
LOCAL EXTREME POINTS AND A YOUNG-TYPE

INEQUALITY

LOREDANA CIURDARIU

Abstract. In this paper is presented a Young-type inequality and then as an

application is given a corresponding Holder-type inequality for isotonic linear
functionals.

1. Introduction

The classical inequality of Young is

aνb1−ν < νa+ (1− ν)b,

where a and b are distinct positive real numbers and 0 < ν < 1, see [14].

In [1] are given new results which extend many generalizations of Young’s in-
equality given before. The following inequality is a refinement of the left-hand side
of a refinement of the inequality of Young proved in 2010 and 2011 by Kittaneh and
Manasrah in [12], [13]. Many generalizations and refinements of Young’s inequality
are presented also in [10], [8], [9] and references therein.

Theorem A([1]) Let λ, ν and τ be real numbers with λ ≥ 1 and 0 < ν < τ < 1.
Then (ν

τ

)λ
<
Aν(a, b)λ −Gν(a, b)λ

Aτ (a, b)λ −Gτ (a, b)λ
<

(
1− ν
1− τ

)λ
,

for all positive and distinct real numbers a and b. Moreover, both bounds are sharp.

The following important definition is given in [3], [5] and we need to recall it here
in order to help us to give new Young-type inequalities for isotonic linear functionals
in Section 3.

Let E be a nonempty set and L be a class of real-valued functions f : E → R
having the following properties:

(L1) If f, g ∈ L and a, b ∈ R, then (af + bg) ∈ L.
(L2) If f(t) = 1 for all t ∈ E, then f ∈ L.
An isotonic linear functional is a functional A : L → R having the following

properties:
(A1) If f, g ∈ L and a, b ∈ R, then A(af + bg) = aA(f) + bA(g).
(A2) If f ∈ L and f(t) ≥ 0 for all t ∈ E, then A(f) ≥ 0.
The mapping A is said to be normalised if
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(A3) A(1) = 1.

New inequalities concerning isotonic linear functionals can be also found in [7],
[3], [5], [6] and referinces therein.

2. Local extreme points and a Young-type inequality for three numbers

In this section is given a new Young-type inequalitiy for three positive numbers
which satisfies some conditions in Theorem 1 using the Lemma 1, where are stated
several conditions for finding the local extreme point for a special function.

Lemma 1. Let p1, p2, p3, p
′

1, p
′

2, p
′

3 be strictly positive real numbers which satisfies
the conditions, 1

p1
+ 1

p2
+ 1

p3
= 1, 1

p
′
1

+ 1
p
′
2

+ 1
p
′
3

= 1 and

p
′

1(1− 1

p
′
2

) 6= p1(1− 1

p2
).

(i) If p
′

1 < p1 and(
1

p
′
1

− 1

p1

)[
− 1

p2
(

1

p2
− 1) +

p
′

1

p1

1

p
′
2

(
1

p
′
2

− 1)

]
>

1

p1

(
1

p2
− 1

p
′
2

)2

.

then A(1, 1) is a local minimum point for the function

f(x, y) =
1

p1
x+

1

p2
y +

1

p3
− x

1
p1 y

1
p2 − p

′

1

p1

(
1

p
′
1

x+
1

p
′
2

y +
1

p
′
3

− x
1

p
′
1 y

1

p
′
2

)
,

defined on the interval (0,∞)× (0,∞).

(ii) If p
′

1 > p1 and(
1

p
′
1

− 1

p1

)[
− 1

p2
(

1

p2
− 1) +

p
′

1

p1

1

p
′
2

(
1

p
′
2

− 1)

]
>

1

p1

(
1

p2
− 1

p
′
2

)2

.

then A(1, 1) is a local maximum point for the function

f(x, y) =
1

p1
x+

1

p2
y +

1

p3
− x

1
p1 y

1
p2 − p

′

1

p1

(
1

p
′
1

x+
1

p
′
2

y +
1

p
′
3

− x
1

p
′
1 y

1

p
′
2

)
,

defined on the interval (0,∞)× (0,∞).

Proof. (i) We consider the function,

f(x, y) =
1

p1
x+

1

p2
y +

1

p3
− x

1
p1 y

1
p2 − p

′

1

p1

(
1

p
′
1

x+
1

p
′
2

y +
1

p
′
3

− x
1

p
′
1 y

1

p
′
2

)
,

where the numbers p1, p2, p3, p
′

1, p
′

2, p
′

3 satisfies the hypothesis and x, y are strictly
positive real number with x > 0, and y > 0.

First, it is necessary to find the stationary points of f on (0,∞)× (0,∞) and for

that we compute its first derivative, ∂f∂x and ∂f
∂y . We have,

∂f

∂x
= − 1

p1
x

1
p1

−1y
1
p2 +

1

p1
x

1

p
′
1

−1
y

1

p
′
2

and
∂f

∂y
=

1

p2
− 1

p2
x

1
p1 y

1
p2

−1 − p
′

1

p1

1

p
′
2

+
p
′

1

p1

1

p
′
2

x
1

p
′
1 y

1

p
′
2

−1
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and then we obtain the following system

(1)

 x
1
p1 y

1
p2 = x

1

p
′
1 y

1

p
′
2

1
p2

(1− x
1
p1 y

1
p2

−1) =
p
′
1

p1
1
p
′
2

(1− x
1

p
′
1 y

1

p
′
2

−1
)

Using now the hypothesis,
p
′
2

p2
− p

′
1

p1
> 0 we get from the equation,(

1− x
1
p1 y

1
p2

−1
)( 1

p2
− p

′

1

p1

1

p
′
2

)
= 0

that
x

1
p1 y

1
p2 = y,

where p1, p2 satisfy the hypothesis, being arbitrary numbers. Last equation becomes

x
1
p1 = y1−

1
p2 ,

when x, y > 0.
Therefore, the last system will be

y
p
′
1(1− 1

p
′
2

)
= yp1(1−

1
p2

)

yp1(1−
1
p2

) = y

1

p
′
2

− 1
p2

1
p1
− 1

p
′
1

Then we have 
p
′

1(1− 1
p
′
2

) = p1(1− 1
p2

)

p1(1− 1
p2

) =

1

p
′
2

− 1
p2

1
p1

− 1

p
′
1

when y 6= 1, or the solution x = y = 1. So we obtain in the second case, the
stationary point A(1, 1).

First case, when y 6= 1, it is not interesting here because our hypothesis are not
satisfied, i. e. from last system we have,

p
′

2 =
1

1− p1
p
′
1

(1− 1
p2

)

(which is already a restriction of p
′

2), and in this way the second equation of last
system in checked, but this is not our hypothesis.

We study now if A(1, 1) is an extreme point for the function f on the interval
(0,∞)×(0,∞). For that we compute the second derivative of the function and then
its hessian matrix in A(1, 1). We have,

∂2f

∂x2
= − 1

p1
(

1

p1
− 1)x

1
p1

−2y
1
p2 +

1

p1
(

1

p
′
1

− 1)x
1

p
′
1

−2
y

1

p
′
2 ,

∂2f

∂x2
(1, 1) =

1

p1

(
1

p
′
1

− 1

p1

)
,

∂2f

∂y2
= − 1

p2
(

1

p2
− 1)x

1
p1 y

1
p2

−2 +
p
′

1

p1

1

p
′
2

(
1

p
′
2

− 1)x
1

p
′
1 y

1

p
′
2

−2
,

∂2f

∂y2
(1, 1) = − 1

p2
(

1

p2
− 1) +

p
′

1

p1

1

p
′
2

(
1

p
′
2

− 1),
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∂2f

∂x∂y
= − 1

p1p2
x

1
p1

−1y
1
p2

−1 +
1

p1p
′
2

x
1

p
′
1

−1
y

1

p
′
2

−1
,

∂2f

∂x∂y
(1, 1) =

1

p1

(
1

p
′
2

− 1

p2

)
,

and also

∂2f

∂y∂x
(1, 1) =

1

p1

(
1

p
′
2

− 1

p2

)
.

Now we can write the hessian matrix in A(1, 1),

H(1, 1) =

 1
p1

(
1
p
′
1

− 1
p1

)
1
p1

(
1
p
′
2

− 1
p2

)
1
p1

(
1
p
′
2

− 1
p2

)
− 1
p2

( 1
p2
− 1) +

p
′
1

p1
1
p
′
2

( 1
p
′
2

− 1)


and if

∆1 =
1

p1

(
1

p
′
1

− 1

p1

)
> 0

and

∆2 =

(
1

p
′
1

− 1

p1

)[
− 1

p2
(

1

p2
− 1) +

p
′

1

p1

1

p
′
2

(
1

p
′
2

− 1)

]
− 1

p1

(
1

p2
− 1

p
′
2

)2

> 0

then A(1, 1) is the local extreme point for the function f defined before.
For (ii) the proof is the same

Example 1. (i) We take into account the particular case for the function f when

p1 = 5, p2 = 6, p3 = 30
19 and p

′

1 = 4, p
′

2 = 5, p
′

3 = 20
11 , see also in Figures 1 and

2. We can easily notice that the conditions from hypothesis (i) are fulfilled for the
function f , so that the point A(1, 1) is a local minimum point for f .

(ii) Now, if we replace p1 by 4 and p
′

1 by 7 in previous particular case, we can
easily see that the conditions from hypothesis (ii) are satisfied for the function f ,
so the point A(1, 1) is a local maximum point for f .

Theorem 1. Let M > 1 and p1, p2, p3, p
′

1, p
′

2, p
′

3 be positive real numbers which

satisfies the conditions, 1
p1

+ 1
p2

+ 1
p3

= 1, 1
p
′
1

+ 1
p
′
2

+ 1
p
′
3

= 1,
p
′
3

p3
> 1 >

p
′
2

p2
and

p
′

2(1− p
′
1

p1
) >

p
′
2

p2
− p

′
1

p1
> 0.

(i) If x and y are two real numbers with 1 < x < M, 1 < y < M then the
following inequality holds:

1

p1
x+

1

p2
y +

1

p3
− x

1
p1 y

1
p2 >

p
′

1

p1

(
1

p
′
1

x+
1

p
′
2

y +
1

p
′
3

− x
1

p
′
1 y

1

p
′
2

)
.

(ii) Moreover, if a, b, c are three real numbers, a > 0, b > 0, c > 0 so that
c < a < Mc and c < b < Mc then the following inequality takes place:

1

p1
a+

1

p2
b+

1

p3
c− a

1
p1 b

1
p2 c

1
p3 >

p
′

1

p1

(
1

p
′
1

a+
1

p
′
2

b+
1

p
′
3

c− a
1

p
′
1 b

1

p
′
2 c

1

p
′
3

)
.
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Figure 1. The function f(x,y) on [0, 8]× [0, 8] when p1 = 5, p2 =

6, p3 = 30
19 and p

′

1 = 4, p
′

2 = 5, p
′

3 = 20
11 .

Proof. Using Lemma 1, we know that A(1, 1) is a local minimum point for the
function f on the interval (1,M) × (1,M), which it is the interior of the close
interval [1,M ] × [1,M ]. We study how will be the function on the frontier of the
above interval. We see that the frontier of this interval from R2 is given by the sets,
{x = 1, y ∈ [1,M ]}, {x = M,y ∈ [1,M ]}, {x ∈ [1.M ], y = 1} and {x ∈ [1,M ], y =
M}.

When x = 1, y ∈ [1,M ] then

f(1, y) = y
1

p
′
2

(
p
′

2

p2
− p

′

1

p1

)
+

1

p
′
3

(
p
′

3

p3
− p

′

1

p1

)
+
p
′

1

p1
y

1

p
′
2 − y

1
p2 .

This function is increasing, as a function of variable y, from hypothesis of the
above theorem, and then f(1, 1) < f(1, y), because 1 < y. Therefore, we find that
f(1, y) > f(1, 1) = 0. Last function is increasing because its first derivative,

f
′
(1, y) =

1

p2

(
1− y

1
p2

−1
)
−p

′

1

p1

1

p
′
2

(
1− y

1

p
′
2

−1
)
>

1

p
′
2

(
p
′

2

p2
− p

′

1

p1

)(
1− y

1

p
′
2

−1
)
> 0.
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Figure 2. The function f(x,y) on [1, 8]× [1, 8] when p1 = 5, p2 =

6, p3 = 30
19 and p

′

1 = 4, p
′

2 = 5, p
′

3 = 20
11 .

Now, for y = 1, x ∈ [1,M ], we have,

f(x, 1) = 1− p
′

1

p1
− x

1
p1 +

p
′

1

p1
x

1

p
′
1 .

This function is increasing because its first derivative,

f
′
(x, 1) =

1

p1

(
x

1

p
′
1

−1
− x

1
p1

−1

)
> 0

, see hypothesis of our previous theorem. Thus we also have, f(x, 1) > f(1, 1) = 0.
If x ∈ [1,M ], y = M then we obtain,

f(x,M) = M
1

p
′
2

(
p
′

2

p2
− p

′

1

p1

)
+

1

p
′
3

(
p
′

3

p3
− p

′

1

p1

)
+
p
′

1

p1
x

1

p
′
1M

1

p
′
2 − x

1
p1M

1
p2 ,

and this function is increasing in x when x ∈ [1,M ], because

f
′
(x,M) =

1

p1

(
x

1

p
′
1

−1
M

1

p
′
2 − x

1
p1

−1M
1
p2

)
> 0.
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From here, we get,
f(x,M) > f(1,M) > 0,

and we obtained this inequality before, see the case when x = 1, y ∈ [1,M ].
Last case, when x = M, y ∈ [1,M ] we have the function,

f(M,y) = y
1

p
′
2

(
p
′

2

p2
− p

′

1

p1

)
+

1

p
′
3

(
p
′

3

p3
− p

′

1

p1

)
+
p
′

1

p1
M

1

p
′
1 y

1

p
′
2 −M

1
p1 y

1
p2 ,

which is increasing as a function of variable y, because its first derivative,

f
′
(M,y) =

1

p
′
2

(
p
′

2

p2
− p

′

1

p1

)
+
p
′

1

p1

1

p
′
2

M
1

p
′
1 y

1

p
′
2

−1
− 1

p2
M

1
p1 y

1
p2

−1 =

=
1

p
′
2

[
p
′

2

p2

(
1−M

1
p1 y

1
p2

−1
)
− p

′

1

p1

(
1−M

1

p
′
1 y

1

p
′
2

−1
)]

> 0.

We used here that
p
′
2

p2
>

p
′
1

p1
and M

1

p
′
1

− 1
p1 > 1 > y

1
p2

− 1

p
′
2 .

From the second case we get

f(M, 1) = 1− p
′

1

p1
+
p
′

1

p1
M

1

p
′
1 −M

1
p1 > 0

and then
f(M,y) > f(M, 1) > 0.

Therefore the pointA(1, 1) is the global minimum of the function f on the interval
[1,M ]× [1,M ].

Taking into account hypothesis from Lemma 1, (i) and denoting by a,
p
′
1

p1
, by b,

p
′
2

p2
and by c,

p
′
3

p3
, we get c > 1, a < b < 1.

Condition ∆2 > 0 from the proof of Lemma 1 becomes,(
p1
p
′
1

− 1

)[
−p

′

2

p2

(
p
′

2

p2
− p

′

2

)
+
p
′

1

p1

(
1− p

′

2

)]
>

(
p
′

2

p2
− 1

),
2

or (
1

a
− 1

)
[−b(b− p

′

2) + a(1− p
′

2)] > (b− 1)2

and by calculus, we have:

p
′

2(1− a) > b− a
, i. e. the condition

p
′

2

(
1− p

′

1

p1

)
>
p
′

2

p2
− p

′

1

p1

from our hypothesis.
(ii) We replace x ∈ [1,M ] by a

c and y ∈ [1,M ] by b
c and because a

c ∈ [1,M ] and
b
c ∈ [1,M ] the inequality from (i) becomes:

1

p1

a

c
+

1

p2

b

c
+

1

p3
−
(a
c

) 1
p1

(
b

c

) 1
p2

>
p
′

1

p1

[
1

p
′
1

a

c
+

1

p
′
2

b

c
+

1

p
′
3

−
(a
c

) 1

p
′
1

(
b

c

) 1
′
p2

]
and multiplying by c > 0 we get the desired inequality.
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Example 2. The particular case from Example 1 (i) satisfies the conditions of
Theorem 1 (i), and then the point A(1, 1) is the global minimum for the function f
and the inequality from Theorem 1 (i) takes place.

3. Holder-type inequality for three functions

The following result is obtained as a consequence of Theorem 1 (ii) for isotonic
linear functionals, being a Holder-type inequality in the case of three functions.

Theorem 2. Let M > 1 and p1, p2, p3, p
′

1, p
′

2, p
′

3 be positive real numbers which

satisfies the conditions, 1
p1

+ 1
p2

+ 1
p3

= 1, 1
p
′
1

+ 1
p
′
2

+ 1
p
′
3

= 1,
p
′
3

p3
> 1 >

p
′
2

p2

and p
′

2(1 − p
′
1

p1
) >

p
′
2

p2
− p

′
1

p1
> 0, L satisfying conditions L1, L2 and A satisfy-

ing A1, A2 on the set E. Considering the nonnegative functions f, g, h with

fgh, f
p1

p
′
1 g

p2

p
′
2 h

p3

p
′
3 , fp1 , gp2 , hp3 ∈ L and A(fp1) > 0, A(gp2) > 0, A((hp3) > 0, if

in addition, hp3

A(hp3 ) <
fp1

A(fp1 ) < M hp3

A(hp3 ) and hp3

A(hp3 ) <
gp2

A(gp2 ) < M hp3

A(hp3 ) we will

have,

1− A(fgh)

A
1
p1 (fp1)A

1
p2 (gp2)A

1
p3 (hp3)

>
p
′

1

p1

1− A(f
p1

p
′
1 g

p2

p
′
2 h

p3

p
′
3 )

A
1

p
′
1 (fp1)A

1

p
′
2 (gp2)A

1

p
′
3 (hp3)

 .

Proof. We use inequality from Theorem 1 (ii), for a = fp1

A(fp1 ) , b = gp2

A(gp2 ) and

c = hp3

A(hp3 ) and we have

1

p1

fp1

A(fp1)
+

1

p2

gp2

A(gp2)
+

1

p3

hp3

A(hp3)
− fgh

A
1
p1 (fp1)A

1
p2 (gp2)A

1
p3 (hp3)

>

>
p
′

1

p1

 1

p
′
1

fp1

A(fp1)
+

1

p
′
2

gp2

A(gp2)
+

1

p
′
3

hp3

A(hp3)
− f

p1

p
′
1 g

p2

p
′
2 h

p3

p
′
3

A
1
′
p1 (fp1)A

1

p
′
2 (gp2)A

1

p
′
3 (hp3)

 .

Now using hypothesis and condition A2, we get,

1

p1

A(fp1)

A(fp1)
+

1

p2

A(gp2)

A(gp2)
+

1

p3

A(hp3)

A(hp3)
− A(fgh)

A
1
p1 (fp1)A

1
p2 (gp2)A

1
p3 (hp3)

>

>
p
′

1

p1

 1

p
′
1

A(fp1)

A(fp1)
+

1

p
′
2

A(gp2)

A(gp2)
+

1

p
′
3

A(hp3)

A(hp3)
− A(f

p1

p
′
1 g

p2

p
′
2 h

p3

p
′
3 )

A
1
′
p1 (fp1)A

1

p
′
2 (gp2)A

1

p
′
3 (hp3)

 ,

or by calculus we obtain the desired inequality.

As a particular case, when instead of the isotonic linear functional, A(f) we

consider, as in [3],
∫ b
a
f(x)dx, Theorem 2 becomes:
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Remark 1. Let M > 1 and p1, p2, p3, p
′

1, p
′

2, p
′

3 be positive real numbers which

satisfies the conditions, 1
p1

+ 1
p2

+ 1
p3

= 1, 1
p
′
1

+ 1
p
′
2

+ 1
p
′
3

= 1,
p
′
3

p3
> 1 >

p
′
2

p2
and

p
′

2(1− p
′
1

p1
) >

p
′
2

p2
− p

′
1

p1
> 0,

Considering the continuous functions f, g, h > 0 on the interval [a, b] with and
hp3 (x)∫ b

a
hp3 (x)dx

< fp1 (x)∫ b
a
fp1 (x)dx

< M hp3 (x)∫ b
a
hp3 (x)

and hp3 (xdx)∫ b
a
hp3 (x)dx

< gp2 (x)∫ b
a
gp2 (x)dx

< M hp3 (x)∫ b
a
hp3 (x)dx

we will have,

1−
∫ b
a
f(x)g(x)h(x)dx

(
∫ b
a
fp1(x)dx)

1
p1 (
∫ b
a
gp2(x)dx)

1
p2 (
∫ b
a
hp3(x)dx)

1
p3

>

>
p
′

1

p1

1−
∫ b
a
f

p1

p
′
1 (x)g

p2

p
′
2 (x)h

p3

p
′
3 (x)dx

(
∫ b
a
fp1(x)dx)

1

p
′
1 (
∫ b
a
gp2(x)dx)

1

p
′
2 (
∫ b
a
hp3(x)dx)

1

p
′
3

 .
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