
INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE
FOR L-BOUNDED NORM WEAK CONVEX MAPPINGS

S. S. DRAGOMIR1;2

Abstract. In this paper we introduce a class of functions that extends the
concept of Lipschitzian function and called them L-bounded norm weak convex
functions. Integral inequalities of Hermite-Hadamard type are obtained and
applications for discrete inequalities of Jensen type are provided as well.

1. Introduction

Let B (H) be the Banach algebra of bounded linear operators on a complex
Hilbert space H: The absolute value of an operator A is the positive operator jAj
de�ned as jAj := (A�A)1=2 :
One of the central problems in perturbation theory is to �nd bounds for

kf (A)� f (B)k

in terms of kA�Bk for di¤erent classes of measurable functions f for which the
function of operator can be de�ned. For some results on this topic, see [5], [34] and
the references therein.
It is known that [4] in the in�nite-dimensional case the map f (A) := jAj is

not Lipschitz continuous on B (H) with the usual operator norm, i.e. there is no
constant L > 0 such that

kjAj � jBjk � L kA�Bk

for any A; B 2 B (H) :
However, as shown by Farforovskaya in [32], [33] and Kato in [39], the following

inequality holds

(1.1) kjAj � jBjk � 2

�
kA�Bk

�
2 + log

�
kAk+ kBk
kA�Bk

��
for any A;B 2 B (H) with A 6= B:
If the operator norm is replaced withHilbert-Schmidt norm kCkHS := (trC�C)

1=2

of an operator C; then the following inequality is true [2]

(1.2) kjAj � jBjkHS �
p
2 kA�BkHS

for any A;B 2 B (H) :
The coe¢ cient

p
2 is best possible for a general A and B: If A and B are restricted

to be selfadjoint, then the best coe¢ cient is 1:
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It has been shown in [4] that, if A is an invertible operator, then for all operators
B in a neighborhood of A we have

(1.3) kjAj � jBjk � a1 kA�Bk+ a2 kA�Bk2 +O
�
kA�Bk3

�
where

a1 =


A�1

 kAk and a2 = 

A�1

+ 

A�1

3 kAk2 :

In [3] the author also obtained the following Lipschitz type inequality

(1.4) kf (A)� f (B)k � f 0 (a) kA�Bk

where f is an operator monotone function on (0;1) and A;B � aIH > 0:
Let (X; k�kX) and (Y ; k�kY ) be two Banach spaces over the complex number �eld

C. Let C be a convex set in X: For any mapping F : C � X ! Y we can consider
the associated functions �F;x;y;�; 	F;x;y;� : [0; 1] ! Y; where x; y 2 C; � 2 [0; 1] ;
de�ned by [25]

(1.5) �F;x;y;� (t) := (1� �)F [(1� t) ((1� �)x+ �y) + ty]
+ �F [(1� t)x+ t ((1� �)x+ �y)]

and

(1.6) 	F;x;y;� (t) := (1� �)F [(1� t) ((1� �)x+ �y) + ty]
+ �F [tx+ (1� t) ((1� �)x+ �y)] :

We say that the mapping F : B � X ! Y is Lipschitzian with the constant
L > 0 on the subset B of X if

(1.7) kF (x)� F (y)kY � L kx� ykX for any x; y 2 B:

The following result holds [25]:

Theorem 1. Let F : C � X ! Y be a Lipschitzian mapping with the constant
L > 0 on the convex subset C of X: If x; y 2 C; then we have

(1.8)





�F;x;y;� (t)� Z 1

0

F [sy + (1� s)x] ds





Y

� 2L
"
1

4
+

�
t� 1

2

�2#"
1

4
+

�
�� 1

2

�2#
kx� ykX

for any t 2 [0; 1] and � 2 [0; 1] ; where �F;x;y;� = �F;x;y;� or �F;x;y;� = 	F;x;y;�:

If we take in (1.8) �F;x;y;� = �F;x;y;�; � = 1
2 ; then we get

(1.9)





12
�
F

�
(1� t) x+ y

2
+ ty

�
+ F

�
(1� t)x+ tx+ y

2

��
�
Z 1

0

F [sy + (1� s)x] ds




 � 1

2
L

"
1

4
+

�
t� 1

2

�2#
kx� ykX

for any x; y 2 C and t 2 [0; 1] :
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If we take in (1.8) �F;x;y;� = 	F;x;y;�; � = 1
2 ; then we get

(1.10)





12
�
F

�
(1� t) x+ y

2
+ ty

�
+ F

�
tx+ (1� t) x+ y

2

��
�
Z 1

0

F [sy + (1� s)x] ds





Y

� 1

2
L

"
1

4
+

�
t� 1

2

�2#
kx� ykX

for any t 2 [0; 1] and x; y 2 C:
We also have the simpler inequalities

(1.11)





12
�
F

�
3x+ y

4

�
+ F

�
x+ 3y

4

��
�
Z 1

0

F [sy + (1� s)x] ds





Y

� 1

8
L kx� ykX ;

(1.12)





F �x+ y2
�
�
Z 1

0

F [sy + (1� s)x] ds





Y

� 1

4
L kx� ykX

and

(1.13)





12 [F (x) + F (y)]�
Z 1

0

F [sy + (1� s)x] ds





Y

� 1

4
L kx� ykX

for any x; y 2 C: The constants 1
8 and

1
4 are best possible.

The inequalities (1.12) and (1.13) are the corresponding versions of Hermite-
Hadamard inequalities for Lipschitzian functions. The scalar cases were obtained
in [12] and [43]. For Hermite-Hadamard�s type inequalities, see for instance [10],
[12], [13], [35], [37], [38], [40], [42], [43], [46], [47], [48], [49], [50] and the references
therein.
From (1.8) we also have the Ostrowski�s inequality

(1.14)





F [ty + (1� t)x]� Z 1

0

F [sy + (1� s)x] ds





Y

� L
"
1

4
+

�
t� 1

2

�2#
kx� ykX

for any t 2 [0; 1] and x; y 2 C: For Ostrowski�s type inequalities for the Lebesgue
integral, see [1], [8]-[9] and [15]-[30]. Inequalities for the Riemann-Stieltjes integral
may be found in [17], [19] while the generalization for isotonic functionals was
provided in [20]. For the case of functions of self-adjoint operators on complex
Hilbert spaces, see the recent monograph [23].
Motivated by the above results, we introduce here a class of functions that ex-

tends the concept of Lipschitzian function and called them L-bounded norm weak
convex functions. Integral inequalities of Hermite-Hadamard type are obtained and
applications for discrete inequalities of Jensen type are provided as well.

2. L-Bounded Norm Weak Convex Mappings

Let (X; k�kX) and (Y ; k�kY ) be two normed linear spaces over the complex num-
ber �eld C. Let C be a convex set in X:We consider the following class of functions:
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De�nition 1. A mapping F : C � X ! Y is called L-bounded norm weak convex,
for some given L > 0; if it satis�es the condition

(2.1) k(1� �)F (x) + �F (y)� F ((1� �)x+ �y)kY � L� (1� �) kx� ykX
for any x; y 2 C and � 2 [0; 1] : For simplicity, we denote this by F 2 BNWL (C) :

We have from (2.1) for � = 1
2 the Jensen�s inequality

(2.2)





F (x) + F (y)2
� F

�
x+ y

2

�




Y

� 1

4
L kx� ykX

for any x; y 2 C.
We observe that BNWL (C) is a convex subset in the linear space of all functions

de�ned on C and with values in Y:
The following simple result holds:

Lemma 1. If the function F : C � X ! Y is Lipschitzian with the constant
K > 0, then F 2 BNWL (C) with L = 2K:

Proof. Since F is Lipschitzian, we have

kF ((1� �)x+ �y)� F (x)kY � K� kx� ykX
and

kF ((1� �)x+ �y)� F (y)kY � K (1� �) kx� ykX
for any x; y 2 C and � 2 [0; 1] :
If we multiply the �rst inequality by 1 � � and the second inequality by � and

add these inequalities, we get

(1� �) kF ((1� �)x+ �y)� F (x)kY + � kF ((1� �)x+ �y)� F (y)kY
� 2K� (1� �) kx� ykX

for any x; y 2 C and � 2 [0; 1] :
We also have

(1� �) kF ((1� �)x+ �y)� F (x)kY + � kF ((1� �)x+ �y)� F (y)kY
� k(1� �)F ((1� �)x+ �y)� (1� �)F (x) + �F ((1� �)x+ �y)� �F (y)kY

= kF ((1� �)x+ �y)� (1� �)F (x)� �F (y)k ;
which proves that

k(1� �)F (x) + �F (y)� F ((1� �)x+ �y)k � 2K� (1� �) kx� ykX
for any x; y 2 C and � 2 [0; 1] ; namely F 2 BNWL (C) with L = 2K: �
We observe also that, by the triangle inequality, we have

(2.3) kF ((1� �)x+ �y)kY � k(1� �)F (x) + �F (y)kY
� k(1� �)F (x) + �F (y)� F ((1� �)x+ �y)kY

and by (2.1) we get

kF ((1� �)x+ �y)kY � k(1� �)F (x) + �F (y)kY � L� (1� �) kx� ykX ;
which, again, by the triangle inequality gives

(2.4) kF ((1� �)x+ �y)kY
� L� (1� �) kx� ykX + (1� �) kF (x)kY + � kF (y)kY
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for any x; y 2 C and � 2 [0; 1] :
Now, if the function t 7! kF ((1� �)x+ �y)kY , for some x; y 2 C; is Lebesgue

integrable on [0; 1] ; then by taking the integral in (2.4) we get

(2.5)
Z 1

0

kF ((1� �)x+ �y)kY d� � L kx� ykX
Z 1

0

� (1� �) d�

+ kF (x)kY
Z 1

0

(1� �) d�+ kF (y)kY
Z 1

0

�d�

and since Z 1

0

� (1� �) d� = 1

6
;

Z 1

0

(1� �) d� =
Z 1

0

�d� =
1

2
;

then we get from (2.5) that

(2.6)
Z 1

0

kF ((1� �)x+ �y)kY d� �
1

6
L kx� ykX +

1

2
[kF (x)kY + kF (y)kY ] :

If we assume continuity for the function F on C in the norm topology of
(X; k�kX) ; then the inequality (2.6) holds for any x; y 2 C: Moreover, if we as-
sume that (Y ; k�kY ) is a Banach space and F is continuos on C; then we have the
generalized triangle inequality



Z 1

0

F ((1� �)x+ �y) d�





Y

�
Z 1

0

kF ((1� �)x+ �y)kY d�;

and by (2.6) we get

(2.7)





Z 1

0

F ((1� �)x+ �y) d�





Y

� 1

6
L kx� ykX +

1

2
[kF (x)kY + kF (y)kY ]

for any x; y 2 C:
We have the following results:

Theorem 2. Let (X; k�kX) and (Y ; k�kY ) be two normed linear spaces over the
complex number �eld C with Y complete. Assume that the mapping F : C � X ! Y
is continuous on the convex set C in the norm topology. If F 2 BNWL (C) for
some L > 0; then we have

(2.8)





F (x) + F (y)2
�
Z 1

0

F ((1� �)x+ �y) d�





Y

� 1

6
L kx� ykX

and

(2.9)





Z 1

0

F ((1� �)x+ �y) d�� F
�
x+ y

2

�




Y

� 1

8
L kx� ykX

for any x; y 2 C:
The constants 1

6 and
1
8 are best possible.
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Proof. From (2.1) we have successively



Z 1

0

[(1� �)F (x) + �F (y)� F ((1� �)x+ �y)] d�





Y

�
Z 1

0

k(1� �)F (x) + �F (y)� F ((1� �)x+ �y)kY d�

� L kx� ykX
Z 1

0

� (1� �) d� = 1

6
L kx� ykX

which produces the desired result (2.8).
Utilising (2.2) we have

(2.10)





F ((1� �)x+ �y) + F (�x+ (1� �) y)2
� F

�
x+ y

2

�




Y

� 1

4
L k(1� �)x+ �y � �x� (1� �) ykX =

1

2
K

������ 12
���� kx� ykX

for any x; y 2 C and � 2 [0; 1] :
Integrating in (2.10) we get

(2.11)





Z 1

0

�
F ((1� �)x+ �y) + F (�x+ (1� �) y)

2
� F

�
x+ y

2

��
d�






Y

�
Z 1

0





F ((1� �)x+ �y) + F (�x+ (1� �) y)2
� F

�
x+ y

2

�




Y

d�

� 1

2
K kx� ykX

Z 1

0

������ 12
���� d� = 1

8
K kx� ykX

and since Z 1

0

F ((1� �)x+ �y) d� =
Z 1

0

F (�x+ (1� �) y) d�;

then from (2.11) we get (2.9).
Now, consider the function F0 : H ! R, F0 (x) = kxk2 where (H; h:; :i) is a

complex inner product space. If x; y 2 H and � 2 [0; 1] ; then

(1� �)F0 (x) + �F0 (y)� F0 ((1� �)x+ �y)
= (1� �) kxk2 + � kyk2 � k(1� �)x+ �yk2

= (1� �) kxk2 + � kyk2 � (1� �)2 kxk2 � 2 (1� �)�Re hx; yi � �2 kyk2

= (1� �)�
h
kxk2 � 2Re hx; yi+ kyk2

i
= (1� �)� kx� yk2 :

Consider C0 a convex subset of H such that kx� yk � 1 for any x; y 2 C: For
instance C0 = B

�
0; 12
�
is the closed ball centered in 0 and with a radius 1

2 : Then
for all x; y 2 B

�
0; 12
�
we have kx� yk � kxk+ kyk � 1

2 +
1
2 = 1:

Therefore, if we consider F0 (x) = kxk2 de�ned on C0 = B
�
0; 12
�
; we have

0 � (1� �)F0 (x) + �F0 (y)� F0 ((1� �)x+ �y) � (1� �)� kx� yk

which shows that F0 2 BNWL (C0) with L = 1:
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We haveZ 1

0

F0 ((1� �)x+ �y) d� =
Z 1

0

k(1� �)x+ �yk2 d�

=

Z 1

0

h
(1� �)2 kxk2 + 2 (1� �)�Re hx; yi+ �2 kyk2

i
d�

=
1

3

h
kxk2 +Re hx; yi+ kyk2

i
for any x; y 2 H:
Therefore

F0 (x) + F0 (y)

2
�
Z 1

0

F0 ((1� �)x+ �y) d�

=
1

2

h
kxk2 + kyk2

i
� 1
3

h
kxk2 +Re hx; yi+ kyk2

i
=
1

6
kx� yk2 :

Now, assume that the inequality (2.8) holds with a constant A > 0; namely



F (x) + F (y)2
�
Z 1

0

F ((1� �)x+ �y) d�





Y

� AL kx� ykX ;

then by taking F0 2 BNWL (C0) with L = 1 de�ned above, we get

1

6
kx� yk2 � A kx� ykX

namely

(2.12)
1

6
kx� yk � A:

If e 2 H with kek = 1; then x = 1
2e and y = �

1
2e 2 B

�
0; 12
�
giving that x�y = e

and by (2.12) we get A � 1
6 :

Now, consider the function F0 : X ! [0;1); F0 (x) =


x� a+b

2



 ; with a; b 2 X
with a 6= b: Then

jF0 (x)� F0 (y)j =
����



x� a+ b2





� 



y � a+ b2




���� � kx� yk ;

for any x; y 2 X; which shows that F0 is Lipschitzian with the constant K = 1:
By utilising Lemma 1 we conclude that F0 2 BNWL (C) with L = 2:
We haveZ 1

0

F0 ((1� �) a+ �b) d��F0
�
a+ b

2

�
=

Z 1

0





(1� �) a+ �b� a+ b2




 d� = 1

4
kb� ak ;

which shows that the inequality (2.9) holds with equality. �

3. Related Inequalities

We have the following result as well:

Theorem 3. Let (X; k�kX) and (Y ; k�kY ) be two normed linear spaces over the
complex number �eld C with Y complete. Assume that the mapping F : C � X ! Y
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is continuous on the convex set C in the norm topology. If F 2 BNWL (C) for
some L > 0; then we have

(3.1)







Z 1

0

F (uy + (1� u)x) du� 1

2�� 1

Z �

1��
F (sx+ (1� s) y) ds







F

� 1

2
L� (1� �) ky � xkX

for any � 2 [0; 1] ; � 6= 1
2 and x; y 2 C:

Proof. Since F 2 BNWL (C) for K > 0; then

(3.2) k(1� �)F (u) + �F (v)� F ((1� �)u+ �v)kY � L� (1� �) ku� vkX

for any u; v 2 C and � 2 [0; 1] :
Let t 2 [0; 1] and for x; y 2 C; take

u = (1� t) ((1� �)x+ �y) + ty; v = tx+ (1� t) ((1� �)x+ �y) 2 C

in (3.2) to get

(3.3) k(1� �)F ((1� t) ((1� �)x+ �y) + ty)
+ �F (tx+ (1� t) ((1� �)x+ �y))

�F ((1� �) [(1� t) ((1� �)x+ �y) + ty] + � [tx+ (1� t) ((1� �)x+ �y)])kY
� L� (1� �) k(1� t) ((1� �)x+ �y) + ty � [tx+ (1� t) ((1� �)x+ �y)]kX :

Observe that

(1� �) [(1� t) ((1� �)x+ �y) + ty] + � [tx+ (1� t) ((1� �)x+ �y)]
= (1� �) (1� t) ((1� �)x+ �y) + (1� �) ty

+ �tx+ � (1� t) ((1� �)x+ �y)
= (1� t) ((1� �)x+ �y) + (1� �) ty + �tx

= [(1� t) (1� �) + �t]x+ [(1� t)�+ (1� �) t] y

and

(1� t) ((1� �)x+ �y) + ty � [tx+ (1� t) ((1� �)x+ �y)]
= (1� t) (1� �)x+(1� t)�y+ty�tx�(1� t) (1� �)x�(1� t)�y = t (y � x) :

Then by (3.3) we have

(3.4) k(1� �)F ((1� t) ((1� �)x+ �y) + ty)
+ �F (tx+ (1� t) ((1� �)x+ �y))

�F ([(1� t) (1� �) + �t]x+ [(1� t)�+ (1� �) t] y)kY
� L� (1� �) t ky � xkX ;

for any t; � 2 [0; 1] and x; y 2 C:
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Integrating the inequality (3.4) over t on [0; 1] and using the generalized triangle
inequality for norms and integrals, we get

(3.5)





(1� �)Z 1

0

F ((1� t) ((1� �)x+ �y) + ty) dt

+ �

Z 1

0

F (tx+ (1� t) ((1� �)x+ �y)) dt

�
Z 1

0

F ([(1� t) (1� �) + �t]x+ [(1� t)�+ (1� �) t] y) dt





Y

� 1

2
L� (1� �) ky � xkX ;

for any � 2 [0; 1] and x; y 2 C:
Observe that

(3.6)
Z 1

0

F [(1� t) (�y + (1� �)x) + ty] dt

=

Z 1

0

F [((1� t)�+ t) y + (1� t) (1� �)x] dt

and

(3.7)
Z 1

0

F (tx+ (1� t) ((1� �)x+ �y)) dt

=

Z 1

0

F ((1� t)x+ t ((1� �)x+ �y)) dt =
Z 1

0

F [t�y + (1� �t)x] dt:

If we make the change of variable u := (1� t)� + t then we have 1 � u =
(1� t) (1� �) and du = (1� �) du: ThenZ 1

0

F [((1� t)�+ t) y + (1� t) (1� �)x] dt = 1

1� �

Z 1

�

F [uy + (1� u)x] du:

If we make the change of variable u := �t then we have du = �dt andZ 1

0

F [t�y + (1� �t)x] dt = 1

�

Z �

0

F [uy + (1� u)x] du:

Therefore

(1� �)
Z 1

0

F [(1� t) (�y + (1� �)x) + ty] dt

+ �

Z 1

0

F [t (�y + (1� �)x) + (1� t)x] dt

=

Z 1

�

F [uy + (1� u)x] du+
Z �

0

F [uy + (1� u)x] du =
Z 1

0

F [uy + (1� u)x] du;

and we have the simple equality

(3.8) (1� �)
Z 1

0

F ((1� t) ((1� �)x+ �y) + ty) dt

+ �

Z 1

0

F (tx+ (1� t) ((1� �)x+ �y)) dt =
Z 1

0

F [uy + (1� u)x] du
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for any � 2 [0; 1] and x; y 2 C:
Consider now the integralZ 1

0

F ([(1� t) (1� �) + �t]x+ [(1� t)�+ (1� �) t] y) dt:

Put
s = (1� t) (1� �) + �t = 1� �+ (2�� 1) t:

Then
1� s = (1� t)�+ (1� �) t:

If � 6= 1
2 ; then s = 1� �+ (2�� 1) t is a change of variable with dt =

1
2��1 and we

haveZ 1

0

F ([(1� t) (1� �) + �t]x+ [(1� t)�+ (1� �) t] y) dt

=
1

2�� 1

Z �

1��
F (sx+ (1� s) y) ds:

Now, making use of (3.5) we get the desired result (3.1). �

Remark 1. We observe that for � ! 1
2 we recapture from (3.1) the inequality

(2.9). If we take in (3.1) � = 3
4 ; then we get

(3.9)







Z 1

0

F [uy + (1� u)x] du� 2
Z 3=4

1=4

F (sx+ (1� s) y) ds






F

� 3

32
L ky � xkX :

4. Applications for Gâteaux Differentiable Functions

Following [11, p. 59], let (X; k�kX) and (Y; k�kY ) be two normed linear spaces,

 an open subset of X and f : 
! Y . If a 2 
, u 2 X n f0g and if the limit

lim
t!0

1

t
[f (a+ tu)� f (a)]

exists, then we denote this derivative @uf (a) : It is called the directional derivative
of f at a in the direction u: If the directional derivative is de�ned in all directions
and there is a continuous linear mapping � from X into Y such that for all u 2 X

@uf (a) = � (u) ;

then we say that f is Gâteaux-di¤erentiable at a and that � is the Gâteaux di¤er-
ential of f at a: If a mapping f is di¤erentiable at a point a, then clearly all its
directional derivatives exist and we have

@uf (a) = f
0 (a)u; u 2 X:

Thus f is Gâteaux-di¤erentiable at a: However, the Gâteaux di¤erential may exist
without the di¤erential existing. The existence of directional derivatives at a point
does not imply that the mapping is Gâteaux-di¤erentiable. To distinguish the
di¤erential from the Gâteaux di¤erential, the di¤erential is often referred as the
Fréchet di¤erential.



INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE 11

Theorem 4. Let (X; k�kX) and (Y ; k�kY ) be two normed linear spaces over the
complex number �eld C. Assume that the mapping F : C � X ! Y is de�ned on
the open convex set C and F 2 BNWL (C) for some L > 0: If xk 2 C, pk � 0 for
k 2 f1; :::; ng with

Pn
k=1 pk = 1 and F is Gâteaux-di¤erentiable at

Pn
k=1 pkxk 2

C; then for any yj 2 C and qj � 0 for j 2 f1; :::;mg with
Pm

j=1 qj = 1 andPm
j=1 qjyj =

Pn
k=1 pkxk we have

(4.1)








mX
j=1

qjF (yj)� F
 

nX
k=1

pkxk

!






Y

� L
mX
j=1

qj






yj �
nX
k=1

pkxk







X

:

In particular, we have

(4.2)








nX
j=1

pjF (xj)� F
 

nX
k=1

pkxk

!






Y

� L
nX
j=1

pj






xj �
nX
k=1

pkxk







X

:

Proof. Since F 2 BNWL (C) then we have

k� [F (y)� F (x)] + F (x)� F ((1� �)x+ �y)kY � L� (1� �) kx� ykX

for any x; y 2 C and � 2 [0; 1] :
This implies that

(4.3)





F (y)� F (x)� F (x+ � (y � x))� F (x)�






Y

� L (1� �) kx� ykX

for any x; y 2 C and � 2 (0; 1) :
If we assume that F is Gâteaux-di¤erentiable at x; then by taking the limit over

�! 0+ in (4.3) we get

(4.4) kF (y)� F (x)� @y�xF (x)kY � L kx� ykX

for any x; y 2 C:
Now, if F is Gâteaux-di¤erentiable at

Pn
k=1 pkxk 2 C; then

(4.5)






F (y)� F
 

nX
k=1

pkxk

!
� @y�Pn

k=1 pkxk
F

 
nX
k=1

pkxk

!





Y

� L






nX
k=1

pkxk � y






X

for any y 2 C:
If yj 2 C and qj � 0 for j 2 f1; :::;mg with

Pm
j=1 qj = 1, then by (4.5) we have

(4.6)
mX
j=1

qj






F (yj)� F
 

nX
k=1

pkxk

!
� @yj�Pn

k=1 pkxk
F

 
nX
k=1

pkxk

!





Y

� L
mX
j=1

qj







nX
k=1

pkxk � yj







X

:
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By the generalized triangle inequality we have

(4.7)








mX
j=1

qjF (yj)� F
 

nX
k=1

pkxk

!
� @Pm

j=1 qjyj�
Pn

k=1 pkxk
F

 
nX
k=1

pkxk

!






Y

�
mX
j=1

qj






F (yj)� F
 

nX
k=1

pkxk

!
� @yj�Pn

k=1 pkxk
F

 
nX
k=1

pkxk

!





Y

and by (4.6) and (4.7) we have the following inequality of interest

(4.8)








mX
j=1

qjF (yj)� F
 

nX
k=1

pkxk

!
� @Pm

j=1 qjyj�
Pn

k=1 pkxk
F

 
nX
k=1

pkxk

!






Y

� L
mX
j=1

qj







nX
k=1

pkxk � yj







X

:

If we take
Pm

j=1 qjyj =
Pn

k=1 pkxk in (4.8), then we get the desired inequality (4.1).
The inequality (4.2) follows by (4.1) on taking m = n and qj = pj ; j 2 f1; :::; ng :

�

We also have:

Theorem 5. Let (X; k�kX) and (Y ; k�kY ) be two normed linear spaces over the
complex number �eld C. Assume that the mapping F : C � X ! Y is de�ned on
the open convex set C and F 2 BNWL (C) for some L > 0: Let xk 2 C, pk � 0
for k 2 f1; :::; ng with

Pn
k=1 pk = 1 and F is Gâteaux-di¤erentiable at xk for any

k 2 f1; :::; ng : If there exists z 2 C such that

(4.9)
nX
k=1

pk@zF (xk) =

nX
k=1

pk@xkF (xk) ;

then we have

(4.10)






F (z)�
nX
k=1

pkF (xk)







Y

� L
nX
k=1

pk kxk � zkX :

Proof. From (4.4) we have

(4.11) kF (y)� F (xk)� @y�xkF (xk)kY � L kxk � ykX

for any y 2 C and for any k 2 f1; :::; ng :
If we multiply (4.11) by pk � 0 for k 2 f1; :::; ng and sum, we get

(4.12)
nX
k=1

pk kF (y)� F (xk)� @y�xkF (xk)kY � L
nX
k=1

pk kxk � ykX

for any y 2 C:
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By the generalized triangle inequality we get

(4.13)
nX
k=1

pk kF (y)� F (xk)� @y�xkF (xk)kY

�





F (y)�

nX
k=1

pkF (xk)�
nX
k=1

pk@y�xkF (xk)







Y

:

By the linearity of the Gâteaux di¤erential we have
nX
k=1

pk@y�xkF (xk) =
nX
k=1

pk@yF (xk)�
nX
k=1

pk@xkF (xk)

and by (4.12) and (4.13) we have the inequality of interest

(4.14)






F (y)�
nX
k=1

pkF (xk)�
nX
k=1

pk@yF (xk) +
nX
k=1

pk@xkF (xk)







Y

� L
nX
k=1

pk kxk � ykX

for any y 2 C:
Now, if z 2 C is such that (4.9) holds, then by (4.14) we get the desired result

(4.10). �

Remark 2. Let xk 2 C, pk � 0 for k 2 f1; :::; ng with
Pn

k=1 pk = 1 and F is
di¤erentiable at xk for any k 2 f1; :::; ng : If there exists z 2 C such that

(4.15)
nX
k=1

pkF
0 (xk) z =

nX
k=1

pkF (xk)xk;

then we have the inequality (4.10).
Moreover, if the operator

Pn
k=1 pkF

0 (xk) is invertible and

(4.16) z :=

 
nX
k=1

pkF
0 (xk)

!�1 nX
k=1

pkF (xk)xk

!
2 C;

then we have the inequality

(4.17)







F
0@ nX

k=1

pkF
0 (xk)

!�1 nX
k=1

pkF (xk)xk

!1A� nX
k=1

pkF (xk)








Y

� L
nX
k=1

pk







xk �
 

nX
k=1

pkF
0 (xk)

!�1 nX
k=1

pkF (xk)xk

!






X

:
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