frac{h^{p_{3}}}{A\left(h^{p_{3}}\right)}$ and we have

$$
\begin{gathered}
\frac{1}{p_{1}} \frac{f^{p_{1}}}{A\left(f^{p_{1}}\right)}+\frac{1}{p_{2}} \frac{g^{p_{2}}}{A\left(g^{p_{2}}\right)}+\frac{1}{p_{3}} \frac{h^{p_{3}}}{A\left(h^{p_{3}}\right)}-\frac{f g h}{A^{\frac{1}{p_{1}}}\left(f^{p_{1}}\right) A^{\frac{1}{p_{2}}}\left(g^{p_{2}}\right) A^{\frac{1}{p_{3}}}\left(h^{p_{3}}\right)}> \\
>\frac{p_{1}^{\prime}}{p_{1}}\left(\frac{1}{p_{1}^{\prime}} \frac{f^{p_{1}}}{A\left(f^{p_{1}}\right)}+\frac{1}{p_{2}^{\prime}} \frac{g^{p_{2}}}{A\left(g^{p_{2}}\right)}+\frac{1}{p_{3}^{\prime}} \frac{h^{p_{3}}}{A\left(h^{p_{3}}\right)}-\frac{f^{\frac{p_{1}}{p_{1}^{\prime}}} g^{\frac{p_{2}}{p_{2}^{\prime}}} h^{\frac{p_{3}}{p_{3}^{\prime}}}}{A^{\frac{1}{p_{1}}}\left(f^{p_{1}}\right) A^{\frac{1}{p_{2}^{\prime}}}\left(g^{p_{2}}\right) A^{\frac{1}{p_{3}^{\prime}}}\left(h^{p_{3}}\right)}\right) .
\end{gathered}
$$

Now using hypothesis and condition A2, we get,

$$
\begin{gathered}
\frac{1}{p_{1}} \frac{A\left(f^{p_{1}}\right)}{A\left(f^{p_{1}}\right)}+\frac{1}{p_{2}} \frac{A\left(g^{p_{2}}\right)}{A\left(g^{p_{2}}\right)}+\frac{1}{p_{3}} \frac{A\left(h^{p_{3}}\right)}{A\left(h^{p_{3}}\right)}-\frac{A(f g h)}{A^{\frac{1}{p_{1}}}\left(f^{p_{1}}\right) A^{\frac{1}{p_{2}}}\left(g^{p_{2}}\right) A^{\frac{1}{p_{3}}}\left(h^{p_{3}}\right)}> \\
>\frac{p_{1}^{\prime}}{p_{1}}\left(\frac{1}{p_{1}^{\prime}} \frac{A\left(f^{p_{1}}\right)}{A\left(f^{p_{1}}\right)}+\frac{1}{p_{2}^{\prime}} \frac{A\left(g^{p_{2}}\right)}{A\left(g^{p_{2}}\right)}+\frac{1}{p_{3}^{\prime}} \frac{A\left(h^{p_{3}}\right)}{A\left(h^{p_{3}}\right)}-\frac{A\left(f^{\frac{p_{1}}{p_{1}^{\prime}}} g^{\frac{p_{2}}{p_{2}^{\prime}}} h^{\frac{p_{3}}{p_{3}^{\prime}}}\right)}{A^{\frac{1}{p_{1}}}\left(f^{p_{1}}\right) A^{\frac{1}{p_{2}^{\prime}}}\left(g^{p_{2}}\right) A^{\frac{1}{p_{3}}}\left(h^{p_{3}}\right)}\right),
\end{gathered}
$$

or by calculus we obtain the desired inequality.

As a particular case, when instead of the isotonic linear functional, $A(f)$ we consider, as in [3], $\int_{a}^{b} f(x) d x$, Theorem 2 becomes:

Remark 1. Let $M>1$ and $p_{1}, p_{2}, p_{3}, p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}$ be positive real numbers which satisfies the conditions, $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}=1, \frac{1}{p_{1}^{\prime}}+\frac{1}{p_{2}^{\prime}}+\frac{1}{p_{3}^{\prime}}=1, \frac{p_{3}^{\prime}}{p_{3}}>1>\frac{p_{2}^{\prime}}{p_{2}}$ and $p_{2}^{\prime}\left(1-\frac{p_{1}^{\prime}}{p_{1}}\right)>\frac{p_{2}^{\prime}}{p_{2}}-\frac{p_{1}^{\prime}}{p_{1}}>0$,

Considering the continuous functions $f, g, h>0$ on the interval $[a, b]$ with and $\frac{h^{p_{3}}(x)}{\int_{a}^{b} h^{p_{3}}(x) d x}<\frac{f^{p_{1}}(x)}{\int_{a}^{b} f^{p_{1}}(x) d x}<M \frac{h^{p_{3}}(x)}{\int_{a}^{b} h^{p_{3}}(x)}$ and $\frac{h^{p_{3}}(x d x)}{\int_{a}^{b} h^{p_{3}}(x) d x}<\frac{g^{p_{2}}(x)}{\int_{a}^{b} g^{p_{2}}(x) d x}<M \frac{h^{p_{3}}(x)}{\int_{a}^{b} h^{p_{3}}(x) d x}$ we will have,

$$
\begin{gathered}
1-\frac{\int_{a}^{b} f(x) g(x) h(x) d x}{\left(\int_{a}^{b} f^{p_{1}}(x) d x\right)^{\frac{1}{p_{1}}}\left(\int_{a}^{b} g^{p_{2}}(x) d x\right)^{\frac{1}{p_{2}}}\left(\int_{a}^{b} h^{p_{3}}(x) d x\right)^{\frac{1}{p_{3}}}}> \\
>\frac{p_{1}^{\prime}}{p_{1}}\left(1-\frac{\int_{a}^{b} f^{\frac{p_{1}}{p_{1}^{\prime}}}(x) g^{\frac{p_{2}^{\prime}}{p_{2}^{\prime}}}(x) h^{\frac{p_{3}}{p_{3}^{\prime}}}(x) d x}{\left(\int_{a}^{b} f^{p_{1}}(x) d x\right)^{\frac{1}{p_{1}^{\prime}}}\left(\int_{a}^{b} g^{p_{2}}(x) d x\right)^{\frac{1}{p_{2}^{\prime}}}\left(\int_{a}^{b} h^{p_{3}}(x) d x\right)^{\frac{1}{p_{3}^{\prime}}}}\right) .
\end{gathered}
$$

References

[1] H. Alzer, C. M. Fonseca and A. Kovacec, Young-type inequalities and their matrix analogues, Linear and Multilinear Algebra. 63, 3, (2015), 622-635.
[2] Andrica D. and Badea C, Gruss'inequality for positive linear functionals, Periodica Math. Hung., 19, 155-167, (1998).
[3] Anwar, M., Bibi, R., Bohner, M., and Pecaric, J., Integral Inequalities on Time Scales via the Theory of Isotonic Linear Functionals, Abstract and Applied Analysis, Article ID 483595, 16 pages, (2011).
[4] Bohner, M., Peterson, A., "Dynamic equations on time scales: an introduction with applications". Birkhauser, Boston (2001).
[5] Dragomir, S., S., A survey of Jessen's type inequalities for positive functionals, RGMIA Res. Rep. Coll., 46 pp , (2011).
[6] Dragomir, S., S., A Gruss type inequality for isotonic linear functionals and applications, RGMIA Res. Rep. Coll., 10 pp , (2002).
[7] Dragomir, S. S., Some results for isotonic functionals via an inequality due to Liao, Wu and Zhao, RGMIA Res. Rep. Coll., 11 pp, (2015).
[8] Dragomir S. S., New refinements and reverses of Hermite-Hadamard inequality and applications to Young's operator inequality, Res. Rep. Coll., RGMIA, 19 (2016), Art. 42.
[9] Dragomir, S., S., Some asymmetric reverses of Young's scalar and operator inequalities with applications, RGMIA, Res. Rep. Coll., 19,(2016), Art 44.
[10] S. Furuichi, N. Minculete, Alternative reverse inequalities for Young's inequality, Journal of Mathematical Inequalities, 5, Nr. 4, 595-600, (2011).
[11] Guseinov, G. S., Integration on time scales, J. Math. Anal. Appl, 285, 107-127 (2003).
[12] Kittaneh,F., Manasrah, Y., Reverse Young and Heinz inequalities for matrices, Linear and Multilinear Algebra, 59, 9 (2011), 1031-1037.
[13] Kittaneh, F., Manasrah, Y., Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl., 361 (2010), 262-269.
[14] WH. Young, On classes of summable functions and their Fourier series, Proc. Royal Soc. London, Ser. A. 1912; 87:225-229.

Department of Mathematics, "Politehnica" University of Timisoara, P-ta. Victoriei, No.2, 300006-Timisoara

