# INEQUALITIES OF HERMITE-HADAMARD TYPE FOR K-BOUNDED MODULUS CONVEX COMPLEX FUNCTIONS 

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$


#### Abstract

Let $D \subset \mathbb{C}$ be a convex domain of complex numbers and $K>0$ We say that the function $f: D \subset \mathbb{C} \rightarrow \mathbb{C}$ is called $K$-bounded modulus convex, for the given $K>0$, if it satisfies the condition $$
|(1-\lambda) f(x)+\lambda f(y)-f((1-\lambda) x+\lambda y)| \leq \frac{1}{2} K \lambda(1-\lambda)|x-y|^{2}
$$ for any $x, y \in D$ and $\lambda \in[0,1]$. In this paper we establish some new Hermite-Hadamard type inequalities for the complex integral on $\gamma$, a smooth path from $\mathbb{C}$ and $K$-bounded modulus convex functions. Some examples for integrals on segments and circular paths are also given.


## 1. Introduction

Let $\left(X ;\|\cdot\|_{X}\right)$ and $\left(Y ;\|\cdot\|_{Y}\right)$ be two normed linear spaces over the complex number field $\mathbb{C}$. Let $C$ be a convex set in $X$. In the recent paper [3] we introduced the following class of functions:
Definition 1. A mapping $f: C \subset X \rightarrow Y$ is called $K$-bounded norm convex, for some given $K>0$, if it satisfies the condition

$$
\begin{equation*}
\|(1-\lambda) f(x)+\lambda f(y)-f((1-\lambda) x+\lambda y)\|_{Y} \leq \frac{1}{2} K \lambda(1-\lambda)\|x-y\|_{X}^{2} \tag{1.1}
\end{equation*}
$$

for any $x, y \in C$ and $\lambda \in[0,1]$. For simplicity, we denote this by $f \in \mathcal{B N}_{K}(C)$.
We have from (1.1) for $\lambda=\frac{1}{2}$ the Jensen's inequality

$$
\left\|\frac{f(x)+f(y)}{2}-f\left(\frac{x+y}{2}\right)\right\|_{Y} \leq \frac{1}{8} K\|x-y\|_{X}^{2}
$$

for any $x, y \in C$.
We observe that $\mathcal{B} \mathcal{N}_{K}(C)$ is a convex subset in the linear space of all functions defined on $C$ and with values in $Y$.

In the same paper [3], we obtained the following result which provides a large class of examples of such functions.

Theorem 1. Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be two normed linear spaces, $C$ an open convex subset of $X$ and $f: C \rightarrow Y$ a twice-differentiable mapping on $C$. Then for any $x, y \in C$ and $\lambda \in[0,1]$ we have

$$
\begin{equation*}
\|(1-\lambda) f(x)+\lambda f(y)-f((1-\lambda) x+\lambda y)\|_{Y} \leq \frac{1}{2} K \lambda(1-\lambda)\|y-x\|_{X}^{2} \tag{1.2}
\end{equation*}
$$

[^0]RGMIA Res. Rep. Coll. 21 (2018), Art. 130, 12 pp. Received 05/11/18
where

$$
\begin{equation*}
K_{f^{\prime \prime}}:=\sup _{z \in C}\left\|f^{\prime \prime}(z)\right\|_{\mathcal{L}\left(X^{2} ; Y\right)} \tag{1.3}
\end{equation*}
$$

is assumed to be finite, namely $f \in \mathcal{B N}_{K_{f^{\prime \prime}}}(C)$.
We have the following inequalities of Hermite-Hadamard type [3]:
Theorem 2. Let $\left(X ;\|\cdot\|_{X}\right)$ and $\left(Y ;\|\cdot\|_{Y}\right)$ be two normed linear spaces over the complex number field $\mathbb{C}$ with $Y$ complete. Assume that the mapping $f: C \subset X \rightarrow Y$ is continuous on the convex set $C$ in the norm topology. If $f \in \mathcal{B N}_{K}(C)$ for some $K>0$, then we have

$$
\begin{equation*}
\left\|\frac{f(x)+f(y)}{2}-\int_{0}^{1} f((1-\lambda) x+\lambda y) d \lambda\right\|_{Y} \leq \frac{1}{12} K\|x-y\|_{X}^{2} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\int_{0}^{1} f((1-\lambda) x+\lambda y) d \lambda-f\left(\frac{x+y}{2}\right)\right\|_{Y} \leq \frac{1}{24} K\|x-y\|_{X}^{2} \tag{1.5}
\end{equation*}
$$

for any $x, y \in C$.
The constants $\frac{1}{12}$ and $\frac{1}{24}$ are best possible.
For a monograph devoted to Hermite-Hadamard type inequalities see [5] and the recent survey paper [4].

Let $D \subset \mathbb{C}$ be a convex domain of complex numbers and $K>0$. Following Definition 1 , we say that the function $f: D \subset \mathbb{C} \rightarrow \mathbb{C}$ is called $K$-bounded modulus convex, for the given $K>0$, if it satisfies the condition

$$
\begin{equation*}
|(1-\lambda) f(x)+\lambda f(y)-f((1-\lambda) x+\lambda y)| \leq \frac{1}{2} K \lambda(1-\lambda)|x-y|^{2} \tag{1.6}
\end{equation*}
$$

for any $x, y \in D$ and $\lambda \in[0,1]$. For simplicity, we denote this by $f \in \mathcal{B} \mathcal{M}_{K}(D)$.
All the above results can be translated for complex functions defined on convex subsets $D \subset \mathbb{C}$.

In the following, in order to obtain several inequalities for the complex integral, we need the following facts.

Suppose $\gamma$ is a smooth path from $\mathbb{C}$ parametrized by $z(t), t \in[a, b]$ and $f$ is a complex function which is continuous on $\gamma$. Put $z(a)=u$ and $z(b)=w$ with $u$, $w \in \mathbb{C}$. We define the integral of $f$ on $\gamma_{u, w}=\gamma$ as

$$
\int_{\gamma} f(z) d z=\int_{\gamma_{u, w}} f(z) d z:=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t .
$$

We observe that that the actual choice of parametrization of $\gamma$ does not matter.
This definition immediately extends to paths that are piecewise smooth. Suppose $\gamma$ is parametrized by $z(t), t \in[a, b]$, which is differentiable on the intervals $[a, c]$ and $[c, b]$, then assuming that $f$ is continuous on $\gamma$ we define

$$
\int_{\gamma_{u, w}} f(z) d z:=\int_{\gamma_{u, v}} f(z) d z+\int_{\gamma_{v, w}} f(z) d z
$$

where $v:=z(s)$ for some $s \in(a, b)$. This can be extended for a finite number of intervals.

We also define the integral with respect to arc-length

$$
\int_{\gamma_{u, w}} f(z)|d z|:=\int_{a}^{b} f(z(t))\left|z^{\prime}(t)\right| d t
$$

and the length of the curve $\gamma$ is then

$$
\ell(\gamma)=\int_{\gamma_{u, w}}|d z|=\int_{a}^{b}\left|z^{\prime}(t)\right| d t
$$

Let $f$ and $g$ be holomorphic in $D$, and open domain and suppose $\gamma \subset D$ is a piecewise smooth path from $z(a)=u$ to $z(b)=w$. Then we have the integration by parts formula

$$
\begin{equation*}
\int_{\gamma_{u, w}} f(z) g^{\prime}(z) d z=f(w) g(w)-f(u) g(u)-\int_{\gamma_{u, w}} f^{\prime}(z) g(z) d z \tag{1.7}
\end{equation*}
$$

We recall also the triangle inequality for the complex integral, namely

$$
\begin{equation*}
\left|\int_{\gamma} f(z) d z\right| \leq \int_{\gamma}|f(z)||d z| \leq\|f\|_{\gamma, \infty} \ell(\gamma) \tag{1.8}
\end{equation*}
$$

where $\|f\|_{\gamma, \infty}:=\sup _{z \in \gamma}|f(z)|$.
We also define the $p$-norm with $p \geq 1$ by

$$
\|f\|_{\gamma, p}:=\left(\int_{\gamma}|f(z)|^{p}|d z|\right)^{1 / p}
$$

For $p=1$ we have

$$
\|f\|_{\gamma, 1}:=\int_{\gamma}|f(z)||d z|
$$

If $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, then by Hölder's inequality we have

$$
\|f\|_{\gamma, 1} \leq[\ell(\gamma)]^{1 / q}\|f\|_{\gamma, p}
$$

Motivated by the above results, in this paper we establish some new HermiteHadamard type inequalities for the complex integral on $\gamma$, a smooth path from $\mathbb{C}$ and $K$-bounded modulus convex functions. Some examples for integrals on segments and circular paths are also given.

## 2. Integral Inequalities

We have:
Theorem 3. Let $D \subset \mathbb{C}$ be a convex domain of complex numbers and $K>0$. Assume that $f$ is holomorphic on $D$ and $f \in \mathcal{B} \mathcal{M}_{K}(D)$. If $\gamma \subset D$ parametrized by $z(t), t \in[a, b]$ is a piecewise smooth path from $z(a)=u$ to $z(b)=w$ and $v \in D$, then

$$
\begin{equation*}
\left|\int_{\gamma} f(z) d z-\left[f(v)+f^{\prime}(v)\left(\frac{w+u}{2}-v\right)\right](w-u)\right| \leq \frac{1}{2} K \int_{\gamma}|z-v|^{2}|d z| \tag{2.1}
\end{equation*}
$$

In particular, we have for $v=\frac{w+u}{2}$ that

$$
\begin{equation*}
\left|\int_{\gamma} f(z) d z-f\left(\frac{w+u}{2}\right)(w-u)\right| \leq \frac{1}{2} K \int_{\gamma}\left|z-\frac{w+u}{2}\right|^{2}|d z| \tag{2.2}
\end{equation*}
$$

Proof. Let $x, y \in D$. Since $f \in \mathcal{B M}_{K}(D)$, then we have

$$
|f((1-\lambda) x+\lambda y)-f(x)+\lambda[f(x)-f(y)]| \leq \frac{1}{2} K \lambda(1-\lambda)|x-y|^{2}
$$

that implies that

$$
\left|\frac{f(x+\lambda(y-x))-f(x)}{\lambda}+f(x)-f(y)\right| \leq \frac{1}{2} K(1-\lambda)|x-y|^{2}
$$

for $\lambda \in(0,1)$.
Since $f$ is holomorphic on $D$, then by letting $\lambda \rightarrow 0+$, we get

$$
\left|f^{\prime}(x)(y-x)+f(x)-f(y)\right| \leq \frac{1}{2} K|x-y|^{2}
$$

that is equivalent to

$$
\begin{equation*}
\left|f(y)-f(x)-f^{\prime}(x)(y-x)\right| \leq \frac{1}{2} K|y-x|^{2} \tag{2.3}
\end{equation*}
$$

for all $x, y \in D$.
We have

$$
\begin{align*}
& \int_{\gamma}\left[f(z)-f(v)-f^{\prime}(v)(z-v)\right] d z  \tag{2.4}\\
& =\int_{\gamma} f(z) d z-f(v) \int_{\gamma} d z-f^{\prime}(v)\left(\int_{\gamma} z d z-v \int_{\gamma} d z\right) \\
& =\int_{\gamma} f(z) d z-f(v)(w-u)-f^{\prime}(v)\left[\frac{1}{2}\left(w^{2}-u^{2}\right)-v(w-u)\right] \\
& =\int_{\gamma} f(z) d z-\left[f(v)+f^{\prime}(v)\left(\frac{w+u}{2}-v\right)\right](w-u)
\end{align*}
$$

for any $v \in D$.
By using (2.3) we get

$$
\begin{aligned}
& \left|\int_{\gamma} f(z) d z-\left[f(v)+f^{\prime}(v)\left(\frac{w+u}{2}-v\right)\right](w-u)\right| \\
& \leq \int_{\gamma}\left|f(z)-f(v)-f^{\prime}(v)(z-v)\right||d z| \leq \frac{1}{2} K \int_{\gamma}|z-v|^{2}|d z|
\end{aligned}
$$

for any $v \in D$, which proves the inequality (2.1).
If the path $\gamma$ is a segment $[u, w] \subset G$ connecting two distinct points $u$ and $w$ in $G$ then we write $\int_{\gamma} f(z) d z$ as $\int_{u}^{w} f(z) d z$.
Corollary 1. With the assumptions of Theorem 3 and suppose $[u, w] \subset D$ is a segment connecting two distinct points $u$ and $w$ in $D$ and $v \in[u, w]$. Then for $v=(1-s) u+s w$ with $s \in[0,1]$, we have

$$
\begin{align*}
& \mid \int_{u}^{w} f(z) d z-f((1-s) u+s w)(w-u)  \tag{2.5}\\
& \qquad \left.-f^{\prime}((1-s) u+s w)\left(\frac{1}{2}-s\right)(w-u)^{2} \right\rvert\, \\
& \leq \frac{1}{6} K|w-u|^{3}\left[(1-s)^{3}+s^{3}\right] .
\end{align*}
$$

In particular, we have, see also (1.5),

$$
\begin{equation*}
\left|\int_{u}^{w} f(z) d z-f\left(\frac{w+u}{2}\right)(w-u)\right| \leq \frac{1}{24} K|w-u|^{3} . \tag{2.6}
\end{equation*}
$$

Proof. It follows by Theorem 3 by observing that

$$
\begin{aligned}
\int_{u}^{w}|z-v|^{2}|d z| & =|w-u| \int_{0}^{1}|(1-t) u+t w-(1-s) u-s w|^{2} d t \\
& =|w-u| \int_{0}^{1}|(1-t) u+t w-(1-s) u-s w|^{2} d t \\
& =|w-u|^{3} \int_{0}^{1}(t-s)^{2} d t=\frac{1}{3}|w-u|^{3}\left[(1-s)^{3}+s^{3}\right]
\end{aligned}
$$

for $s \in[0,1]$.

Theorem 4. Let $D \subset \mathbb{C}$ be a convex domain of complex numbers and $K>0$. Assume that $f$ is holomorphic on $D$ and $f \in \mathcal{B} \mathcal{M}_{K}(D)$. If $\gamma \subset D$ parametrized by $z(t), t \in[a, b]$ is a piecewise smooth path from $z(a)=u$ to $z(b)=w$ and $v \in D$, then

$$
\begin{align*}
\left\lvert\, \frac{1}{2}[f(w)(w-v)+f(u)(v-u)+f(v)(w-u)]\right. & -\int_{\gamma} f(z) d z \mid  \tag{2.7}\\
& \leq \frac{1}{4} K \int_{\gamma}|z-v|^{2}|d z|
\end{align*}
$$

In particular, we have for $v=\frac{w+u}{2}$ that

$$
\begin{align*}
\left\lvert\, \frac{1}{2}\left[\frac{f(w)+f(u)}{2}+f\left(\frac{w+u}{2}\right)\right](w-u)-\right. & \int_{\gamma} f(z) d z \mid  \tag{2.8}\\
& \leq \frac{1}{4} K \int_{\gamma}\left|z-\frac{w+u}{2}\right|^{2}|d z|
\end{align*}
$$

Proof. By using (2.3) we get

$$
\begin{equation*}
\int_{\gamma}\left|f(v)-f(z)-f^{\prime}(z)(v-z)\right||d z| \leq \frac{1}{2} K \int_{\gamma}|v-z|^{2}|d z| \tag{2.9}
\end{equation*}
$$

for $v \in D$.
By the complex integral properties, we have

$$
\begin{align*}
\mid \int_{\gamma}\left[f(v)-f(z)-f^{\prime}(z)(v-z)\right] & d z \mid  \tag{2.10}\\
& \leq \int_{\gamma}\left|f(v)-f(z)-f^{\prime}(z)(v-z)\right||d z|
\end{align*}
$$

for $v \in D$.

Using integration by parts, we get

$$
\begin{aligned}
& \begin{aligned}
& \int_{\gamma}[f(v)-f(z)\left.-f^{\prime}(z)(v-z)\right] d z \\
&=f(v) \int_{\gamma} d z-\int_{\gamma} f(z) d z-\int_{\gamma} f^{\prime}(z)(v-z) d z \\
&=f(v)(w-u)-\int_{\gamma} f(z) d z-\left[\left.f(z)(v-z)\right|_{u} ^{w}+\int_{\gamma} f(z) d z\right] \\
&=f(v)(w-u)-\int_{\gamma} f(z) d z-f(w)(v-w)+f(u)(v-u)-\int_{\gamma} f(z) d z \\
&=f(w)(w-v)+f(u)(v-u)+f(v)(w-u)-2 \int_{\gamma} f(z) d z
\end{aligned}
\end{aligned}
$$

which implies that

$$
\begin{align*}
\frac{1}{2}[f(w)(w-v)+f(u)(v-u)+ & f(v)(w-u)]-\int_{\gamma} f(z) d z  \tag{2.11}\\
& =\frac{1}{2} \int_{\gamma}\left[f(v)-f(z)-f^{\prime}(z)(v-z)\right] d z
\end{align*}
$$

for $v \in D$.
By utilising (2.9)-(2.11) we get the desired result (2.7).
We have:
Corollary 2. With the assumptions of Theorem 3 and suppose $[u, w] \subset D$ is a segment connecting two distinct points $u$ and $w$ in $D$ and $v \in[u, w]$. Then for $v=(1-s) u+s w$ with $s \in[0,1]$, we have

$$
\begin{align*}
\left\lvert\, \frac{1}{2}[(1-s) f(w)+s f(u)+f((1-s) u\right. & +s w)](w-u)-\int_{u}^{w} f(z) d z \mid  \tag{2.12}\\
& \leq \frac{1}{12} K|w-u|^{3}\left[(1-s)^{3}+s^{3}\right]
\end{align*}
$$

In particular, we have for $v=\frac{w+u}{2}$ that

$$
\begin{align*}
\left|\frac{1}{2}\left[\frac{f(w)+f(u)}{2}+f\left(\frac{w+u}{2}\right)\right](w-u)-\int_{u}^{w} f(z) d z\right| &  \tag{2.13}\\
& \leq \frac{1}{48} K|w-u|^{3}
\end{align*}
$$

We observe that, if $f$ is holomorphic on $D$ and $K=\sup _{z \in D}\left|f^{\prime \prime}(z)\right|$ is finite, then by (2.1) and (2.2) we have

$$
\begin{align*}
& \left\lvert\, \int_{\gamma} f(z) d z-\left[f(v)+f^{\prime}(v)\left(\frac{w+u}{2}-v\right)\right.\right.]  \tag{2.14}\\
&(w-u) \mid \\
& \leq \frac{1}{2} \sup _{z \in D}\left|f^{\prime \prime}(z)\right| \int_{\gamma}|z-v|^{2}|d z|
\end{align*}
$$

for all $v \in D$. In particular,

$$
\begin{align*}
\left|\int_{\gamma} f(z) d z-f\left(\frac{w+u}{2}\right)(w-u)\right| &  \tag{2.15}\\
& \leq \frac{1}{2} \sup _{z \in D}\left|f^{\prime \prime}(z)\right| \int_{\gamma}\left|z-\frac{w+u}{2}\right|^{2}|d z|
\end{align*}
$$

From (2.7) and (2.8) we get

$$
\begin{align*}
\left\lvert\, \frac{1}{2}[f(w)(w-v)+f(u)(v-u)+f(v)\right. & (w-u)]-\int_{\gamma} f(z) d z \mid  \tag{2.16}\\
& \leq \frac{1}{4} \sup _{z \in D}\left|f^{\prime \prime}(z)\right| \int_{\gamma}|z-v|^{2}|d z|
\end{align*}
$$

for all $v \in D$. In particular,

$$
\begin{align*}
\left\lvert\, \frac{1}{2}\left[\frac{f(w)+f(u)}{2}+\right.\right. & \left.f\left(\frac{w+u}{2}\right)\right](w-u)  \tag{2.17}\\
& -\int_{\gamma} f(z) d z\left|\leq \frac{1}{4} \sup _{z \in D}\right| f^{\prime \prime}(z)\left|\int_{\gamma}\right| z-\left.\frac{w+u}{2}\right|^{2}|d z|
\end{align*}
$$

The inequalities (2.14)-(2.17) provide many examples of interest as follows.
If we consider the function $f(z)=\exp z, z \in \mathbb{C}$ and $\gamma \subset \mathbb{C}$ parametrized by $z(t), t \in[a, b]$ is a piecewise smooth path from $z(a)=u$ to $z(b)=w$ then by (2.14)-(2.17) we have by the inequalities

$$
\begin{align*}
\left\lvert\, \exp w-\exp u-\left(1+\frac{w+u}{2}-v\right)(w-u)\right. & \exp v \mid  \tag{2.18}\\
& \leq \frac{1}{2} \sup _{z \in D}|\exp z| \int_{\gamma}|z-v|^{2}|d z|
\end{align*}
$$

for all $v \in \mathbb{C}$. In particular,

$$
\begin{align*}
&\left|\exp w-\exp u-\exp \left(\frac{w+u}{2}\right)(w-u)\right|  \tag{2.19}\\
& \leq \frac{1}{2} \sup _{z \in D}|\exp z| \int_{\gamma}\left|z-\frac{w+u}{2}\right|^{2}|d z|
\end{align*}
$$

We also have

$$
\begin{align*}
\left\lvert\, \frac{1}{2}[(w-v) \exp w+(v-u) \exp u+(w-u)\right. & \exp v]-\exp w+\exp u \mid  \tag{2.20}\\
& \leq \frac{1}{4} \sup _{z \in D}|\exp z| \int_{\gamma}|z-v|^{2}|d z|
\end{align*}
$$

for all $v \in \mathbb{C}$. In particular,

$$
\begin{align*}
\left\lvert\, \frac{1}{2}\left[\frac{\exp w+\exp u}{2}\right.\right. & \left.+\exp \left(\frac{w+u}{2}\right)\right](w-u)  \tag{2.21}\\
& -\exp w+\exp u\left|\leq \frac{1}{4} \sup _{z \in D}\right| \exp z\left|\int_{\gamma}\right| z-\left.\frac{w+u}{2}\right|^{2}|d z|
\end{align*}
$$

Consider the function $F(z)=\log (z)$ where $\log (z)=\ln |z|+i \operatorname{Arg}(z)$ and $\operatorname{Arg}(z)$ is such that $0<\operatorname{Arg}(z)<2 \pi$. Log is called the "principal branch" of the complex logarithmic function. $F$ is analytic on all of $\mathbb{C} \backslash\{x+i y: x \geq 0, y=0\}$ and $F^{\prime}(z)=\frac{1}{z}$ on this set.

If we consider $f: D \rightarrow \mathbb{C}, f(z)=\frac{1}{z}$ where $D \subset \mathbb{C} \backslash\{x+i y: x \geq 0, y=0\}$, then $F$ is a primitive of $f$ on $D$ and if $\gamma \subset D$ parametrized by $z(t), t \in[a, b]$ is a piecewise smooth path from $z(a)=u$ to $z(b)=w$, then

$$
\int_{\gamma} f(z) d z=\log (w)-\log (u)
$$

For $D \subset \mathbb{C} \backslash\{x+i y: x \geq 0, y=0\}$, define $d:=\inf _{z \in D}|z|$ and assume that $d \in(0, \infty)$. By the inequalities (2.14)-(2.17) we then have

$$
\begin{align*}
\left|\log (w)-\log (u)-\left[\frac{1}{v}-\frac{1}{v^{2}}\left(\frac{w+u}{2}-v\right)\right](w-u)\right| &  \tag{2.22}\\
& \leq \frac{1}{d^{3}} \int_{\gamma}|z-v|^{2}|d z|
\end{align*}
$$

for all $v \in D$. In particular,

$$
\begin{align*}
\left|\log (w)-\log (u)-\left(\frac{w+u}{2}\right)^{-1}(w-u)\right| &  \tag{2.23}\\
& \leq \frac{1}{d^{3}} \int_{\gamma}\left|z-\frac{w+u}{2}\right|^{2}|d z|
\end{align*}
$$

We also have

$$
\begin{align*}
\left|\frac{1}{2}\left(\frac{w-v}{w}+\frac{v-u}{u}+\frac{w-u}{v}\right)-\log (w)+\log (u)\right| &  \tag{2.24}\\
& \leq \frac{1}{2 d^{3}} \int_{\gamma}|z-v|^{2}|d z|
\end{align*}
$$

for all $v \in D$. In particular,

$$
\begin{align*}
\left\lvert\, \frac{1}{2}\left[\frac{u+w}{2 w u}+\left(\frac{w+u}{2}\right)^{-1}\right]\right. & (w-u)  \tag{2.25}\\
& -\log (w)+\log (u)\left|\leq \frac{1}{2 d^{3}} \int_{\gamma}\right| z-\left.\frac{w+u}{2}\right|^{2}|d z|
\end{align*}
$$

## 3. Examples for Circular Paths

Let $[a, b] \subseteq[0,2 \pi]$ and the circular path $\gamma_{[a, b], R}$ centered in 0 and with radius $R>0$

$$
z(t)=R \exp (i t)=R(\cos t+i \sin t), t \in[a, b]
$$

If $[a, b]=[0, \pi]$ then we get a half circle while for $[a, b]=[0,2 \pi]$ we get the full circle.

Since

$$
\begin{aligned}
\left|e^{i s}-e^{i t}\right|^{2} & =\left|e^{i s}\right|^{2}-2 \operatorname{Re}\left(e^{i(s-t)}\right)+\left|e^{i t}\right|^{2} \\
& =2-2 \cos (s-t)=4 \sin ^{2}\left(\frac{s-t}{2}\right)
\end{aligned}
$$

for any $t, s \in \mathbb{R}$, then

$$
\begin{equation*}
\left|e^{i s}-e^{i t}\right|^{r}=2^{r}\left|\sin \left(\frac{s-t}{2}\right)\right|^{r} \tag{3.1}
\end{equation*}
$$

for any $t, s \in \mathbb{R}$ and $r>0$. In particular,

$$
\left|e^{i s}-e^{i t}\right|=2\left|\sin \left(\frac{s-t}{2}\right)\right|
$$

for any $t, s \in \mathbb{R}$.
For $s=a$ and $s=b$ we have

$$
\left|e^{i a}-e^{i t}\right|=2\left|\sin \left(\frac{a-t}{2}\right)\right| \text { and }\left|e^{i b}-e^{i t}\right|=2\left|\sin \left(\frac{b-t}{2}\right)\right|
$$

If $u=R \exp (i a)$ and $w=R \exp (i b)$ then

$$
\begin{aligned}
w-u & =R[\exp (i b)-\exp (i a)]=R[\cos b+i \sin b-\cos a-i \sin a] \\
& =R[\cos b-\cos a+i(\sin b-\sin a)]
\end{aligned}
$$

Since

$$
\cos b-\cos a=-2 \sin \left(\frac{a+b}{2}\right) \sin \left(\frac{b-a}{2}\right)
$$

and

$$
\sin b-\sin a=2 \sin \left(\frac{b-a}{2}\right) \cos \left(\frac{a+b}{2}\right)
$$

hence

$$
\begin{aligned}
w-u & =R\left[-2 \sin \left(\frac{a+b}{2}\right) \sin \left(\frac{b-a}{2}\right)+2 i \sin \left(\frac{b-a}{2}\right) \cos \left(\frac{a+b}{2}\right)\right] \\
& =2 R \sin \left(\frac{b-a}{2}\right)\left[-\sin \left(\frac{a+b}{2}\right)+i \cos \left(\frac{a+b}{2}\right)\right] \\
& =2 R i \sin \left(\frac{b-a}{2}\right)\left[\cos \left(\frac{a+b}{2}\right)+i \sin \left(\frac{a+b}{2}\right)\right] \\
& =2 R i \sin \left(\frac{b-a}{2}\right) \exp \left[\left(\frac{a+b}{2}\right) i\right] .
\end{aligned}
$$

We also have

$$
z^{\prime}(t)=R i \exp (i t) \text { and }\left|z^{\prime}(t)\right|=R
$$

for $t \in[a, b]$.
In what follows we assume that $f$ is defined on a domain containing the circular path $\gamma_{[a, b], R}$ and that $f$ is holomorphic on that domain.

Consider the circular path $\gamma_{[a, b], R}$ and assume that $v=R \exp (i s) \in \gamma_{[a, b], R}$ with $s \in[a, b]$. Then by using the inequality (2.1) we get

$$
\begin{aligned}
& \mid R i \int_{a}^{b} f(R \exp (i t)) \exp (i t) d t \\
& \quad-\left[f(R \exp (i s))+f^{\prime}(R \exp (i s))\left(\frac{R \exp (i b)+R \exp (i a)}{2}-R \exp (i s)\right)\right] \\
& \left.\quad \times 2 R i \sin \left(\frac{b-a}{2}\right) \exp \left[\left(\frac{a+b}{2}\right) i\right] \right\rvert\, \\
& \quad \leq \frac{1}{2} \sup _{t \in[a, b]}\left|f^{\prime \prime}(R \exp (i t))\right| R \int_{a}^{b}|R \exp (i t)-R \exp (i s)|^{2} d t \\
& \quad=\frac{1}{2} \sup _{t \in[a, b]}\left|f^{\prime \prime}(R \exp (i t))\right| R^{3} \int_{a}^{b} 4 \sin ^{2}\left(\frac{s-t}{2}\right) d t \\
& \quad=2 \sup _{t \in[a, b]}\left|f^{\prime \prime}(R \exp (i t))\right| R^{3} \int_{a}^{b} \sin ^{2}\left(\frac{s-t}{2}\right) d t,
\end{aligned}
$$

which is equivalent to

$$
\begin{align*}
& \mid \int_{a}^{b} f(R \exp (i t)) \exp (i t) d t  \tag{3.2}\\
& -2 R\left[f(R \exp (i s))+f^{\prime}(R \exp (i s))\left(\frac{\exp (i b)+\exp (i a)}{2}-\exp (i s)\right)\right] \\
& \left.\times \sin \left(\frac{b-a}{2}\right) \exp \left[\left(\frac{a+b}{2}\right) i\right] \right\rvert\, \\
& \quad \leq 2 \sup _{t \in[a, b]}\left|f^{\prime \prime}(R \exp (i t))\right| R^{2} \int_{a}^{b} \sin ^{2}\left(\frac{s-t}{2}\right) d t
\end{align*}
$$

for $s \in[a, b]$.
Since

$$
\sin ^{2}\left(\frac{s-t}{2}\right)=\frac{1-\cos (s-t)}{2}
$$

hence

$$
\begin{aligned}
& \int_{a}^{b} \sin ^{2}\left(\frac{s-t}{2}\right) d t \\
& =\int_{a}^{b} \frac{1-\cos (s-t)}{2} d t=\frac{1}{2}[b-a-\sin (b-s)-\sin (s-a)] \\
& =\frac{1}{2}\left[b-a-2 \sin \left(\frac{b-a}{2}\right) \cos \left(\frac{a+b}{2}-s\right)\right] \\
& =\frac{b-a}{2}-\sin \left(\frac{b-a}{2}\right) \cos \left(\frac{a+b}{2}-s\right)
\end{aligned}
$$

for $s \in[a, b]$.

Therefore by (3.2) we get

$$
\begin{align*}
& \mid \int_{a}^{b} f(R \exp (i t)) \exp (i t) d t  \tag{3.3}\\
& -2 R\left[f(R \exp (i s))+f^{\prime}(R \exp (i s))\left(\frac{\exp (i b)+\exp (i a)}{2}-\exp (i s)\right)\right] \\
& \left.\quad \times \sin \left(\frac{b-a}{2}\right) \exp \left[\left(\frac{a+b}{2}\right) i\right] \right\rvert\, \\
& \quad \leq 2 R^{2} \sup _{t \in[a, b]}\left|f^{\prime \prime}(R \exp (i t))\right|\left[\frac{b-a}{2}-\sin \left(\frac{b-a}{2}\right) \cos \left(\frac{a+b}{2}-s\right)\right]
\end{align*}
$$

for $s \in[a, b]$.
In particular, for $s=\frac{a+b}{2}$, we obtain from (3.3) the best possible inequality

$$
\begin{align*}
& \mid \int_{a}^{b} f(R \exp (i t)) \exp (i t) d t  \tag{3.4}\\
& \qquad \begin{aligned}
&-2 R {\left[f\left(R \exp \left(\frac{a+b}{2} i\right)\right)+f^{\prime}\left(R \exp \left(\frac{a+b}{2} i\right)\right)\right.} \\
&\left.\times\left(\frac{\exp (i b)+\exp (i a)}{2}-\exp \left(\frac{a+b}{2} i\right)\right)\right] \\
& \left.\times \sin \left(\frac{b-a}{2}\right) \exp \left[\left(\frac{a+b}{2}\right) i\right] \right\rvert\, \\
& \quad \leq 2 R^{2} \sup _{t \in[a, b]}\left|f^{\prime \prime}(R \exp (i t))\right|\left[\frac{b-a}{2}-\sin \left(\frac{b-a}{2}\right)\right]
\end{aligned}
\end{align*}
$$

By utilising the inequality (2.16) for the circular path $\gamma_{[a, b], R}$ and $v=R \exp (i s) \in$ $\gamma_{[a, b], R}$ with $s \in[a, b]$, we also get

$$
\begin{align*}
& \left\lvert\, f(R \exp (i b)) \sin \left(\frac{b-s}{2}\right) \exp \left[\left(\frac{s+b}{2}\right) i\right]\right.  \tag{3.5}\\
& \quad+f(R \exp (i a)) \sin \left(\frac{s-a}{2}\right) \exp \left[\left(\frac{a+s}{2}\right) i\right] \\
& +f(R \exp (i s)) \sin \left(\frac{b-a}{2}\right) \exp \left[\left(\frac{a+b}{2}\right) i\right] \\
& \quad-\int_{a}^{b} f(R \exp (i t)) \exp (i t) d t \mid \\
& \leq R^{2} \sup _{t \in[a, b]}\left|f^{\prime \prime}(R \exp (i t))\right|\left[\frac{b-a}{2}-\sin \left(\frac{b-a}{2}\right) \cos \left(\frac{a+b}{2}-s\right)\right]
\end{align*}
$$

In particular, for $s=\frac{a+b}{2}$, we get from (3.5) best possible inequality

$$
\begin{align*}
& f(R \exp (b i)) \sin \left(\frac{b-a}{4}\right) \exp \left[\left(\frac{a+3 b}{4}\right) i\right]  \tag{3.6}\\
& +f(R \exp (i a)) \sin \left(\frac{b-a}{4}\right) \exp \left[\left(\frac{3 a+b}{4}\right) i\right] \\
& +f\left(R \exp \left(\frac{a+b}{2} i\right)\right) \sin \left(\frac{b-a}{2}\right) \exp \left[\left(\frac{a+b}{2}\right) i\right] \\
& -\int_{a}^{b} f(R \exp (i t)) \exp (i t) d t \mid \\
& \leq R^{2} \sup _{t \in[a, b]}\left|f^{\prime \prime}(R \exp (i t))\right|\left[\frac{b-a}{2}-\sin \left(\frac{b-a}{2}\right)\right] . \\
& \operatorname{REFERENCES}
\end{align*}
$$

[1] R. Coleman, Calculus on Normed Vector Spaces, Springer New York Heidelberg Dordrecht London, 2012.
[2] S. S. Dragomir, Integral inequalities of Hermite-Hadamard type for $K$-bounded norm convex mappings, Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 149, 23 pp. [Online https://rgmia.org/papers/v17/v17a149.pdf].
[3] S. S. Dragomir, Integral inequalities of Hermite-Hadamard type for $K$-bounded norm convex mappings, Ukrainian Mathematical Journal, Vol. 68, No. 10, March, 2017, 1530-1551.
[4] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results, Australian J. Math. Anal. Appl., Volume 14, Issue 1, Article 1, pp. 1-287, 2017. [Online http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
[5] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online http://rgmia.org/monographs/hermite_hadamard.html].
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428 , Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence, in the Mathematical and Statistical Sciences, School of Computer Science \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa


[^0]:    1991 Mathematics Subject Classification. 26D15, 26D10, 30A10, 30A86.
    Key words and phrases. Complex integral, Continuous functions, Holomorphic functions, Hermite-Hadamard inequality, Midpoint inequality, Trapezoid inequality.

