INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR L-BOUNDED NORM WEAK CONVEX MAPPINGS

S. S. DRAGOMIR ${ }^{1,2}$

Abstract

In this paper we introduce a class of functions that extends the concept of Lipschitzian function and called them L-bounded norm weak convex functions. Integral inequalities of Hermite-Hadamard type are obtained and applications for discrete inequalities of Jensen type are provided as well.

1. Introduction

Let $\mathcal{B}(H)$ be the Banach algebra of bounded linear operators on a complex Hilbert space H. The absolute value of an operator A is the positive operator $|A|$ defined as $|A|:=\left(A^{*} A\right)^{1 / 2}$.

One of the central problems in perturbation theory is to find bounds for

$$
\|f(A)-f(B)\|
$$

in terms of $\|A-B\|$ for different classes of measurable functions f for which the function of operator can be defined. For some results on this topic, see [5], [34] and the references therein.

It is known that [4] in the infinite-dimensional case the map $f(A):=|A|$ is not Lipschitz continuous on $\mathcal{B}(H)$ with the usual operator norm, i.e. there is no constant $L>0$ such that

$$
\||A|-|B|\| \leq L\|A-B\|
$$

for any $A, B \in \mathcal{B}(H)$.
However, as shown by Farforovskaya in [32], [33] and Kato in [39], the following inequality holds

$$
\begin{equation*}
\||A|-|B|\| \leq \frac{2}{\pi}\|A-B\|\left(2+\log \left(\frac{\|A\|+\|B\|}{\|A-B\|}\right)\right) \tag{1.1}
\end{equation*}
$$

for any $A, B \in \mathcal{B}(H)$ with $A \neq B$.
If the operator norm is replaced with Hilbert-Schmidt norm $\|C\|_{H S}:=\left(\operatorname{tr} C^{*} C\right)^{1 / 2}$ of an operator C, then the following inequality is true [2]

$$
\begin{equation*}
\||A|-|B|\|_{H S} \leq \sqrt{2}\|A-B\|_{H S} \tag{1.2}
\end{equation*}
$$

for any $A, B \in \mathcal{B}(H)$.
The coefficient $\sqrt{2}$ is best possible for a general A and B. If A and B are restricted to be selfadjoint, then the best coefficient is 1 .

[^0]It has been shown in [4] that, if A is an invertible operator, then for all operators B in a neighborhood of A we have

$$
\begin{equation*}
\||A|-|B|\| \leq a_{1}\|A-B\|+a_{2}\|A-B\|^{2}+O\left(\|A-B\|^{3}\right) \tag{1.3}
\end{equation*}
$$

where

$$
a_{1}=\left\|A^{-1}\right\|\|A\| \text { and } a_{2}=\left\|A^{-1}\right\|+\left\|A^{-1}\right\|^{3}\|A\|^{2}
$$

In [3] the author also obtained the following Lipschitz type inequality

$$
\begin{equation*}
\|f(A)-f(B)\| \leq f^{\prime}(a)\|A-B\| \tag{1.4}
\end{equation*}
$$

where f is an operator monotone function on $(0, \infty)$ and $A, B \geq a I_{H}>0$.
Let $\left(X ;\|\cdot\|_{X}\right)$ and $\left(Y ;\|\cdot\|_{Y}\right)$ be two Banach spaces over the complex number field \mathbb{C}. Let C be a convex set in X. For any mapping $F: C \subset X \rightarrow Y$ we can consider the associated functions $\Phi_{F, x, y, \lambda}, \Psi_{F, x, y, \lambda}:[0,1] \rightarrow Y$, where $x, y \in C, \lambda \in[0,1]$, defined by [25]

$$
\begin{align*}
\Phi_{F, x, y, \lambda}(t):=(1-\lambda) F[(1-t)((1-\lambda) & x+\lambda y)+t y] \tag{1.5}\\
& +\lambda F[(1-t) x+t((1-\lambda) x+\lambda y)]
\end{align*}
$$

and

$$
\begin{align*}
\Psi_{F, x, y, \lambda}(t):=(1-\lambda) F[(1-t)((1- & \lambda) x+\lambda y)+t y] \tag{1.6}\\
& +\lambda F[t x+(1-t)((1-\lambda) x+\lambda y)]
\end{align*}
$$

We say that the mapping $F: B \subset X \rightarrow Y$ is Lipschitzian with the constant $L>0$ on the subset B of X if

$$
\begin{equation*}
\|F(x)-F(y)\|_{Y} \leq L\|x-y\|_{X} \text { for any } x, y \in B \tag{1.7}
\end{equation*}
$$

The following result holds [25]:
Theorem 1. Let $F: C \subset X \rightarrow Y$ be a Lipschitzian mapping with the constant $L>0$ on the convex subset C of X. If $x, y \in C$, then we have

$$
\begin{align*}
& \left\|\Lambda_{F, x, y, \lambda}(t)-\int_{0}^{1} F[s y+(1-s) x] d s\right\|_{Y} \tag{1.8}\\
& \quad \leq 2 L\left[\frac{1}{4}+\left(t-\frac{1}{2}\right)^{2}\right]\left[\frac{1}{4}+\left(\lambda-\frac{1}{2}\right)^{2}\right]\|x-y\|_{X}
\end{align*}
$$

for any $t \in[0,1]$ and $\lambda \in[0,1]$, where $\Lambda_{F, x, y, \lambda}=\Phi_{F, x, y, \lambda}$ or $\Lambda_{F, x, y, \lambda}=\Psi_{F, x, y, \lambda}$.
If we take in (1.8) $\Lambda_{F, x, y, \lambda}=\Phi_{F, x, y, \lambda}, \lambda=\frac{1}{2}$, then we get

$$
\begin{align*}
& \| \frac{1}{2}\left(F\left[(1-t) \frac{x+y}{2}+t y\right]+F\left[(1-t) x+t \frac{x+y}{2}\right]\right) \tag{1.9}\\
& \quad-\int_{0}^{1} F[s y+(1-s) x] d s\left\|\leq \frac{1}{2} L\left[\frac{1}{4}+\left(t-\frac{1}{2}\right)^{2}\right]\right\| x-y \|_{X}
\end{align*}
$$

for any $x, y \in C$ and $t \in[0,1]$.

If we take in (1.8) $\Lambda_{F, x, y, \lambda}=\Psi_{F, x, y, \lambda}, \lambda=\frac{1}{2}$, then we get

$$
\begin{align*}
& \| \frac{1}{2}\left(F\left[(1-t) \frac{x+y}{2}+t y\right]+F\left[t x+(1-t) \frac{x+y}{2}\right]\right) \tag{1.10}\\
& \quad-\int_{0}^{1} F[s y+(1-s) x] d s\left\|_{Y} \leq \frac{1}{2} L\left[\frac{1}{4}+\left(t-\frac{1}{2}\right)^{2}\right]\right\| x-y \|_{X}
\end{align*}
$$

for any $t \in[0,1]$ and $x, y \in C$.
We also have the simpler inequalities

$$
\begin{array}{r}
\left\|\frac{1}{2}\left[F\left(\frac{3 x+y}{4}\right)+F\left(\frac{x+3 y}{4}\right)\right]-\int_{0}^{1} F[s y+(1-s) x] d s\right\|_{Y} \\
\leq \frac{1}{8} L\|x-y\|_{X} \\
\left\|F\left(\frac{x+y}{2}\right)-\int_{0}^{1} F[s y+(1-s) x] d s\right\|_{Y} \leq \frac{1}{4} L\|x-y\|_{X} \tag{1.12}
\end{array}
$$

and

$$
\begin{equation*}
\left\|\frac{1}{2}[F(x)+F(y)]-\int_{0}^{1} F[s y+(1-s) x] d s\right\|_{Y} \leq \frac{1}{4} L\|x-y\|_{X} \tag{1.13}
\end{equation*}
$$

for any $x, y \in C$. The constants $\frac{1}{8}$ and $\frac{1}{4}$ are best possible.
The inequalities (1.12) and (1.13) are the corresponding versions of HermiteHadamard inequalities for Lipschitzian functions. The scalar cases were obtained in [12] and [43]. For Hermite-Hadamard's type inequalities, see for instance [10], [12], [13], [35], [37], [38], [40], [42], [43], [46], [47], [48], [49], [50] and the references therein.

From (1.8) we also have the Ostrowski's inequality

$$
\begin{align*}
& \| F[t y+(1-t) x]-\int_{0}^{1} F[s y+(1-s) x] d s \|_{Y} \tag{1.14}\\
& \leq L\left[\frac{1}{4}+\left(t-\frac{1}{2}\right)^{2}\right]\|x-y\|_{X}
\end{align*}
$$

for any $t \in[0,1]$ and $x, y \in C$. For Ostrowski's type inequalities for the Lebesgue integral, see [1], [8]-[9] and [15]-[30]. Inequalities for the Riemann-Stieltjes integral may be found in [17], [19] while the generalization for isotonic functionals was provided in [20]. For the case of functions of self-adjoint operators on complex Hilbert spaces, see the recent monograph [23].

Motivated by the above results, we introduce here a class of functions that extends the concept of Lipschitzian function and called them L-bounded norm weak convex functions. Integral inequalities of Hermite-Hadamard type are obtained and applications for discrete inequalities of Jensen type are provided as well.

2. L-Bounded Norm Weak Convex Mappings

Let $\left(X ;\|\cdot\|_{X}\right)$ and $\left(Y ;\|\cdot\|_{Y}\right)$ be two normed linear spaces over the complex number field \mathbb{C}. Let C be a convex set in X. We consider the following class of functions:

Definition 1. A mapping $F: C \subset X \rightarrow Y$ is called L-bounded norm weak convex, for some given $L>0$, if it satisfies the condition

$$
\begin{equation*}
\|(1-\lambda) F(x)+\lambda F(y)-F((1-\lambda) x+\lambda y)\|_{Y} \leq L \lambda(1-\lambda)\|x-y\|_{X} \tag{2.1}
\end{equation*}
$$ for any $x, y \in C$ and $\lambda \in[0,1]$. For simplicity, we denote this by $F \in \mathcal{B N} \mathcal{W}_{L}(C)$.

We have from (2.1) for $\lambda=\frac{1}{2}$ the Jensen's inequality

$$
\begin{equation*}
\left\|\frac{F(x)+F(y)}{2}-F\left(\frac{x+y}{2}\right)\right\|_{Y} \leq \frac{1}{4} L\|x-y\|_{X} \tag{2.2}
\end{equation*}
$$

for any $x, y \in C$.
We observe that $\mathcal{B N} \mathcal{W}_{L}(C)$ is a convex subset in the linear space of all functions defined on C and with values in Y.

The following simple result holds:
Lemma 1. If the function $F: C \subset X \rightarrow Y$ is Lipschitzian with the constant $K>0$, then $F \in \mathcal{B N} \mathcal{W}_{L}(C)$ with $L=2 K$.
Proof. Since F is Lipschitzian, we have

$$
\|F((1-\lambda) x+\lambda y)-F(x)\|_{Y} \leq K \lambda\|x-y\|_{X}
$$

and

$$
\|F((1-\lambda) x+\lambda y)-F(y)\|_{Y} \leq K(1-\lambda)\|x-y\|_{X}
$$

for any $x, y \in C$ and $\lambda \in[0,1]$.
If we multiply the first inequality by $1-\lambda$ and the second inequality by λ and add these inequalities, we get

$$
\begin{aligned}
(1-\lambda)\|F((1-\lambda) x+\lambda y)-F(x)\|_{Y}+\lambda \| F((1-\lambda) & x+\lambda y)-F(y) \|_{Y} \\
\leq & 2 K \lambda(1-\lambda)\|x-y\|_{X}
\end{aligned}
$$

for any $x, y \in C$ and $\lambda \in[0,1]$.
We also have

$$
\begin{array}{r}
(1-\lambda)\|F((1-\lambda) x+\lambda y)-F(x)\|_{Y}+\lambda\|F((1-\lambda) x+\lambda y)-F(y)\|_{Y} \\
\geq\|(1-\lambda) F((1-\lambda) x+\lambda y)-(1-\lambda) F(x)+\lambda F((1-\lambda) x+\lambda y)-\lambda F(y)\|_{Y} \\
=\|F((1-\lambda) x+\lambda y)-(1-\lambda) F(x)-\lambda F(y)\|
\end{array}
$$

which proves that

$$
\|(1-\lambda) F(x)+\lambda F(y)-F((1-\lambda) x+\lambda y)\| \leq 2 K \lambda(1-\lambda)\|x-y\|_{X}
$$

for any $x, y \in C$ and $\lambda \in[0,1]$, namely $F \in \mathcal{B N} \mathcal{W}_{L}(C)$ with $L=2 K$.
We observe also that, by the triangle inequality, we have

$$
\begin{align*}
\|F((1-\lambda) x+\lambda y)\|_{Y}- & \|(1-\lambda) F(x)+\lambda F(y)\|_{Y} \tag{2.3}\\
& \leq\|(1-\lambda) F(x)+\lambda F(y)-F((1-\lambda) x+\lambda y)\|_{Y}
\end{align*}
$$

and by (2.1) we get

$$
\|F((1-\lambda) x+\lambda y)\|_{Y}-\|(1-\lambda) F(x)+\lambda F(y)\|_{Y} \leq L \lambda(1-\lambda)\|x-y\|_{X}
$$

which, again, by the triangle inequality gives

$$
\begin{align*}
& \|F((1-\lambda) x+\lambda y)\|_{Y} \tag{2.4}\\
& \quad \leq L \lambda(1-\lambda)\|x-y\|_{X}+(1-\lambda)\|F(x)\|_{Y}+\lambda\|F(y)\|_{Y}
\end{align*}
$$

for any $x, y \in C$ and $\lambda \in[0,1]$.
Now, if the function $t \mapsto\|F((1-\lambda) x+\lambda y)\|_{Y}$, for some $x, y \in C$, is Lebesgue integrable on $[0,1]$, then by taking the integral in (2.4) we get

$$
\begin{align*}
\int_{0}^{1}\|F((1-\lambda) x+\lambda y)\|_{Y} d \lambda & \leq L\|x-y\|_{X} \int_{0}^{1} \lambda(1-\lambda) d \lambda \tag{2.5}\\
& +\|F(x)\|_{Y} \int_{0}^{1}(1-\lambda) d \lambda+\|F(y)\|_{Y} \int_{0}^{1} \lambda d \lambda
\end{align*}
$$

and since

$$
\int_{0}^{1} \lambda(1-\lambda) d \lambda=\frac{1}{6}, \int_{0}^{1}(1-\lambda) d \lambda=\int_{0}^{1} \lambda d \lambda=\frac{1}{2}
$$

then we get from (2.5) that

$$
\begin{equation*}
\int_{0}^{1}\|F((1-\lambda) x+\lambda y)\|_{Y} d \lambda \leq \frac{1}{6} L\|x-y\|_{X}+\frac{1}{2}\left[\|F(x)\|_{Y}+\|F(y)\|_{Y}\right] \tag{2.6}
\end{equation*}
$$

If we assume continuity for the function F on C in the norm topology of $\left(X ;\|\cdot\|_{X}\right)$, then the inequality (2.6) holds for any $x, y \in C$. Moreover, if we assume that $\left(Y ;\|\cdot\|_{Y}\right)$ is a Banach space and F is continuos on C, then we have the generalized triangle inequality

$$
\left\|\int_{0}^{1} F((1-\lambda) x+\lambda y) d \lambda\right\|_{Y} \leq \int_{0}^{1}\|F((1-\lambda) x+\lambda y)\|_{Y} d \lambda
$$

and by (2.6) we get

$$
\begin{equation*}
\left\|\int_{0}^{1} F((1-\lambda) x+\lambda y) d \lambda\right\|_{Y} \leq \frac{1}{6} L\|x-y\|_{X}+\frac{1}{2}\left[\|F(x)\|_{Y}+\|F(y)\|_{Y}\right] \tag{2.7}
\end{equation*}
$$

for any $x, y \in C$.
We have the following results:
Theorem 2. Let $\left(X ;\|\cdot\|_{X}\right)$ and $\left(Y ;\|\cdot\|_{Y}\right)$ be two normed linear spaces over the complex number field \mathbb{C} with Y complete. Assume that the mapping $F: C \subset X \rightarrow Y$ is continuous on the convex set C in the norm topology. If $F \in \mathcal{B N} \mathcal{W}_{L}(C)$ for some $L>0$, then we have

$$
\begin{equation*}
\left\|\frac{F(x)+F(y)}{2}-\int_{0}^{1} F((1-\lambda) x+\lambda y) d \lambda\right\|_{Y} \leq \frac{1}{6} L\|x-y\|_{X} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\int_{0}^{1} F((1-\lambda) x+\lambda y) d \lambda-F\left(\frac{x+y}{2}\right)\right\|_{Y} \leq \frac{1}{8} L\|x-y\|_{X} \tag{2.9}
\end{equation*}
$$

for any $x, y \in C$.
The constants $\frac{1}{6}$ and $\frac{1}{8}$ are best possible.

Proof. From (2.1) we have successively

$$
\begin{aligned}
\| \int_{0}^{1}[(1-\lambda) F(x)+\lambda F(y)-F & ((1-\lambda) x+\lambda y)] d \lambda \|_{Y} \\
\leq \int_{0}^{1} \|(1-\lambda) F(x) & +\lambda F(y)-F((1-\lambda) x+\lambda y) \|_{Y} d \lambda \\
& \leq L\|x-y\|_{X} \int_{0}^{1} \lambda(1-\lambda) d \lambda=\frac{1}{6} L\|x-y\|_{X}
\end{aligned}
$$

which produces the desired result (2.8).
Utilising (2.2) we have

$$
\begin{align*}
& \left\|\frac{F((1-\lambda) x+\lambda y)+F(\lambda x+(1-\lambda) y)}{2}-F\left(\frac{x+y}{2}\right)\right\|_{Y} \tag{2.10}\\
& \quad \leq \frac{1}{4} L\|(1-\lambda) x+\lambda y-\lambda x-(1-\lambda) y\|_{X}=\frac{1}{2} K\left|\lambda-\frac{1}{2}\right|\|x-y\|_{X}
\end{align*}
$$

for any $x, y \in C$ and $\lambda \in[0,1]$.
Integrating in (2.10) we get

$$
\begin{align*}
& \left\|\int_{0}^{1}\left[\frac{F((1-\lambda) x+\lambda y)+F(\lambda x+(1-\lambda) y)}{2}-F\left(\frac{x+y}{2}\right)\right] d \lambda\right\|_{Y} \tag{2.11}\\
& \leq \int_{0}^{1}\left\|\frac{F((1-\lambda) x+\lambda y)+F(\lambda x+(1-\lambda) y)}{2}-F\left(\frac{x+y}{2}\right)\right\|_{Y} d \lambda \\
& \quad \leq \frac{1}{2} K\|x-y\|_{X} \int_{0}^{1}\left|\lambda-\frac{1}{2}\right| d \lambda=\frac{1}{8} K\|x-y\|_{X}
\end{align*}
$$

and since

$$
\int_{0}^{1} F((1-\lambda) x+\lambda y) d \lambda=\int_{0}^{1} F(\lambda x+(1-\lambda) y) d \lambda
$$

then from (2.11) we get (2.9).
Now, consider the function $F_{0}: H \rightarrow \mathbb{R}, F_{0}(x)=\|x\|^{2}$ where $(H,\langle.,\rangle$.$) is a$ complex inner product space. If $x, y \in H$ and $\lambda \in[0,1]$, then

$$
\begin{aligned}
& (1-\lambda) F_{0}(x)+\lambda F_{0}(y)-F_{0}((1-\lambda) x+\lambda y) \\
& \quad=(1-\lambda)\|x\|^{2}+\lambda\|y\|^{2}-\|(1-\lambda) x+\lambda y\|^{2} \\
& =(1-\lambda)\|x\|^{2}+\lambda\|y\|^{2}-(1-\lambda)^{2}\|x\|^{2}-2(1-\lambda) \lambda \operatorname{Re}\langle x, y\rangle-\lambda^{2}\|y\|^{2} \\
& \quad=(1-\lambda) \lambda\left[\|x\|^{2}-2 \operatorname{Re}\langle x, y\rangle+\|y\|^{2}\right]=(1-\lambda) \lambda\|x-y\|^{2} .
\end{aligned}
$$

Consider C_{0} a convex subset of H such that $\|x-y\| \leq 1$ for any $x, y \in C$. For instance $C_{0}=B\left(0, \frac{1}{2}\right)$ is the closed ball centered in 0 and with a radius $\frac{1}{2}$. Then for all $x, y \in B\left(0, \frac{1}{2}\right)$ we have $\|x-y\| \leq\|x\|+\|y\| \leq \frac{1}{2}+\frac{1}{2}=1$.

Therefore, if we consider $F_{0}(x)=\|x\|^{2}$ defined on $C_{0}=B\left(0, \frac{1}{2}\right)$, we have

$$
0 \leq(1-\lambda) F_{0}(x)+\lambda F_{0}(y)-F_{0}((1-\lambda) x+\lambda y) \leq(1-\lambda) \lambda\|x-y\|
$$

which shows that $F_{0} \in \mathcal{B N} \mathcal{W}_{L}\left(C_{0}\right)$ with $L=1$.

We have

$$
\begin{aligned}
& \int_{0}^{1} F_{0}((1-\lambda) x+\lambda y) d \lambda=\int_{0}^{1}\|(1-\lambda) x+\lambda y\|^{2} d \lambda \\
& =\int_{0}^{1}\left[(1-\lambda)^{2}\|x\|^{2}+2(1-\lambda) \lambda \operatorname{Re}\langle x, y\rangle+\lambda^{2}\|y\|^{2}\right] d \lambda \\
& =\frac{1}{3}\left[\|x\|^{2}+\operatorname{Re}\langle x, y\rangle+\|y\|^{2}\right]
\end{aligned}
$$

for any $x, y \in H$.
Therefore

$$
\begin{aligned}
\frac{F_{0}(x)+F_{0}(y)}{2} & -\int_{0}^{1} F_{0}((1-\lambda) x+\lambda y) d \lambda \\
& =\frac{1}{2}\left[\|x\|^{2}+\|y\|^{2}\right]-\frac{1}{3}\left[\|x\|^{2}+\operatorname{Re}\langle x, y\rangle+\|y\|^{2}\right]=\frac{1}{6}\|x-y\|^{2} .
\end{aligned}
$$

Now, assume that the inequality (2.8) holds with a constant $A>0$, namely

$$
\left\|\frac{F(x)+F(y)}{2}-\int_{0}^{1} F((1-\lambda) x+\lambda y) d \lambda\right\|_{Y} \leq A L\|x-y\|_{X}
$$

then by taking $F_{0} \in \mathcal{B N} \mathcal{W}_{L}\left(C_{0}\right)$ with $L=1$ defined above, we get

$$
\frac{1}{6}\|x-y\|^{2} \leq A\|x-y\|_{X}
$$

namely

$$
\begin{equation*}
\frac{1}{6}\|x-y\| \leq A \tag{2.12}
\end{equation*}
$$

If $e \in H$ with $\|e\|=1$, then $x=\frac{1}{2} e$ and $y=-\frac{1}{2} e \in B\left(0, \frac{1}{2}\right)$ giving that $x-y=e$ and by (2.12) we get $A \geq \frac{1}{6}$.

Now, consider the function $F_{0}: X \rightarrow[0, \infty), F_{0}(x)=\left\|x-\frac{a+b}{2}\right\|$, with $a, b \in X$ with $a \neq b$. Then

$$
\left|F_{0}(x)-F_{0}(y)\right|=\left\lvert\,\left\|x-\frac{a+b}{2}\right\|-\left\|y-\frac{a+b}{2}\right\|\|\leq\| x-y\right. \|
$$

for any $x, y \in X$, which shows that F_{0} is Lipschitzian with the constant $K=1$.
By utilising Lemma 1 we conclude that $F_{0} \in \mathcal{B N} \mathcal{W}_{L}(C)$ with $L=2$.
We have
$\int_{0}^{1} F_{0}((1-\lambda) a+\lambda b) d \lambda-F_{0}\left(\frac{a+b}{2}\right)=\int_{0}^{1}\left\|(1-\lambda) a+\lambda b-\frac{a+b}{2}\right\| d \lambda=\frac{1}{4}\|b-a\|$,
which shows that the inequality (2.9) holds with equality.

3. Related Inequalities

We have the following result as well:
Theorem 3. Let $\left(X ;\|\cdot\|_{X}\right)$ and $\left(Y ;\|\cdot\|_{Y}\right)$ be two normed linear spaces over the complex number field \mathbb{C} with Y complete. Assume that the mapping $F: C \subset X \rightarrow Y$
is continuous on the convex set C in the norm topology. If $F \in \mathcal{B N} \mathcal{W}_{L}(C)$ for some $L>0$, then we have

$$
\begin{align*}
\| \int_{0}^{1} F(u y+(1-u) x) d u-\frac{1}{2 \lambda-1} \int_{1-\lambda}^{\lambda} F(s x & +(1-s) y) d s \|_{F} \tag{3.1}\\
& \leq \frac{1}{2} L \lambda(1-\lambda)\|y-x\|_{X}
\end{align*}
$$

for any $\lambda \in[0,1], \lambda \neq \frac{1}{2}$ and $x, y \in C$.
Proof. Since $F \in \mathcal{B N} \mathcal{W}_{L}(C)$ for $K>0$, then

$$
\begin{equation*}
\|(1-\lambda) F(u)+\lambda F(v)-F((1-\lambda) u+\lambda v)\|_{Y} \leq L \lambda(1-\lambda)\|u-v\|_{X} \tag{3.2}
\end{equation*}
$$

for any $u, v \in C$ and $\lambda \in[0,1]$.
Let $t \in[0,1]$ and for $x, y \in C$, take

$$
u=(1-t)((1-\lambda) x+\lambda y)+t y, v=t x+(1-t)((1-\lambda) x+\lambda y) \in C
$$

in (3.2) to get

$$
\begin{align*}
& \quad \|(1-\lambda) F((1-t)((1-\lambda) x+\lambda y)+t y) \tag{3.3}\\
& \quad+\lambda F(t x+(1-t)((1-\lambda) x+\lambda y)) \\
& -F((1-\lambda)[(1-t)((1-\lambda) x+\lambda y)+t y]+\lambda[t x+(1-t)((1-\lambda) x+\lambda y)]) \|_{Y} \\
& \leq L \lambda(1-\lambda)\|(1-t)((1-\lambda) x+\lambda y)+t y-[t x+(1-t)((1-\lambda) x+\lambda y)]\|_{X}
\end{align*}
$$

Observe that

$$
\begin{gathered}
(1-\lambda)[(1-t)((1-\lambda) x+\lambda y)+t y]+\lambda[t x+(1-t)((1-\lambda) x+\lambda y)] \\
=(1-\lambda)(1-t)((1-\lambda) x+\lambda y)+(1-\lambda) t y \\
\quad+\lambda t x+\lambda(1-t)((1-\lambda) x+\lambda y) \\
=(1-t)((1-\lambda) x+\lambda y)+(1-\lambda) t y+\lambda t x \\
\quad=[(1-t)(1-\lambda)+\lambda t] x+[(1-t) \lambda+(1-\lambda) t] y
\end{gathered}
$$

and

$$
\begin{aligned}
& (1-t)((1-\lambda) x+\lambda y)+t y-[t x+(1-t)((1-\lambda) x+\lambda y)] \\
= & (1-t)(1-\lambda) x+(1-t) \lambda y+t y-t x-(1-t)(1-\lambda) x-(1-t) \lambda y=t(y-x) .
\end{aligned}
$$

Then by (3.3) we have

$$
\begin{align*}
& \|(1-\lambda) F((1-t)((1-\lambda) x+\lambda y)+t y) \tag{3.4}\\
& \quad+\lambda F(t x+(1-t)((1-\lambda) x+\lambda y)) \\
& -F([(1-t)(1-\lambda)+\lambda t] x+[(1-t) \lambda+ \\
& (1-\lambda) t] y) \|_{Y} \\
&
\end{align*}
$$

for any $t, \lambda \in[0,1]$ and $x, y \in C$.

Integrating the inequality (3.4) over t on $[0,1]$ and using the generalized triangle inequality for norms and integrals, we get

$$
\begin{align*}
& \|(1-\lambda) \int_{0}^{1} F((1-t)((1-\lambda) x+\lambda y)+t y) d t \tag{3.5}\\
& +\lambda \int_{0}^{1} F(t x+(1-t)((1-\lambda) x+\lambda y)) d t \\
& -\int_{0}^{1} F([(1-t)(1-\lambda)+\lambda t] x+[(1-t) \lambda+(1-\lambda) t] y) d t \|_{Y} \\
& \leq \frac{1}{2} L \lambda(1-\lambda)\|y-x\|_{X},
\end{align*}
$$

for any $\lambda \in[0,1]$ and $x, y \in C$.
Observe that

$$
\begin{align*}
\int_{0}^{1} F[(1-t)(\lambda y+(1-\lambda) x) & +t y] d t \tag{3.6}\\
& =\int_{0}^{1} F[((1-t) \lambda+t) y+(1-t)(1-\lambda) x] d t
\end{align*}
$$

and

$$
\begin{align*}
& \int_{0}^{1} F(t x+(1-t)((1-\lambda) x+\lambda y)) d t \tag{3.7}\\
& \quad=\int_{0}^{1} F((1-t) x+t((1-\lambda) x+\lambda y)) d t=\int_{0}^{1} F[t \lambda y+(1-\lambda t) x] d t
\end{align*}
$$

If we make the change of variable $u:=(1-t) \lambda+t$ then we have $1-u=$ $(1-t)(1-\lambda)$ and $d u=(1-\lambda) d u$. Then

$$
\int_{0}^{1} F[((1-t) \lambda+t) y+(1-t)(1-\lambda) x] d t=\frac{1}{1-\lambda} \int_{\lambda}^{1} F[u y+(1-u) x] d u
$$

If we make the change of variable $u:=\lambda t$ then we have $d u=\lambda d t$ and

$$
\int_{0}^{1} F[t \lambda y+(1-\lambda t) x] d t=\frac{1}{\lambda} \int_{0}^{\lambda} F[u y+(1-u) x] d u
$$

Therefore

$$
\begin{aligned}
& (1-\lambda) \int_{0}^{1} F[(1-t)(\lambda y+(1-\lambda) x)+t y] d t \\
& +\lambda \int_{0}^{1} F[t(\lambda y+(1-\lambda) x)+(1-t) x] d t \\
= & \int_{\lambda}^{1} F[u y+(1-u) x] d u+\int_{0}^{\lambda} F[u y+(1-u) x] d u=\int_{0}^{1} F[u y+(1-u) x] d u
\end{aligned}
$$

and we have the simple equality

$$
\begin{align*}
& (1-\lambda) \int_{0}^{1} F((1-t)((1-\lambda) x+\lambda y)+t y) d t \tag{3.8}\\
& \quad+\lambda \int_{0}^{1} F(t x+(1-t)((1-\lambda) x+\lambda y)) d t=\int_{0}^{1} F[u y+(1-u) x] d u
\end{align*}
$$

for any $\lambda \in[0,1]$ and $x, y \in C$.
Consider now the integral

$$
\int_{0}^{1} F([(1-t)(1-\lambda)+\lambda t] x+[(1-t) \lambda+(1-\lambda) t] y) d t
$$

Put

$$
s=(1-t)(1-\lambda)+\lambda t=1-\lambda+(2 \lambda-1) t
$$

Then

$$
1-s=(1-t) \lambda+(1-\lambda) t
$$

If $\lambda \neq \frac{1}{2}$, then $s=1-\lambda+(2 \lambda-1) t$ is a change of variable with $d t=\frac{1}{2 \lambda-1}$ and we have

$$
\begin{aligned}
\int_{0}^{1} F([(1-t)(1-\lambda)+\lambda t] x+[(1-t) \lambda & +(1-\lambda) t] y) d t \\
& =\frac{1}{2 \lambda-1} \int_{1-\lambda}^{\lambda} F(s x+(1-s) y) d s
\end{aligned}
$$

Now, making use of (3.5) we get the desired result (3.1).
Remark 1. We observe that for $\lambda \rightarrow \frac{1}{2}$ we recapture from (3.1) the inequality (2.9). If we take in (3.1) $\lambda=\frac{3}{4}$, then we get

$$
\begin{align*}
\| \int_{0}^{1} F[u y+(1-u) x] d u-2 \int_{1 / 4}^{3 / 4} F(s x+(1-s) y) d s & \tag{3.9}\\
& \leq \frac{3}{32} L\|y-x\|_{X}
\end{align*}
$$

4. Applications for Gâteaux Differentiable Functions

Following [11, p. 59], let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be two normed linear spaces, Ω an open subset of X and $f: \Omega \rightarrow Y$. If $a \in \Omega, u \in X \backslash\{0\}$ and if the limit

$$
\lim _{t \rightarrow 0} \frac{1}{t}[f(a+t u)-f(a)]
$$

exists, then we denote this derivative $\partial_{u} f(a)$. It is called the directional derivative of f at a in the direction u. If the directional derivative is defined in all directions and there is a continuous linear mapping Φ from X into Y such that for all $u \in X$

$$
\partial_{u} f(a)=\Phi(u),
$$

then we say that f is Gâteaux-differentiable at a and that Φ is the Gâteaux differential of f at a. If a mapping f is differentiable at a point a, then clearly all its directional derivatives exist and we have

$$
\partial_{u} f(a)=f^{\prime}(a) u, u \in X
$$

Thus f is Gâteaux-differentiable at a. However, the Gâteaux differential may exist without the differential existing. The existence of directional derivatives at a point does not imply that the mapping is Gâteaux-differentiable. To distinguish the differential from the Gâteaux differential, the differential is often referred as the Fréchet differential.

Theorem 4. Let $\left(X ;\|\cdot\|_{X}\right)$ and $\left(Y ;\|\cdot\|_{Y}\right)$ be two normed linear spaces over the complex number field \mathbb{C}. Assume that the mapping $F: C \subset X \rightarrow Y$ is defined on the open convex set C and $F \in \mathcal{B N} \mathcal{W}_{L}(C)$ for some $L>0$. If $x_{k} \in C, p_{k} \geq 0$ for $k \in\{1, \ldots, n\}$ with $\sum_{k=1}^{n} p_{k}=1$ and F is Gâteaux-differentiable at $\sum_{k=1}^{n} p_{k} x_{k} \in$ C, then for any $y_{j} \in C$ and $q_{j} \geq 0$ for $j \in\{1, \ldots, m\}$ with $\sum_{j=1}^{m} q_{j}=1$ and $\sum_{j=1}^{m} q_{j} y_{j}=\sum_{k=1}^{n} p_{k} x_{k}$ we have

$$
\begin{equation*}
\left\|\sum_{j=1}^{m} q_{j} F\left(y_{j}\right)-F\left(\sum_{k=1}^{n} p_{k} x_{k}\right)\right\|_{Y} \leq L \sum_{j=1}^{m} q_{j}\left\|y_{j}-\sum_{k=1}^{n} p_{k} x_{k}\right\|_{X} \tag{4.1}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
\left\|\sum_{j=1}^{n} p_{j} F\left(x_{j}\right)-F\left(\sum_{k=1}^{n} p_{k} x_{k}\right)\right\|_{Y} \leq L \sum_{j=1}^{n} p_{j}\left\|x_{j}-\sum_{k=1}^{n} p_{k} x_{k}\right\|_{X} \tag{4.2}
\end{equation*}
$$

Proof. Since $F \in \mathcal{B N} \mathcal{W}_{L}(C)$ then we have

$$
\|\lambda[F(y)-F(x)]+F(x)-F((1-\lambda) x+\lambda y)\|_{Y} \leq L \lambda(1-\lambda)\|x-y\|_{X}
$$

for any $x, y \in C$ and $\lambda \in[0,1]$.
This implies that

$$
\begin{equation*}
\left\|F(y)-F(x)-\frac{F(x+\lambda(y-x))-F(x)}{\lambda}\right\|_{Y} \leq L(1-\lambda)\|x-y\|_{X} \tag{4.3}
\end{equation*}
$$

for any $x, y \in C$ and $\lambda \in(0,1)$.
If we assume that F is Gâteaux-differentiable at x, then by taking the limit over $\lambda \rightarrow 0+$ in (4.3) we get

$$
\begin{equation*}
\left\|F(y)-F(x)-\partial_{y-x} F(x)\right\|_{Y} \leq L\|x-y\|_{X} \tag{4.4}
\end{equation*}
$$

for any $x, y \in C$.
Now, if F is Gâteaux-differentiable at $\sum_{k=1}^{n} p_{k} x_{k} \in C$, then

$$
\begin{align*}
& \| F(y)-F\left(\sum_{k=1}^{n} p_{k} x_{k}\right)-\partial_{y-\sum_{k=1}^{n} p_{k} x_{k}} F\left(\sum_{k=1}^{n} p_{k} x_{k}\right) \|_{Y} \tag{4.5}\\
& \leq L\left\|\sum_{k=1}^{n} p_{k} x_{k}-y\right\|_{X}
\end{align*}
$$

for any $y \in C$.
If $y_{j} \in C$ and $q_{j} \geq 0$ for $j \in\{1, \ldots, m\}$ with $\sum_{j=1}^{m} q_{j}=1$, then by (4.5) we have

$$
\begin{array}{r}
\sum_{j=1}^{m} q_{j}\left\|F\left(y_{j}\right)-F\left(\sum_{k=1}^{n} p_{k} x_{k}\right)-\partial_{y_{j}-\sum_{k=1}^{n} p_{k} x_{k}} F\left(\sum_{k=1}^{n} p_{k} x_{k}\right)\right\|_{Y} \tag{4.6}\\
\leq L \sum_{j=1}^{m} q_{j}\left\|\sum_{k=1}^{n} p_{k} x_{k}-y_{j}\right\|_{X}
\end{array}
$$

By the generalized triangle inequality we have

$$
\begin{align*}
& \left\|\sum_{j=1}^{m} q_{j} F\left(y_{j}\right)-F\left(\sum_{k=1}^{n} p_{k} x_{k}\right)-\partial_{\sum_{j=1}^{m} q_{j} y_{j}-\sum_{k=1}^{n} p_{k} x_{k}} F\left(\sum_{k=1}^{n} p_{k} x_{k}\right)\right\|_{Y} \tag{4.7}\\
& \leq \sum_{j=1}^{m} q_{j}\left\|F\left(y_{j}\right)-F\left(\sum_{k=1}^{n} p_{k} x_{k}\right)-\partial_{y_{j}-\sum_{k=1}^{n} p_{k} x_{k}} F\left(\sum_{k=1}^{n} p_{k} x_{k}\right)\right\|_{Y}
\end{align*}
$$

and by (4.6) and (4.7) we have the following inequality of interest

$$
\begin{array}{r}
\left\|\sum_{j=1}^{m} q_{j} F\left(y_{j}\right)-F\left(\sum_{k=1}^{n} p_{k} x_{k}\right)-\partial_{\sum_{j=1}^{m} q_{j} y_{j}-\sum_{k=1}^{n} p_{k} x_{k}} F\left(\sum_{k=1}^{n} p_{k} x_{k}\right)\right\|_{Y} \tag{4.8}\\
\leq L \sum_{j=1}^{m} q_{j}\left\|\sum_{k=1}^{n} p_{k} x_{k}-y_{j}\right\|_{X}
\end{array}
$$

If we take $\sum_{j=1}^{m} q_{j} y_{j}=\sum_{k=1}^{n} p_{k} x_{k}$ in (4.8), then we get the desired inequality (4.1).
The inequality (4.2) follows by (4.1) on taking $m=n$ and $q_{j}=p_{j}, j \in\{1, \ldots, n\}$.

We also have:
Theorem 5. Let $\left(X ;\|\cdot\|_{X}\right)$ and $\left(Y ;\|\cdot\|_{Y}\right)$ be two normed linear spaces over the complex number field \mathbb{C}. Assume that the mapping $F: C \subset X \rightarrow Y$ is defined on the open convex set C and $F \in \mathcal{B N} \mathcal{W}_{L}(C)$ for some $L>0$. Let $x_{k} \in C, p_{k} \geq 0$ for $k \in\{1, \ldots, n\}$ with $\sum_{k=1}^{n} p_{k}=1$ and F is Gâteaux-differentiable at x_{k} for any $k \in\{1, \ldots, n\}$. If there exists $z \in C$ such that

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k} \partial_{z} F\left(x_{k}\right)=\sum_{k=1}^{n} p_{k} \partial_{x_{k}} F\left(x_{k}\right) \tag{4.9}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\left\|F(z)-\sum_{k=1}^{n} p_{k} F\left(x_{k}\right)\right\|_{Y} \leq L \sum_{k=1}^{n} p_{k}\left\|x_{k}-z\right\|_{X} \tag{4.10}
\end{equation*}
$$

Proof. From (4.4) we have

$$
\begin{equation*}
\left\|F(y)-F\left(x_{k}\right)-\partial_{y-x_{k}} F\left(x_{k}\right)\right\|_{Y} \leq L\left\|x_{k}-y\right\|_{X} \tag{4.11}
\end{equation*}
$$

for any $y \in C$ and for any $k \in\{1, \ldots, n\}$.
If we multiply (4.11) by $p_{k} \geq 0$ for $k \in\{1, \ldots, n\}$ and sum, we get

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k}\left\|F(y)-F\left(x_{k}\right)-\partial_{y-x_{k}} F\left(x_{k}\right)\right\|_{Y} \leq L \sum_{k=1}^{n} p_{k}\left\|x_{k}-y\right\|_{X} \tag{4.12}
\end{equation*}
$$

for any $y \in C$.

By the generalized triangle inequality we get

$$
\begin{align*}
\sum_{k=1}^{n} p_{k} \| F(y)-F\left(x_{k}\right) & -\partial_{y-x_{k}} F\left(x_{k}\right) \|_{Y} \tag{4.13}\\
& \geq\left\|F(y)-\sum_{k=1}^{n} p_{k} F\left(x_{k}\right)-\sum_{k=1}^{n} p_{k} \partial_{y-x_{k}} F\left(x_{k}\right)\right\|_{Y}
\end{align*}
$$

By the linearity of the Gâteaux differential we have

$$
\sum_{k=1}^{n} p_{k} \partial_{y-x_{k}} F\left(x_{k}\right)=\sum_{k=1}^{n} p_{k} \partial_{y} F\left(x_{k}\right)-\sum_{k=1}^{n} p_{k} \partial_{x_{k}} F\left(x_{k}\right)
$$

and by (4.12) and (4.13) we have the inequality of interest

$$
\begin{array}{r}
\left\|F(y)-\sum_{k=1}^{n} p_{k} F\left(x_{k}\right)-\sum_{k=1}^{n} p_{k} \partial_{y} F\left(x_{k}\right)+\sum_{k=1}^{n} p_{k} \partial_{x_{k}} F\left(x_{k}\right)\right\|_{Y} \tag{4.14}\\
\leq L \sum_{k=1}^{n} p_{k}\left\|x_{k}-y\right\|_{X}
\end{array}
$$

for any $y \in C$.
Now, if $z \in C$ is such that (4.9) holds, then by (4.14) we get the desired result (4.10).

Remark 2. Let $x_{k} \in C, p_{k} \geq 0$ for $k \in\{1, \ldots, n\}$ with $\sum_{k=1}^{n} p_{k}=1$ and F is differentiable at x_{k} for any $k \in\{1, \ldots, n\}$. If there exists $z \in C$ such that

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k} F^{\prime}\left(x_{k}\right) z=\sum_{k=1}^{n} p_{k} F\left(x_{k}\right) x_{k} \tag{4.15}
\end{equation*}
$$

then we have the inequality (4.10).
Moreover, if the operator $\sum_{k=1}^{n} p_{k} F^{\prime}\left(x_{k}\right)$ is invertible and

$$
\begin{equation*}
z:=\left(\sum_{k=1}^{n} p_{k} F^{\prime}\left(x_{k}\right)\right)^{-1}\left(\sum_{k=1}^{n} p_{k} F\left(x_{k}\right) x_{k}\right) \in C \tag{4.16}
\end{equation*}
$$

then we have the inequality

$$
\begin{gather*}
\left\|F\left(\left(\sum_{k=1}^{n} p_{k} F^{\prime}\left(x_{k}\right)\right)^{-1}\left(\sum_{k=1}^{n} p_{k} F\left(x_{k}\right) x_{k}\right)\right)-\sum_{k=1}^{n} p_{k} F\left(x_{k}\right)\right\|_{Y} \tag{4.17}\\
\leq L \sum_{k=1}^{n} p_{k} \|_{x_{k}-\left(\sum_{k=1}^{n} p_{k} F^{\prime}\left(x_{k}\right)\right)^{-1}\left(\sum_{k=1}^{n} p_{k} F\left(x_{k}\right) x_{k}\right) \|_{X}}^{\text {REFERENCES }}
\end{gather*}
$$

[1] G. A. Anastassiou, Univariate Ostrowski inequalities, revisited. Monatsh. Math., 135 (2002), no. 3, 175-189.
[2] H. Araki and S. Yamagami, An inequality for Hilbert-Schmidt norm, Commun. Math. Phys. 81 (1981), 89-96.
[3] R. Bhatia, First and second order perturbation bounds for the operator absolute value, Linear Algebra Appl. 208/209 (1994), 367-376.
[4] R. Bhatia, Perturbation bounds for the operator absolute value. Linear Algebra Appl. 226/228 (1995), 639-645.
[5] R. Bhatia, D. Singh and K. B. Sinha, Differentiation of operator functions and perturbation bounds. Comm. Math. Phys. 191 (1998), no. 3, 603-611.
[6] R. Bhatia, Matrix Analysis, Springer Verlag, 1997.
[7] P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequalities point of view, Ed. G. A. Anastassiou, Handbook of Analytic-Computational Methods in Applied Mathematics, CRC Press, New York. 135-200.
[8] P. Cerone and S. S. Dragomir, New bounds for the three-point rule involving the RiemannStieltjes integrals, in Advances in Statistics Combinatorics and Related Areas, C. Gulati, et al. (Eds.), World Science Publishing, 2002, 53-62.
[9] P. Cerone, S. S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Mathematica, 32(2) (1999), 697712.
[10] L. Ciurdariu, A note concerning several Hermite-Hadamard inequalities for different types of convex functions. Int. J. Math. Anal. 6 (2012), no. 33-36, 1623-1639.
[11] R. Coleman, Calculus on Normed Vector Spaces, Springer New York Heidelberg Dordrecht London, 2012.
[12] S. S. Dragomir, Y. J. Cho and S. S. Kim, Inequalities of Hadamard's type for Lipschitzian mappings and their applications. J. Math. Anal. Appl. 245 (2000), no. 2, 489-501.
[13] S. S. Dragomir and C. E. M. Pearce, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, 2000.[Online http://rgmia.org/monographs/hermite_hadamard.html].
[14] S. S. Dragomir, Semi-Inner Products and Applications, Nova Science Publishers, Inc., Hauppauge, NY, 2004. x+222 pp. ISBN: 1-59033-947-9, Preprint RGMIA Monographs, Victoria University, 2000. (ONLINE: http://rgmia.org/monographs/SIP.html).
[15] S. S. Dragomir, Ostrowski's inequality for monotonous mappings and applications, J. KSIAM, 3(1) (1999), 127-135.
[16] S. S. Dragomir, The Ostrowski's integral inequality for Lipschitzian mappings and applications, Comp. Math. Appl., 38 (1999), 33-37.
[17] S. S. Dragomir, On the Ostrowski's inequality for Riemann-Stieltjes integral, Korean J. Appl. Math., 7 (2000), 477-485.
[18] S. S. Dragomir, On the Ostrowski's inequality for mappings of bounded variation and applications, Math. Ineq. \& Appl., 4(1) (2001), 33-40.
[19] S. S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ where f is of Hölder type and u is of bounded variation and applications, J. KSIAM, 5(1) (2001), 35-45.
[20] S. S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure © Appl. Math., 3(5) (2002), Art. 68.
[21] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 31, 8 pp.
[22] S. S. Dragomir, An Ostrowski like inequality for convex functions and applications, Revista Math. Complutense, 16(2) (2003), 373-382.
[23] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1
[24] S. S. Dragomir, Inequalities for power series in Banach algebras, to appear in SUT Journal of Mathematics
[25] S. S. Dragomir, Integral inequalities for Lipschitzian mappings between two Banach spaces and applications, Preprint RGMIA Res. Rep. Coll. 17(2014), Art. 144. [Online http://rgmia.org/papers/v17/v17a144.pdf].
[26] S. S. Dragomir, P. Cerone, J. Roumeliotis and S. Wang, A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis, Bull. Math. Soc. Sci. Math. Romanie, 42(90) (4) (1999), 301-314.
[27] S. S. Dragomir and Th. M. Rassias (Eds), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publisher, 2002.
[28] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L_{1}-norm and applications to some special means and to some numerical quadrature rules, Tamkang J. of Math., 28 (1997), 239-244.
[29] S. S. Dragomir and S. Wang, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett., 11 (1998), 105-109.
[30] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in $L_{p}-$ norm and applications to some special means and to some numerical quadrature rules, Indian J. of Math., 40(3) (1998), 245-304.
[31] R. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, 1972.
[32] Yu. B. Farforovskaya, Estimates of the closeness of spectral decompositions of self-adjoint operators in the Kantorovich-Rubinshtein metric (in Russian), Vesln. Leningrad. Gos. Univ. Ser. Mat. Mekh. Astronom. 4 (1967), 155-156.
[33] Yu. B. Farforovskaya, An estimate of the norm $\|f(B)-f(A)\|$ for self-adjoint operators A and B (in Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. 56 (1976), 143-162.
[34] Yu. B. Farforovskaya and L. Nikolskaya, Modulus of continuity of operator functions. Algebra i Analiz 20 (2008), no. 3, 224-242; translation in St. Petersburg Math. J. 20 (2009), no. 3, 493-506.
[35] Y. Feng and W. Zhao, Refinement of Hermite-Hadamard inequality. Far East J. Math. Sci. 68 (2012), no. 2, 245-250.
[36] A. M. Fink, Bounds on the deviation of a function from its averages, Czechoslovak Math. J., 42 (117) (1992), No. 2, 298-310.
[37] X. Gao, A note on the Hermite-Hadamard inequality. J. Math. Inequal. 4 (2010), no. 4, 587-591.
[38] S.-R. Hwang, K.-L. Tseng and K.-C. Hsu, Hermite-Hadamard type and Fejér type inequalities for general weights (I). J. Inequal. Appl. 2013, 2013:170.
[39] T. Kato, Continuity of the map $S \rightarrow|S|$ for linear operators, Proc. Japan Acad. 49 (1973), 143-162.
[40] U. S. Kırmacı and R. Dikici, On some Hermite-Hadamard type inequalities for twice differentiable mappings and applications. Tamkang J. Math. 44 (2013), no. 1, 41-51.
[41] J. Mikusiński, The Bochner Integral, Birkhäuser Verlag, 1978.
[42] M. Muddassar, M. I. Bhatti and M. Iqbal, Some new s-Hermite-Hadamard type inequalities for differentiable functions and their applications. Proc. Pakistan Acad. Sci. 49 (2012), no. 1, 9-17.
[43] M. Matić and J. Pečarić, Note on inequalities of Hadamard's type for Lipschitzian mappings. Tamkang J. Math. 32 (2001), no. 2, 127-130.
[44] A. Ostrowski, Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel, 10 (1938), 226-227.
[45] W. Rudin, Functional Analysis, McGraw Hill, 1973.
[46] M. Z. Sarikaya, On new Hermite Hadamard Fejér type integral inequalities. Stud. Univ. Babeş-Bolyai Math. 57 (2012), no. 3, 377-386.
[47] S. Wąsowicz and A. Witkowski, On some inequality of Hermite-Hadamard type. Opuscula Math. 32 (2012), no. 3, 591-600.
[48] B.-Y. Xi and F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means. J. Funct. Spaces Appl. 2012, Art. ID 980438, 14 pp.
[49] G. Zabandan, A. Bodaghi and A. Kılıçman, The Hermite-Hadamard inequality for r-convex functions. J. Inequal. Appl. 2012, 2012:215, 8 pp.
[50] C.-J. Zhao, W.-S. Cheung and X.-Y. Li, On the Hermite-Hadamard type inequalities. J. Inequal. Appl. 2013, 2013:228.
${ }^{1}$ Mathematics, School of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science and Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 46B20, 26D15, 47A99.
 Key words and phrases. Banach spaces, Banach algebras, Lipschitz type inequalities, Ostrowski-type inequalities, Mid-point inequalities, Hermite-Hadamard type inequalities.

