SOME WEIGHTED INEQUALITIES FOR THE COMPLEX
INTEGRAL (II)

SILVESTRU SEVER DRAGOMIR!+?

ABSTRACT. In this paper that is a continuation of the one with (I) in the title,
we provide some upper bounds for the magnitude of the error in approximating
the weighted integral

Af(Z)g(Z)dz

with the simple quantity

(I =s){f (W) [G(w) =G )]+ f(w)[G(v) - G )]}

+ s[G (w) — G (u)] f (v), s€0,1]
under the assumptions that f and g are holomorphic functions in D, an open
domain, v C D is a piecewise smooth path from z(a) = u to z(b) = w and
v = z(x) with = € (a,b) while G is a primitive for the function g on . Some
particular results for certain selections of s € [0, 1] are also given.

1. INTRODUCTION

Suppose 7 is a smooth path from C parametrized by z (), t € [a,b] and f is a
complex function which is continuous on «. Put z (a) = v and z (b) = w with u,
w € C. We define the integral of f on v, , = as

Lf(z)dz:Luwf(z)dz:=/abf(z(t))z’(t)dt.

We observe that that the actual choice of parametrization of v does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose
~ is parametrized by z (¢), t € [a,b], which is differentiable on the intervals [a, ]
and [c, b], then assuming that f is continuous on v we define

f(z)dz = / f(z)dz+ f(z)dz

Yo,w

FYU,’U)
where v := zz. This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

b
f () |dz] = / F (2 ()12 ()] dt

and the length of the curve 7 is then

uw):/mw=/ab|z’<t>|dt.
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Let f and g be holomorphic in D, and open domain and suppose v C D is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
by parts formula

(L1) / f(2) g (2)dz = f (w) g (w) — f (u)g (o) — / ' (2)9(2) d=.

u,w Yu,w

We recall also the triangle inequality for the complex integral, namely

[{f(z) dz

where || f]|, o = sup.e. [f (2)]-
We also define the p-norm with p > 1 by

191~ [irer |dz|)1/p.

19,0 = [ 17 @)l
y

(1.2)

< / £ @l 1d2] < £, o £ ()

For p =1 we have

If p, ¢ > 1 with % + % = 1, then by Holder’s inequality we have

110 < CENYNA, -

Suppose that a continuous function g on « has a primitive on -, namely a function
G analytic on v such that G’ (z) = g (z) for all z € 4. Suppose v is a smooth path
parametrized by z (t), t € [a,b]. Put z (a) = u and z (b) = w with u, w € C. Then

b b
/g(Z)dZZ/ g(Z(t))Z'(t)dt:/ (G (2(1) dt = G (w) - G (u).

In this paper we provide some upper bounds for the magnitude of the error in
approximating the weighted integral

/ f(2)g(2)dz
~
with the simple quantity

(I=s){f () [G(w) =G )]+ f(v)[G ) -G W)}
+s[G(w) —GW)]f(v), s€]0,1]

under the assumptions that f and g are holomorphic functions in D, an open
domain, v C D is a piecewise smooth path from z(a) = u to z(b) = w and
v = z (x) with z € (a,b) while G is a primitive for the function g on ~.

For several previous results concerning three points inequalities, see [1], [2] and
[9]-[15]. For some trapezoid, Ostrowski, Griiss and quasi-Griiss type inequalities
for complex functions defined on the unit circle centered in zero, see [3]-[7].
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2. SOME PRELIMINARY FACTS

We have the following general equality of interest [8]:
Lemma 1. Let f and g be holomorphic in D, an open domain and suppose v C D
is a piecewise smooth path from z (a) = u to z (b) = w and v = z (z) with x € (a,b).

If G is a primitive for the function g on vy, then for any complex numbers o, B we
have

(2.1) f(w)[G(W)—B]Jrf(U)[Oé—G(U)]+(ﬁ—a)f(v)—/f(2)g(2)dz

and

If we add these two equalities, we get

/ f’(z)(G(z)w)dH/ F(2) (G (2) — B) d=
— S0 (G0 —a) - [ (G- - [ [

+f(w)(G(w)—/J’)—f(v)(G(v)—B)—/ f(2)g(z)dz

Yo, w

:f(w)(G(w)—5)+f(U)(Ot—G(U))+(ﬁ—a)f(v)—/f(Z)g(Z)dz,

~

which proves the desired result (2.1). O



4 S.S. DRAGOMIR

Corollary 1. With the assumptions of Lemma 1 and if 5 # o and w # u, then

22) f(w)[G(w)—5]+f(u)[04—G(u)]+<f}_a)wiu/f(v)dv

w—u —Uu

el RACHICEE

:(w—lu)z/q <A £ (2) [G(z)—a]dz) dv
+(w_1u)2/</ f’(Z)[G(Z)—B]dz>dv~

v,w

Proof. Taking the integral on v over v we have

(w—U){f(w)[G(w)—B]+f(U)[a—G(U)]}Jr(B—a)/f(v)dv

~

which is equivalent to (2.2). O

If we take in (2.1) @« = sG(u) + (1 —s)G (v) and 8 = (1 —s) G (v) + sG (w),
then we get
(23) A=9s){f(W[G(w) -G @)+ f(u)[G () -G )}
sl6w) -G W) - [ £()g()ds

Y

:/ £ (2)[G(2) = sG (u) — (1— ) G (v)] dz

+/ £ (2) G ()~ (1-5) G () - 5G (w)]dz

v, w

for s € 0,1].
If we take in (2.3) s = 1, then we get the Montgomery type identity

(24) (G (w)— G w)]f (v) - / F(2)g(2)dz
- / (2 (G (2) - G (w)] dz + / ' (2)[G (2) - G (w)] d=.

Yo, w
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If in (2.3) we take s = 1, then we get

(2.5) % {f () [G (w) = G ()] + f (u) [G(v) = G(u)] + [G (w) = G (w)] f (v)}

f/f(Z)g(Z)dz
:/ £ (2) [G(z)— G(“);G(U)} dz
+/ £ (2) [G(z) - G(”);G(“’) dz
If in (2.3) we take s = 0, we get
(26) f(w)[G(w) -G ©)]+f )G -G )
_ / f'(2)[G(2) - G )] dz + / '(2)[G (2) - G (v) dz

If in (2.1) we take

111111

then we get

111111
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Moreover, if we take the integral mean over v € 7 in (2.3), we get

wl_u/vG(v)dv}

+f (u) {I/G(u)dve(u)”

289 a9 {7 6w -

w—u

Y FIOTy WSO
—wiu/</ f’(z)[G(z)sG(u)(1s)G(v)]dz>dv

1

+w—u/</ f’(Z)[G(Z)—(1—3)G(U)—5G(w)]dz>dv,

for all s € [0,1].
In particular, for s = 1 we get

1

29) (6w -G = [ @~ [ )90

w;/y(/mf’(z)[(;(z)G(u)]dz) &
+wiu/7(/Mf’(zﬂG(z)—G(w)]dz) dv.

Suppose v C C is a piecewise smooth path parametrized by z(t), t € « from
z(a) =wu to z (b) = w with w # u. If f and g are continuous on ~y, we consider the
complex Cebysev functional defined by

Do) =y [ F@e@de - i @t o

Now, if we use (2.9), then we get the representation

1 ! —G((w)dz | dv
(2.10) Dw(f,g)—(wu)g/7</mf(Z)[G(Z) G ( >1d>d

+<w1u>2/w</w

f(2)G(2) = G (w)] dz) dv.

v,w
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For s = 1 we get from (2.8) the following equality as well:

e 5{rwlew- / G w)av]

N

_ wiuL< Mf'(z) [G(z)—G(u);G(v)] dz> dv

+wiu/< Fe)|6e - FE ) dz) o,

3. THREE POINT INEQUALITIES IN TERMS OF p-NORMS

+f (u) {wl—u[{G(v)dv—G(u)}}
+;G(wzz_f(u)[yf(v)dv—[yf(z)g(z)dz

We consider the norms sup-norm or oo-norm defined by
1£1ly,00 :=sup [f (2)]-
zZEy

We also define the p-norm with p > 1 by

151 ( [uer |dz|>1/p.

1Al o= / 1 ()] |dz]
Yy

We have the following result:

For p =1 we have

Theorem 1. Let f and g be holomorphic in D, an open domain and suppose vy C D
is a piecewise smooth path from z (a) = u to z (b) = w and v = z (x) with x € (a,b) .
If G is a primitive for the function g on vy, then for s € [0,1] we have

(3.1)

(1—8){f(w)L g(Z)dz+f(u)Luvg(z)dZ}+8f(v)/ g(2)dz

v, w u,w

—Lf(Z)g(Z)dz

< B(s,v)

|dz|

g(y)dy—(l—S)/ g(y)dy

z,v

|dz| .

(18)/7 g(y)dyS/7 9(y)dy

v,z z,w
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Moreover, we have

(3.3) B(s,v)

gs{ / G / ) dy
+(1—s/

maXzev, , |f/ | f—yum

<) (F |f’()> ( I

pq>1and Jr

f%z 9(v) dy‘ |dz|

L, 9 dy\ L, 1 ),

maxeeq, , |f (S, |f, o) dy|1dz]

maxzevum

e (b rer)” ( 0 s az)

pq>1and +*

I, .9 dy} 1 @)1zl

maXzey, .,
max.e~, , [f' (2 %:w ‘f%,v dy‘ |dz|
1/p q 1/q
/
a9l (Lo 1rer) ( gy 1ax)
pg>1and 5+ =
max.e,, [, 9 dy]f £ @)z

for any v € v and s € [0,1].

Proof. From the identity (2.3) we get

(1— ) {f () [G (w) — G ()] + f (u) [G (v) — G (u)]}
+5[G(w)fG(U)]f(v)f/f(Z)g(Z)dz

Y

— / f'(2) 5 (G (2) = G () + (1 = 5) (G (2) — G (v)] d

+/ ()1 =9)(G(z) =G ) +5(CG(2) = G(w))]dz,

v, w
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that can be written in terms of integrals as

(3.4) u@{ﬂm/ g@ﬂﬂhﬂ@/ g@ﬂ%+&ﬂw/ 9(2)dz

Yo,w Yu, u,w

Af@ww%z
=/%)f’(2) [s/ng(y)dy_(1_8)/v27,g(y)dy1 dz
o

f'(2) [(1 - 8)/ 9(y)dy — s/ 9(y) dy] dz,
Yov,z Y
for s € [0,1]. This is an equality of interest in itself.

Taking the modulus, we have

v,w

u—@{ﬂw/ 9=+ £ ) [ M@w}HNWL g(2)dz

Yo, w Yu,v

for s € [0,1], which proves (3.1).
Further, we have

+(1—s)

L g9(y)dy

/Mg(y)dy

|M+a—@/ (=)

w,v

Bso)< [ W@NF

+ s

111111

—sAwwun

+uf@/ (=)

v,w

/%zg(y)dy
/%.zg(y)dy

|wwg/ (=)

v,w




10 S.S. DRAGOMIR

g(y)dy

"(2) /vzvg(y)dy
l y)dy d”z”/%w (=)

+<1—s>/ (=)

L 9(y)dy

z,w

dz] + / ()] |dz|}

dz| + / (=) / 9 (y) dy
Yo, w Yov,z

/7 9(y)dy

z,w

IdZI}

Idzl}
/ 9(y)dy

z,v

|dz|,

which proves the first inequality in (3.3).
Using Holder’s integral inequality, we have

max.c, |1 () L, |[, o) dy| Iz

12| < (f% \f’()) ( ’f g(y)dy‘qle\)l/

p,q>1and +f

L )

u,v

[y 9(y)dy

u,z

maxees, [, o) dy( L 1 ()de

L., ‘f»yz,w 9(®) dy‘ \dz|

111111

q 1/
s ay] 1ax)

maxee,,, [, g@dy| [, 1F @),

and

maxees,, 1F (S, |f, o) dyldz]

>1/

@< (h 171G ) ( N gw |
+

p,q > 1 and

1,1
P q

/. dy\ 1 ()] lde]

MaXzey,, 4,
for any v € 7. ([l

Remark 1. If we take s = 0 above, then we get the generalized trapezoid type
inequalities

65 |t [ s@ariw [ g@d- [1GE e <BOY

v,w w,v Yy
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where
B = [ 7@l @
w[ el swaiee.
v, w ’Yv,z
Moreover, we have
(36) B(0.v) < / 1 (2)| / g () dy| |dz|
w,w Yz,v
max.c,,  |f () [, |[, 9@ dy|l
1/p q 1/q
e ( [0 9w dy| )

1 1
p,q>lan5 E—

) dy\ L, 1 ),

maxzeryu,w f"yz,v g

for any v € ~.
For s =1, we get

(3.7) ‘f(v)/ 4 (2) dz—/f<z>g(z> dz| < B(1,v)

|dz| .

/7 9(y)dy

z,w

a1+ [ 17 )

v, w

L 9(y)dy

u,z

Moreover, we have the Ostrowski type inequality

(3.8) B(L,0)

gL L

wu,

|dz|

ng(y)dy

z,

dz| + / (=)

v,w

/7 Zg(y)dy

u,
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max.c, |1 () [, |f, o) dy| Iz

q 1/q
L, 9w dy| ldz])

(hrer)” (1,

< ,
p,qg>1 and%—i—%:l;
max.c,, [, o@)dy| [, |f (2)|ldz],
max.es,, 1/ [, |f, @) dy|la
1/p q 1/q
/ p
(@) (| s y] a)
p,qg>1 and}%Jr%:l;
max.e, [, gwdy| [, If ()]l
for any v € ~.

Finally, by taking s = % above, we get

(3.9)

;{f(w)[y g(z)dz—kf(u)/vwg(z)dz+f(v)[yu’wg(z)dz}

v, w

where

Moreover, we have
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max.c, | (N[, | [, g()dy|ldz]
1/p q 1/q
<! (f LG )\p) (f - f%,zg(y)dy‘ IdZI)
2 p,q>1 and * + =
max.es,, |f, 9(v) dy\f £ ()] Il
max.e,, , f' (2 ‘f 9(v) dy) |dz]
1/p q 1/q
)T o &)
2| pgq 1 and % % =
maxeey, , | [, 9 () dy\ Ly, 1 )l
max.e,, 1 (S, |f, o) dy)ldz]
1 % p q 1/
Lz <7u 1f' (= ) (7 9(y)dy )
2 p,q>1 and % + % =
MaXzey, ., f"/z,u g(y) Vet |f/ (Z)| |dz|7
forven.

4. RELATED RESULTS

Let f and g be holomorphic in D, an open domain and suppose v C D is a
piecewise smooth path from z(a) = u to 2 (b) = w and v = z(z) # u, w with
€ (a,b). If G is a primitive for the function g on -y, we can consider the functional

1

w—v

(41) G(f,g,%v) = f(’LU) [G (w) -

1

+<w1_0/7 cwiy = [

We observe that, by (2.7)

(12) G (fig,70) = f’(z)[cuz)—viu/ G(y)dy]dz

Yu,v

+ f(2)
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Since, obviously

[G(z)v_u/ G(y)dy |dz=0

and
1

w—v

G(2) -

/

then from (4.3) we get in fact the more general identity in terms of two complex
parameters o, 3 € C

y

v,w v,w

v—1u

(43) G (fg.7,0) = / (' (=) - )

u,v

G(z)— ! / G(y)dy]dz

w—v

+L (' ()= )

v, w

G(z) — ! / G(y)dy]dz.

Theorem 2. Let f and g be holomorphic in D, an open domain and suppose v C D
is a piecewise smooth path from z(a) = u to z(b) = w and v = z (z) # u, w with
€ (a,b). If G is a primitive for the function g on vy, then

@) Glharols [ FE-allGE -t [ Gudy| i
t [ 1r@-acE- o [ Gwd |l =B,

Moreover, we have

(4.5)  B(a,B,v)

FE=allf, |G- ), Gw)dy|ldzl,

maXzey, ,

(f’yu’v |{/ (f) _1a|p 1dZ|)1/p (f’Yu,u ’G (z) - viu f'yu,v G (y) dy ‘q |d’z|>1/q
p, ¢>1, » + =L

IN

max.e, |G (2) = 55 [, Gy | [, 1f(2) - alldz]

max, |f(2) =61, |GG -2 ), G)dy |lde]

e e-srie)” (1 Je@ -2, ey [Ne)

p,g>1, p+o=1,

v,w

1
q

MaAXy, W

G() = L, Gy | [, 1f (=)= Blldsl.

The proof follows by the identity (4.3) on taking the modulus, using the triangle
and Holder’s integral inequalities. We omit the details.
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Remark 2. If we take B = « in the above Theorem 2, we get

@6) [G(fom)l< [ I1f@-al|6E) - [ Gudy|las
+[ re-dle@ - [ Gudy |t = Blav).
Moreover, |
(4.7) B(a,v)
max.ey,, |f () ol [, |G() =i [, Gy |1z,
P q 1/q
(@ —arie) (1 e@ - | a)

1 1 _
b, q>17 ;+5_1a

max.e, , |G (2) = o5 [, Gwdy | [, 1f'(2) - alldz]

max,, |f'(z) —af f%w ‘G(z) - L f%‘w G (y)dy ’ |dz|

U r@=-arie) (1 e -2 ), cwdy | ael)

1
b, q>17 5+

MaAXy,,w

G(:) =3k [, Gy | [, 1f(z) - alldz]

max.c,,  |f ()= ol (f, |G() =55 [, Gy)dy |ldz]
+f, |e@ -5, Gy |l),

(£, 17 ) —aP Idzl)l/p (L. |6 -1, cwdy | e

q 1/q
+f, 6@ -5, Gy | )
p,g>1 s 4o =1,

IN

Lo 1 (2) = alldz] (maxees, |G () = 55 [, Gw)dy |
tmax,, |G () - L, Gy ).

Suppose v C C is a piecewise smooth path parametrized by z(t), ¢t € ~ from

z(a) = u to z (b) = w. Now, for ¢, ® € C and v an interval of real numbers, define
the sets of complex-valued functions [8]

U, (¢,®) := {h:7—>(C|Re {(@—h(z)) (W—&)} >0 for each zE'y}

and

A, (¢, ®) = {h:’y%(ﬂ 'h(z)¢;@‘§;|¢¢| for each zE’y}.
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The following representation result may be stated.

Proposition 1. For any ¢, ® € C, ¢ # ®, we have that U, (¢, ®) and A, (¢, ®)
are nonempty, convex and closed sets and

Proof. We observe that for any w € C we have the equivalence
p+®| 1
_ < |-
w212 < e g

if and only if B

Re [( —w) (@ — )] > 0.
This follows by the equality
2

1 o+ @ =
4@¢2P2 =Re [(®—w) (@ - ¢)]
that holds for any w € C.
The equality (4.8) is thus a simple consequence of this fact. (]

On making use of the complex numbers field properties we can also state that:
Corollary 2. For any ¢, ® € C, ¢ # ®,we have that
(4.9)  U,(¢,®)={h:v—C| (Re® —Reh(z))(Reh(z) — Re¢)
+(Im®—-Imh(z) (Imh(z) —Ime) >0 for each z € v} .
Now, if we assume that Re (®) > Re (¢) and Im (®) > Im (¢) , then we can define
the following set of functions as well:
(4.10) S, (¢,®):={h:v— C| Re(®) > Reh(z) > Re(¢p)
and Im (®) > Imh (z) > Im (§) for each z € ~}.
One can easily observe that S, (¢, ®) is closed, convex and
(4.11) 05, (6,9) C T, (6,0).

Corollary 3. Let f and g be holomorphic in D, an open domain and suppose
v C D is a piecewise smooth path from z(a) = u to z (b) = w and v = z () # u,
w with x € (a,b). If G is a primitive for the function g on 7 and there exists the
constants ¢;, ®; € C, ¢; # ®;, 1 € {1,2} with f' € A, (¢, P1) N A%,w (¢g, P2),
then

1 1
(@12 (G(Lgrl <ol [ 6@ - [ Gyl
YV VU Sy,
sylta-ol [ |6~ [ Gy |l
2 ’ : Yov,w : w—=v Yov,w Y Y o
In particular, for ®1 = @2 = @ and ¢ = Py = ¢ we get
1 1
(113) |G (f.g.70)| < Ll2— o V G-t [ Gdy |l
¥ U= UJy

u,v w,v
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5. SOME UNWEIGHTED INEQUALITIES

Let f be holomorphic in D, an open domain and suppose v C D is a piecewise
smooth path from z (a) = u to 2z (b) = w and v = z (z) with « € (a,b). The case

g(z) = 1, z € C in the inequality (3.7) gives simple unweighted inequalities as
follows:

(5.1) A =s){f (w) (w=0v)+ f(u) (v —u)} +sf (v) (w—u)

—/A/f(z)dz

< B(s,v)

where

(5.2) B(s0) ::/ 1 (2)] |2 = su— (1 — 5) ] |d2]

u,v

+/ ()] |z — (1 8)v— sw] |dz].

v, w

Moreover, we have

(5.3) B(s,v)

<s {/ ()] |2 — ] |da] +/ () |w - |dz|}

+1-9) [ 1@l

Yu,w

max.c, | ()| [, 17— ulldz]

<s (f% /' (2 )|p) v (ffyu.v \z—U|q\dz|>1/q

p, ¢ > 1 and —|— = =1;
max.ey, , [z —ul [, [f(2)]ldz],
max.ey, |f’ )| f%‘m |lw — 2| |dz|

vl e @r) (1, e ataz)

p,q>1and%+%:1;

maXzey, , lw — 2] f’Yu,w Lf"(2)] 1d=],

max.co, | ()| [, o | |dz]

viand @) (1, i)

P, q>land%+%:1;

max.e,, o=zl [, |f(2)]|d],

for any v € v and s € [0,1].
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For s = 0 we get the trapezoid type inequalities

(5.4) f@ﬂw—@+fWM%ﬂU—/f&Msz®w)
where
(5.5) Bmw»=/‘|funv—mwa.

u,w

Moreover, we have

max.e,, . |f (2)] f"/u,w |v — 2| |dz]|
’ q 1/q
66  BOw< ngv<>|) " ([l =17 az1)
- U1 )
P, q > 1 an d 5 E 17
maxz@u’w — z| f \f’ ) |dz],

for any v € 7.
For s = 1 we get the Ostrowski type inequalities

(5.7) ﬂww—m—/ﬂww

< B(1,v)

where

(5.8) Buww:/'|fwnvfmw4+/'|f@nv7wwa.

u,v v, w

Moreover, we have

max.ey, [ ()] [, |2 ulldz

(5.9) B(1,v) < (fvw |f! (zﬂp)l/pl(fwu 2 — ul? |dz|)1/q

D, q>1and5+azl;

maxqcy, |z —ul [, | (2)]]dz],

maxze%,w 11N, lw—z]ldz|

7,1 1.
p,q>1and5+5—1,

=zl [, I ()lldz],

maxXzeqy, , W

for any v € ~.
1

For s = 5 we get the mixed inequality

(5.10) % {f (w) (w—=2v) + f (u) (v —u) + f (v) (w—u)}

+ (f%,w |f (Z)‘p) v (f’yvyw |w — z| |dz\)1/q
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where

(5.11) B (;v> :L 1f" (2)] |

Moreover, we have

(5.12) B (;v>

u+v

|dz| .

1
<s {/ £ @le=lldsl+ [ 17 @l -adldel+ [ 1 G- |dz}
u,v ’Yv,w 'Yu,w
maXzey, , ‘f/ (Z)l f’Yu,u |Z - u| ‘d'z|
1/p 1/q
(e w? ([, 1= —ul|dz])
2 p,q>1andp+3:1;
maXzE’yuv ’U,|f |f/ | \dz|,
max.e,, , |f' (2 |f%7w |w — z||dz]
1 , a1y 1/q
i1 (L, 1F (2 >|1) 1(f,yw = 2 |dz])
p,g>1land 5+ o =1;
max.c,,  fw—z| [, [f'(2)|ldz],
maszW”” lf ()] f |v — 2| |dz|
1/p 1/q
L @) (L e 2l )
2 p,q>1and%+%:1;
max.e,, v =2l [, 1 (2)]1dz].
for any v € 7.

Let f be holomorphic in D, an open domain and suppose v C D is a piecewise
smooth path from z (a) = u to 2 (b) = w and v = z (x) # u, w with z € (a,b). If
g(z) =1 on v, we can consider the functional, derived from (4.1) for s = 1, defined
by

[f (w) (w = v) + f (u) (v = u) + (w —u) f (v)]

DO =

(5.13) G (f,7,0v) =
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(5.

for

(5.

for

(5.

for

(1]
2]
(3]

S.S. DRAGOMIR

Now, by utilising the inequality (4.4), we get

14) IG(f,g,%v)IS/ 1 (2) - of

Yu,v

any v € v and «, § € C.
Moreover, we have

15) B(a,B,v)
max.c,,  |f' (2) —al f%‘u |z — 2| |dz|,
1/p 1/q
<d (L 181G =allasd) (e e asl)
p, q>].7 E+a:17
max.c,, | = 22 [ 17'(2) ol |dz
max,, , [f'(2) = Bl [, |z —*5*]ldz|
1/p ) 1/q
2 ()~ o dz) (Lo ] jax))
p, q>].7 5"‘521,
masc,, 2= 252] [, 117 () - Bl |dz],
vE~vand a, f €C.

If f' e Am,w (¢, @), then by (4.13) we get

1 u+v v+ w
16) |G (f.v,0)l < 5[2— ¢ z— |dz| + - |dz]|
2 ’Yu v 2 ’Y’U w 2
v e .
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