INEQUALITIES OF HERMITE-HADAMARD TYPE FOR
K-BOUNDED MODULUS CONVEX COMPLEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let D C C be a convex domain of complex numbers and K > 0.
We say that the function f: D C C — C is called K-bounded modulus convex,
for the given K > 0, if it satisfies the condition
1
(A=) f @)+ A (W) = (A =Nz + M) < KA1 =A) |z —y|?

for any z, y € D and X\ € [0,1].

In this paper we establish some new Hermite-Hadamard type inequalities
for the complex integral on v, a smooth path from C and K-bounded modulus
convex functions. Some examples for integrals on segments and circular paths
are also given.

1. INTRODUCTION

Let (X; |||l x) and (Y7 ||-]|y) be two normed linear spaces over the complex num-
ber field C. Let C be a convex set in X. In the recent paper [3] we introduced the
following class of functions:

Definition 1. A mapping f: C C X — Y is called K-bounded norm convez, for
some given K > 0, if it satisfies the condition

1
D) A=) f @) +Af(y) = F(A =N+ 2)lly < EAA =N [lz — yllx
for any z, y € C and X € [0,1]. For simplicity, we denote this by f € BNk (C).
We have from (1.1) for A = } the Jensen’s inequality

)l

1 2
SO <K lle -l

for any z, y € C.

We observe that BN i (C) is a convex subset in the linear space of all functions
defined on C' and with values in Y.

In the same paper [3], we obtained the following result which provides a large
class of examples of such functions.

Theorem 1. Let (X, ||| ) and (Y, ||-||y-) be two normed linear spaces, C an open
conver subset of X and f : C — Y a twice-differentiable mapping on C. Then for
any z, y € C and X € [0,1] we have

(12) =) F @) +AF )~ F (1= N+ )lly < 5KAQ-N) g~ 2]k,
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where

(1.3) K= sup |f" (2)ll o (x2.v)
zeC

is assumed to be finite, namely f € B./\/Kf,, (C).

We have the following inequalities of Hermite-Hadamard type [3]:

Theorem 2. Let (X;|-||y) and (Y;|-|ly) be two normed linear spaces over the
complex number field C with' Y complete. Assume that the mapping f : C C X —Y
is continuous on the convex set C in the norm topology. If f € BNk (C) for some
K > 0, then we have

R i AR ERPVLY ) SR

Y
and

s

1
T+y 1
[ra-neexmon-r ()| < grie- i}
0 Y
for any x, y € C.
The constants 1—12 and i are best possible.

For a monograph devoted to Hermite-Hadamard type inequalities see [5] and the
recent survey paper [4].

Let D C C be a convex domain of complex numbers and K > 0. Following
Definition 1, we say that the function f : D C C — C is called K-bounded modulus
convex, for the given K > 0, if it satisfies the condition

(16) 1= N F @)+ Af ()~ f (1= N+ )] < SEAQ=A) [ P

for any x, y € D and X € [0, 1]. For simplicity, we denote this by f € BMg (D).

All the above results can be translated for complex functions defined on convex
subsets D C C.

In the following, in order to obtain several inequalities for the complex integral,
we need the following facts.

Suppose 7 is a smooth path from C parametrized by z (t), ¢t € [a,b] and f is a
complex function which is continuous on ~. Put z (a) = w and z (b) = w with u,
w € C. We define the integral of f on v, , = as

b
/f(z)dz: f(z)dz ::/ F(z(t) 2 () dt.

We observe that that the actual choice of parametrization of v does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose
« is parametrized by z (t), ¢ € [a,b], which is differentiable on the intervals [a, c]
and [c, b], then assuming that f is continuous on v we define

f(z)dz = (2)dz + f(z)dz
Yu,w Yu,v Yo, w

where v := z(s) for some s € (a,b). This can be extended for a finite number of
intervals.
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We also define the integral with respect to arc-length

b
f(2)|dz] == / f (= (@)17 (1) di

and the length of the curve v is then

£<v>=[m|dz|=/:|z'<t>|dt.

Let f and g be holomorphic in D, and open domain and suppose v C D is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
by parts formula

(1.7) f(2)g (2)dz = f (w)g(w) = f(u)g(u) - / f'(2)g(2)dz.

Yu,w Yu,w

We recall also the triangle inequality for the complex integral, namely

/ f(2)dz| < / F @) ld2] < 1f ] ()

where || f]l, o = sup.e, [f (2)]-
We also define the p-norm with p > 1 by

191, = ( [uer |dz|)1/p.

91,0 = [ 17 @)l

If p, ¢ > 1 with % + % = 1, then by Hoélder’s inequality we have

£, < AL, -

Motivated by the above results, in this paper we establish some new Hermite-
Hadamard type inequalities for the complex integral on 7, a smooth path from C and
K-bounded modulus convex functions. Some examples for integrals on segments
and circular paths are also given.

(1.8)

For p =1 we have

2. INTEGRAL INEQUALITIES
We have:

Theorem 3. Let D C C be a conver domain of complex numbers and K > 0.
Assume that f is holomorphic on D and f € BMyg (D). If v C D parametrized by
z(t), t € [a,b] is a piecewise smooth path from z (a) = u to z(b) = w and v € D,

then
1) | [ 1@ s 0w (B2 o) | -] < 5K [ -0
In particular, we have for v = “’;r“ that
w4 u 1 w+ul?
(2.2) Lf(z)dz—f( 5 )(w—u)§2K/y‘ - |dz|
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Proof. Let x, y € D. Since f € BMg (D), then we have

£ (U= X2+ 2) = @)+ AL (@)~ @)l € KA1 =N fo — ol
that implies that

flat+Aly—=)—f(z)

. K (1= - yP

+f(x) = fy)| <

DO =

for A € (0,1).
Since f is holomorphic on D, then by letting A\ — 0+, we get

7 @) =)+ @)~ F0)] < 5K |~y

that is equivalent to

(23) )~ F @)~ (@)~ 2)] < 5K ly — o

for all z, y € D.
We have

(2.4) / F(2) = £ () — F () (= — )] d

/f )dz — f /dzf(v)(devadz)

:/f 2)dz — f () (w—u) — f (v) [Q(wz‘—u?)—v(w—u)}

- [r@a= s rw (5 o) w-w
for any v € D.

By using (2.3) we get

dz[ f()(“";“v)]@uu)
/|f I w) (2 v)ldz] < K/|z—v| dz]

for any v € D, which proves the inequality (2.1).

If the path v is a segment [u, w] C G connecting two distinct points v and w in

G then we write [ f(z)dz as [ f(z)dz

Corollary 1. With the assumptions of Theorem 8 and suppose [u,w] C D is a
segment connecting two distinct points u and w in D and v € [u,w]. Then for

v=(1—s8)u+sw with s € [0,1], we have

(2.5) 2)dz — f((1 = s)u+ sw) (w—u)
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In particular, we have, see also (1.5),

[ i@ (U5 w-w

Proof. 1t follows by Theorem 3 by observing that

1
< —Klw—ul’.

(2.6) <5

w 1
/ |z—v|2|dz\:|w—u|/ (1= t)u+tw— (1 —s)u — sw|*dt
u 0
1
:|w7u|/ (1 —t)u+tw— (1 —s)u— sw*dt
0
s [ 2 1 3 3, .3
—lw—uf [ (t—s)2dt=>|w—ul [(1—3) +s]
0 3

for s € [0,1].

Theorem 4. Let D C C be a convexr domain of complex numbers and K > 0.
Assume that f is holomorphic on D and f € BMy (D). If v C D parametrized by

z(t), t € [a,b] is a piecewise smooth path from z (a) = u to z(b) = w and v € D,
then

@1 3=+ @00+ 0)w-wl- [ 16

Y

¥
In particular, we have for v = wTJr“ that
(2.8) ’; [f(w);rf(“) +f (w;”‘)] (w—u)— | f(z)dz
2
P tu |dz|.

Proof. By using (2.3) we get

@9 [ -1 @0l < 3K [ o 2Pl

~

for v € D.
By the complex integral properties, we have

(2.10)

/[f(v)—f(z)—f'(z) (v —2)]da

S/If(v)—f(z)—f’(Z) (v — 2)]|dz|

for v e D.
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Using integration by parts, we get

/[f(v)—f(Z)—f’(Z) (v—2)] dz

7 v)/dz—/f(z)dz—/f’(z)(v—z)dz
= w— u) /f dz—{ ) (v —2)],) —l—/f dz}

=f(w)(w—u —/f z2)dz — f(w)(v—w)+ f(u) (v—u —/f (z)dz
= F) =)+ f@ @0+ 7 0) =) =2 [ ()

which implies that

Q1) 31 ) (0= o)+ () (0 =)+ ) o) = [ )z
]' !
ST L EC RV CREACICRRIEE
for v e D.
By utilising (2.9)-(2.11) we get the desired result (2.7). O
We have:

Corollary 2. With the assumptions of Theorem 3 and suppose [u,w] C D is a
segment connecting two distinct points u and w in D and v € [u,w]. Then for
v=(1—-s)u+ sw with s € [0,1], we have

(2.12) ‘;[(1—s)f(w)+sf(u)+f((1—s)u+sw w — u) _/wf(z)dz

gﬁmw—m [(1—3)3+33].

- _ wt
In particular, we have for v = *5* that

(2.13) ‘; [erf(w”ﬂ (w—u)—/uwf(z i

S@KW_M

We observe that, if f is holomorphic on D and K = sup,cp |f” ()| is finite,
then by (2.1) and (2.2) we have

@z [10)+7 ) (L2 - )]

<s sup (2 >|/\z—v\2|dz|
i

(2.14)
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for all v € D. In particular,

e (U5 w-w

(2.15)

Id\-

From (2.7) and (2.8) we get

z€E lo%
for all v € D. In particular,
(2.17) ‘; [W+f<W+U>:| (w—'LL)
w+u 2

z —

- [ 1@ < gl @) [ a2].

1ot 4 z€D 5

The inequalities (2.14)-(2.17) provide many examples of interest as follows.

If we consider the function f(z) = expz, z € C and v C C parametrized by
z(t), t € [a,b] is a piecewise smooth path from z (a) = u to z(b) = w then by
(2.14)-(2.17) we have by the inequalities

w+u

(2.18) |expw —expu — (1+2—v) (w— u)expv

1
< gsupfesps| [ [z~ of*ds
2 z€D ¥

for all v € C. In particular,

(2.19)

w—+u
expw—expu—exp( 5 )(w—u)

2
w+u

1
< 2 sup Jexp2|
2 zeD

|dz| .

We also have

1
(2.20) ‘ [(w—v)expw+ (v —u)expu+ (W — u) expv] — expw + expu

2

p|expz|/|z—v| |dz|.

.N»—*

for all v € C. In particular,
1
(2.21) ‘2 [W +exp (T)] (w— )

1 w—|—u
—expw + expu| < — sup |exp z|
4Z€D ¥

z —

|dz|.
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Consider the function F (z) = Log(z) where Log(z) = In|z| + ¢ Arg(z) and
Arg (z) is such that 0 < Arg(z) < 27. Log is called the "principal branch” of the
complex logarithmic function. F is analytic on all of C\{z +iy:z >0, y =0}
and F’ (z) = 1 on this set.

If we consider f : D — C, f(z) = £ where D € C\{z +iy:z >0, y =0},
then F' is a primitive of f on D and if v C D parametrized by z (t), t € [a,b] is a
piecewise smooth path from z (a) = u to z (b) = w, then

/ f (2)dz = Log (w) — Log (u) .

For D ¢ C\{z+iy:z >0, y =0}, define d := inf,cp |z| and assume that
d € (0,00) . By the inequalities (2.14)-(2.17) we then have

Log (w) - Lo () - |1 - o5 (“5 o) |-

v v
1/ 9
< = [ |z—v|"|dz|
d3 .

(2.22)

for all v € D. In particular,

(2.23)

Lo ) ~ Log () — (3 “) (=)

We also have

l/w—v v—u w—u
(2.24) ‘2( " + " + ” >Log(w)+L0g(u)

for all v € D. In particular,
U+ w L w+u) " (w — )
2uwu 2 v

1 w+u
— Log (w) + Log (u)] /‘z—
.

(2.25) %

2
|dz|.

<
- 243 2

3. EXAMPLES FOR CIRCULAR PATHS

Let [a,b] C [0,27] and the circular path [, ;) r centered in 0 and with radius
R>0

z (t) = Rexp (it) = R (cost + isint), t € [a,b].

If [a,b] = [0, 7] then we get a half circle while for [a,b] = [0,27] we get the full
circle.
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Since

els _ eit|2 _ |6is|2 — 9Re (ei(sft)) + |6iti2

—t
:2—2cos(s—t):4sin2<s2 )
sin st

2
sin st
2

for any ¢, s € R, then

T

(3.1) e —et|" = 2"

for any ¢, s € R and r > 0. In particular,

ets _ezt‘ -9

for any t, s € R.
For s = a and s = b we have

. (a_t>
sin | ——
2

If u = Rexp (ia) and w = Rexp (ib) then

|ei“—e“| =2 and |eib—e”| =2

) <b—t>‘
s | —— .
2

w —u = R[exp (ib) — exp (ia)] = R[cosb + isinb — cosa — isina)

= Rcosb—cosa+i(sinb—sina)].

Since
. a+b\ . b—a
cosb —cosa = —2sin [ —— | sin
2 2
and
inb — si 2 i b—a cos eth
sinb — sina = 2sin
S a 5 2 ,
hence

e (2] () 2 (2 ()]
= 2Rsin (1)—2a> {—Sin a;—b) +ic0s<a;b)]
:2Risin<b;a> [008<a;b> ”Sin(a;b)]
:2Risin<bga>exp[<a;b>i :

We also have

2’ (t) = Riexp (it) and |2/ (t)| =R

for ¢t € [a,b].
In what follows we assume that f is defined on a domain containing the circular
path v}, ) r and that f is holomorphic on that domain.
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Consider the circular path v, ;) z and assume that v = Rexp (is) € (4 4), With
s € [a,b]. Then by using the inequality (2.1) we get

Ri / f (Rexp (it)) exp (it) dt

- {f (Rexp (is)) + f' (Rexp (is)) (RGXP (ib) 42- Rexp (ia)

.. (b—a a+by
X 2Ri sin <2> exp [( 5 ) ’L:l

1 b
< sup |f" (Rexp(it))\R/ |Rexp (it) — Rexp (is)|” dt
t€la,b] a

- Rewp is))|

1 . [? —t
= - sup |f" (Rexp (it))|R‘3/ 4 sin? <52> dt

2 t€la,b]

b —_—
=2 sup |f” (Rexp (it))|R3/ sin? <52t> dt,

t€la,b]

which is equivalent to

(3.2) / " F (Rexp (i) exp (it) di
~ 2R (Rexp is) + (zzexp s (= “”: )
HENEY
<2 sup 11" (Resp )| / ' in? (S;t) dt
for s € [a,b].
Since

o (s;t) _ 1—0052(5—15),

hence

2

:1 b—a—2sin b_—a cos a+bfs
2 2 2

_b—a . b—a a+b

= sin 5 cos 5 s

for s € [a,b].

"1 —cos(s—
:/ 17(t)dt:%[b—a—sin(b—s)—sin(s—a)]
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Therefore by (3.2) we get

53 |f " (Rexp (1)) exp (i)
~ 2R (Rexp i9) + £ (exo o)) ( SPEERE — p i)|
)2
<2 o o ) [ s (15 ) (857 )
for s € [a, ]

a+b
2

In particular, for s = , we obtain from (3.3) the best possible inequality

b
(3.4) / f (Rexp (it)) exp (it) dt

_9R [f <Rexp (a;bz» +f (Rexp <“"2H’z>)
) (exp (ib) o () <a—2&—bl>)]
)]

<2R? sup |f" (Rexp (it))| [b_za ~sin (b;aﬂ '

t€la,b]

By utilising the inequality (2.16) for the circular path v, ;) r and v = Rexp (is) €
Viap,r With s € [a,b], we also get

(3.5) | f (Rexp (ib))sin (’?) exp [(8 : b) Z]
v (5 ()]

+ f (Rexp (is)) sin (19—2a) b Ka—;—b) l]

- /a bf (Rexp (it)) exp (it) dt

< R? sup |f” (Rexp (it))] [b;a — sin (b ; a) cos (a—;—b - 8)] :

t€la,b]




12

S.S. DRAGOMIR

In particular, for s = %2, we get from (3.5) best possible inequality

2

(3.6) ’f (Rexp (bi)) sin (b;“) exp K“ Z‘%) z}

1]

2]

3]

[4]

[5]

+ f (Rexp (ia)) sin <b;“> exp {(3“: b> z}
+f (Rexp (CH bz)) sin (l’2“> exp [(a;b) z}

b
—/ f (Rexp (it)) exp (it) dt

< R? sup |f” (Rexp (it))| [b;a — sin (b;a)] :

t€la,b]
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