
INEQUALITIES OF HERMITE-HADAMARD TYPE FOR
K-BOUNDED MODULUS CONVEX COMPLEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let D � C be a convex domain of complex numbers and K > 0:
We say that the function f : D � C! C is called K-bounded modulus convex,
for the given K > 0; if it satis�es the condition

j(1� �) f (x) + �f (y)� f ((1� �)x+ �y)j � 1

2
K� (1� �) jx� yj2

for any x; y 2 D and � 2 [0; 1] :
In this paper we establish some new Hermite-Hadamard type inequalities

for the complex integral on ; a smooth path from C and K-bounded modulus
convex functions. Some examples for integrals on segments and circular paths
are also given.

1. Introduction

Let (X; k�kX) and (Y ; k�kY ) be two normed linear spaces over the complex num-
ber �eld C. Let C be a convex set in X: In the recent paper [3] we introduced the
following class of functions:

De�nition 1. A mapping f : C � X ! Y is called K-bounded norm convex, for
some given K > 0; if it satis�es the condition

(1.1) k(1� �) f (x) + �f (y)� f ((1� �)x+ �y)kY �
1

2
K� (1� �) kx� yk2X

for any x; y 2 C and � 2 [0; 1] : For simplicity, we denote this by f 2 BNK (C) :

We have from (1.1) for � = 1
2 the Jensen�s inequalityf (x) + f (y)2
� f

�
x+ y

2

�
Y

� 1

8
K kx� yk2X

for any x; y 2 C.
We observe that BNK (C) is a convex subset in the linear space of all functions

de�ned on C and with values in Y:
In the same paper [3], we obtained the following result which provides a large

class of examples of such functions.

Theorem 1. Let (X; k�kX) and (Y; k�kY ) be two normed linear spaces, C an open
convex subset of X and f : C ! Y a twice-di¤erentiable mapping on C: Then for
any x; y 2 C and � 2 [0; 1] we have

(1.2) k(1� �) f (x) + �f (y)� f ((1� �)x+ �y)kY �
1

2
K� (1� �) ky � xk2X ;
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2 S. S. DRAGOMIR

where

(1.3) Kf 00 := sup
z2C

kf 00 (z)kL(X2;Y )

is assumed to be �nite, namely f 2 BNKf00 (C) :

We have the following inequalities of Hermite-Hadamard type [3]:

Theorem 2. Let (X; k�kX) and (Y ; k�kY ) be two normed linear spaces over the
complex number �eld C with Y complete. Assume that the mapping f : C � X ! Y
is continuous on the convex set C in the norm topology. If f 2 BNK (C) for some
K > 0; then we have

(1.4)

f (x) + f (y)2
�
Z 1

0

f ((1� �)x+ �y) d�

Y

� 1

12
K kx� yk2X

and

(1.5)

Z 1

0

f ((1� �)x+ �y) d�� f
�
x+ y

2

�
Y

� 1

24
K kx� yk2X

for any x; y 2 C:
The constants 1

12 and
1
24 are best possible.

For a monograph devoted to Hermite-Hadamard type inequalities see [5] and the
recent survey paper [4].
Let D � C be a convex domain of complex numbers and K > 0: Following

De�nition 1, we say that the function f : D � C! C is called K-bounded modulus
convex, for the given K > 0; if it satis�es the condition

(1.6) j(1� �) f (x) + �f (y)� f ((1� �)x+ �y)j � 1

2
K� (1� �) jx� yj2

for any x; y 2 D and � 2 [0; 1] : For simplicity, we denote this by f 2 BMK (D) :
All the above results can be translated for complex functions de�ned on convex

subsets D � C.
In the following, in order to obtain several inequalities for the complex integral,

we need the following facts.
Suppose  is a smooth path from C parametrized by z (t) ; t 2 [a; b] and f is a

complex function which is continuous on : Put z (a) = u and z (b) = w with u;
w 2 C. We de�ne the integral of f on u;w =  asZ



f (z) dz =

Z
u;w

f (z) dz :=

Z b

a

f (z (t)) z0 (t) dt:

We observe that that the actual choice of parametrization of  does not matter.
This de�nition immediately extends to paths that are piecewise smooth. Suppose

 is parametrized by z (t), t 2 [a; b], which is di¤erentiable on the intervals [a; c]
and [c; b]; then assuming that f is continuous on  we de�neZ

u;w

f (z) dz :=

Z
u;v

f (z) dz +

Z
v;w

f (z) dz

where v := z (s) for some s 2 (a; b) : This can be extended for a �nite number of
intervals.
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We also de�ne the integral with respect to arc-lengthZ
u;w

f (z) jdzj :=
Z b

a

f (z (t)) jz0 (t)j dt

and the length of the curve  is then

` () =

Z
u;w

jdzj =
Z b

a

jz0 (t)j dt:

Let f and g be holomorphic in D, and open domain and suppose  � D is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
by parts formula

(1.7)
Z
u;w

f (z) g0 (z) dz = f (w) g (w)� f (u) g (u)�
Z
u;w

f 0 (z) g (z) dz:

We recall also the triangle inequality for the complex integral, namely

(1.8)

����Z


f (z) dz

���� � Z


jf (z)j jdzj � kfk;1 ` ()

where kfk;1 := supz2 jf (z)j :
We also de�ne the p-norm with p � 1 by

kfk;p :=
�Z



jf (z)jp jdzj
�1=p

:

For p = 1 we have

kfk;1 :=
Z


jf (z)j jdzj :

If p; q > 1 with 1
p +

1
q = 1; then by Hölder�s inequality we have

kfk;1 � [` ()]
1=q kfk;p :

Motivated by the above results, in this paper we establish some new Hermite-
Hadamard type inequalities for the complex integral on ; a smooth path from C and
K-bounded modulus convex functions. Some examples for integrals on segments
and circular paths are also given.

2. Integral Inequalities

We have:

Theorem 3. Let D � C be a convex domain of complex numbers and K > 0:
Assume that f is holomorphic on D and f 2 BMK (D) : If  � D parametrized by
z (t) ; t 2 [a; b] is a piecewise smooth path from z (a) = u to z (b) = w and v 2 D;
then

(2.1)

����Z


f (z) dz �
�
f (v) + f 0 (v)

�
w + u

2
� v

��
(w � u)

���� � 1

2
K

Z


jz � vj2 jdzj :

In particular, we have for v = w+u
2 that

(2.2)

����Z


f (z) dz � f
�
w + u

2

�
(w � u)

���� � 1

2
K

Z


����z � w + u2
����2 jdzj :
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Proof. Let x; y 2 D: Since f 2 BMK (D), then we have

jf ((1� �)x+ �y)� f (x) + � [f (x)� f (y)]j � 1

2
K� (1� �) jx� yj2

that implies that����f (x+ � (y � x))� f (x)�
+ f (x)� f (y)

���� � 1

2
K (1� �) jx� yj2

for � 2 (0; 1) :
Since f is holomorphic on D, then by letting �! 0+; we get

jf 0 (x) (y � x) + f (x)� f (y)j � 1

2
K jx� yj2

that is equivalent to

(2.3) jf (y)� f (x)� f 0 (x) (y � x)j � 1

2
K jy � xj2

for all x; y 2 D:
We have Z



[f (z)� f (v)� f 0 (v) (z � v)] dz(2.4)

=

Z


f (z) dz � f (v)
Z


dz � f 0 (v)
�Z



zdz � v
Z


dz

�
=

Z


f (z) dz � f (v) (w � u)� f 0 (v)
�
1

2

�
w2 � u2

�
� v (w � u)

�
=

Z


f (z) dz �
�
f (v) + f 0 (v)

�
w + u

2
� v

��
(w � u)

for any v 2 D:
By using (2.3) we get����Z



f (z) dz �
�
f (v) + f 0 (v)

�
w + u

2
� v

��
(w � u)

����
�
Z


jf (z)� f (v)� f 0 (v) (z � v)j jdzj � 1

2
K

Z


jz � vj2 jdzj

for any v 2 D; which proves the inequality (2.1). �

If the path  is a segment [u;w] � G connecting two distinct points u and w in
G then we write

R

f (z) dz as

R w
u
f (z) dz:

Corollary 1. With the assumptions of Theorem 3 and suppose [u;w] � D is a
segment connecting two distinct points u and w in D and v 2 [u;w] : Then for
v = (1� s)u+ sw with s 2 [0; 1] ; we have

(2.5)

����Z w

u

f (z) dz � f ((1� s)u+ sw) (w � u)

�f 0 ((1� s)u+ sw)
�
1

2
� s
�
(w � u)2

����
� 1

6
K jw � uj3

h
(1� s)3 + s3

i
:
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In particular, we have, see also (1.5),

(2.6)

����Z w

u

f (z) dz � f
�
w + u

2

�
(w � u)

���� � 1

24
K jw � uj3 :

Proof. It follows by Theorem 3 by observing thatZ w

u

jz � vj2 jdzj = jw � uj
Z 1

0

j(1� t)u+ tw � (1� s)u� swj2 dt

= jw � uj
Z 1

0

j(1� t)u+ tw � (1� s)u� swj2 dt

= jw � uj3
Z 1

0

(t� s)2 dt = 1

3
jw � uj3

h
(1� s)3 + s3

i
for s 2 [0; 1] : �

Theorem 4. Let D � C be a convex domain of complex numbers and K > 0:
Assume that f is holomorphic on D and f 2 BMK (D) : If  � D parametrized by
z (t) ; t 2 [a; b] is a piecewise smooth path from z (a) = u to z (b) = w and v 2 D;
then

(2.7)

����12 [f (w) (w � v) + f (u) (v � u) + f (v) (w � u)]�
Z


f (z) dz

����
� 1

4
K

Z


jz � vj2 jdzj :

In particular, we have for v = w+u
2 that

(2.8)

����12
�
f (w) + f (u)

2
+ f

�
w + u

2

��
(w � u)�

Z


f (z) dz

����
� 1

4
K

Z


����z � w + u2
����2 jdzj :

Proof. By using (2.3) we get

(2.9)
Z


jf (v)� f (z)� f 0 (z) (v � z)j jdzj � 1

2
K

Z


jv � zj2 jdzj

for v 2 D.
By the complex integral properties, we have

(2.10)

����Z


[f (v)� f (z)� f 0 (z) (v � z)] dz
����

�
Z


jf (v)� f (z)� f 0 (z) (v � z)j jdzj

for v 2 D.
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Using integration by parts, we getZ


[f (v)� f (z)� f 0 (z) (v � z)] dz

= f (v)

Z


dz �
Z


f (z) dz �
Z


f 0 (z) (v � z) dz

= f (v) (w � u)�
Z


f (z) dz �
�
f (z) (v � z)jwu +

Z


f (z) dz

�
= f (v) (w � u)�

Z


f (z) dz � f (w) (v � w) + f (u) (v � u)�
Z


f (z) dz

= f (w) (w � v) + f (u) (v � u) + f (v) (w � u)� 2
Z


f (z) dz;

which implies that

(2.11)
1

2
[f (w) (w � v) + f (u) (v � u) + f (v) (w � u)]�

Z


f (z) dz

=
1

2

Z


[f (v)� f (z)� f 0 (z) (v � z)] dz

for v 2 D.
By utilising (2.9)-(2.11) we get the desired result (2.7). �

We have:

Corollary 2. With the assumptions of Theorem 3 and suppose [u;w] � D is a
segment connecting two distinct points u and w in D and v 2 [u;w] : Then for
v = (1� s)u+ sw with s 2 [0; 1] ; we have

(2.12)

����12 [(1� s) f (w) + sf (u) + f ((1� s)u+ sw)] (w � u)�
Z w

u

f (z) dz

����
� 1

12
K jw � uj3

h
(1� s)3 + s3

i
:

In particular, we have for v = w+u
2 that

(2.13)

����12
�
f (w) + f (u)

2
+ f

�
w + u

2

��
(w � u)�

Z w

u

f (z) dz

����
� 1

48
K jw � uj3 :

We observe that, if f is holomorphic on D and K = supz2D jf 00 (z)j is �nite,
then by (2.1) and (2.2) we have

(2.14)

����Z


f (z) dz �
�
f (v) + f 0 (v)

�
w + u

2
� v

��
(w � u)

����
� 1

2
sup
z2D

jf 00 (z)j
Z


jz � vj2 jdzj



INEQUALITIES OF HERMITE-HADAMARD TYPE 7

for all v 2 D: In particular,

(2.15)

����Z


f (z) dz � f
�
w + u

2

�
(w � u)

����
� 1

2
sup
z2D

jf 00 (z)j
Z


����z � w + u2
����2 jdzj :

From (2.7) and (2.8) we get

(2.16)

����12 [f (w) (w � v) + f (u) (v � u) + f (v) (w � u)]�
Z


f (z) dz

����
� 1

4
sup
z2D

jf 00 (z)j
Z


jz � vj2 jdzj :

for all v 2 D: In particular,

(2.17)

����12
�
f (w) + f (u)

2
+ f

�
w + u

2

��
(w � u)

�
Z


f (z) dz

���� � 1

4
sup
z2D

jf 00 (z)j
Z


����z � w + u2
����2 jdzj :

The inequalities (2.14)-(2.17) provide many examples of interest as follows.
If we consider the function f (z) = exp z; z 2 C and  � C parametrized by

z (t) ; t 2 [a; b] is a piecewise smooth path from z (a) = u to z (b) = w then by
(2.14)-(2.17) we have by the inequalities

(2.18)

����expw � expu� �1 + w + u2 � v
�
(w � u) exp v

����
� 1

2
sup
z2D

jexp zj
Z


jz � vj2 jdzj

for all v 2 C: In particular,

(2.19)

����expw � expu� exp�w + u2
�
(w � u)

����
� 1

2
sup
z2D

jexp zj
Z


����z � w + u2
����2 jdzj :

We also have

(2.20)

����12 [(w � v) expw + (v � u) expu+ (w � u) exp v]� expw + expu
����

� 1

4
sup
z2D

jexp zj
Z


jz � vj2 jdzj :

for all v 2 C: In particular,

(2.21)

����12
�
expw + expu

2
+ exp

�
w + u

2

��
(w � u)

� expw + expuj � 1

4
sup
z2D

jexp zj
Z


����z � w + u2
����2 jdzj :
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Consider the function F (z) = Log (z) where Log (z) = ln jzj + iArg (z) and
Arg (z) is such that 0 < Arg (z) < 2�: Log is called the "principal branch" of the
complex logarithmic function. F is analytic on all of Cn fx+ iy : x � 0; y = 0g
and F 0 (z) = 1

z on this set.
If we consider f : D ! C, f (z) = 1

z where D � Cn fx+ iy : x � 0; y = 0g,
then F is a primitive of f on D and if  � D parametrized by z (t) ; t 2 [a; b] is a
piecewise smooth path from z (a) = u to z (b) = w, thenZ



f (z) dz = Log (w)� Log (u) :

For D � Cn fx+ iy : x � 0; y = 0g ; de�ne d := infz2D jzj and assume that
d 2 (0;1) : By the inequalities (2.14)-(2.17) we then have

(2.22)

����Log (w)� Log (u)� �1v � 1

v2

�
w + u

2
� v

��
(w � u)

����
� 1

d3

Z


jz � vj2 jdzj

for all v 2 D: In particular,

(2.23)

�����Log (w)� Log (u)�
�
w + u

2

��1
(w � u)

�����
� 1

d3

Z


����z � w + u2
����2 jdzj :

We also have

(2.24)

����12
�
w � v
w

+
v � u
u

+
w � u
v

�
� Log (w) + Log (u)

����
� 1

2d3

Z


jz � vj2 jdzj :

for all v 2 D: In particular,

(2.25)

�����12
"
u+ w

2wu
+

�
w + u

2

��1#
(w � u)

�Log (w) + Log (u)j � 1

2d3

Z


����z � w + u2
����2 jdzj :

3. Examples for Circular Paths

Let [a; b] � [0; 2�] and the circular path [a;b];R centered in 0 and with radius
R > 0

z (t) = R exp (it) = R (cos t+ i sin t) ; t 2 [a; b] :

If [a; b] = [0; �] then we get a half circle while for [a; b] = [0; 2�] we get the full
circle.
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Since ��eis � eit��2 = ��eis��2 � 2Re�ei(s�t)�+ ��eit��2
= 2� 2 cos (s� t) = 4 sin2

�
s� t
2

�
for any t; s 2 R, then

(3.1)
��eis � eit��r = 2r ����sin�s� t2

�����r
for any t; s 2 R and r > 0: In particular,��eis � eit�� = 2 ����sin�s� t2

�����
for any t; s 2 R.
For s = a and s = b we have��eia � eit�� = 2 ����sin�a� t2

����� and ��eib � eit�� = 2 ����sin�b� t2
����� :

If u = R exp (ia) and w = R exp (ib) then

w � u = R [exp (ib)� exp (ia)] = R [cos b+ i sin b� cos a� i sin a]
= R [cos b� cos a+ i (sin b� sin a)] :

Since

cos b� cos a = �2 sin
�
a+ b

2

�
sin

�
b� a
2

�
and

sin b� sin a = 2 sin
�
b� a
2

�
cos

�
a+ b

2

�
;

hence

w � u = R
�
�2 sin

�
a+ b

2

�
sin

�
b� a
2

�
+ 2i sin

�
b� a
2

�
cos

�
a+ b

2

��
= 2R sin

�
b� a
2

��
� sin

�
a+ b

2

�
+ i cos

�
a+ b

2

��
= 2Ri sin

�
b� a
2

��
cos

�
a+ b

2

�
+ i sin

�
a+ b

2

��
= 2Ri sin

�
b� a
2

�
exp

��
a+ b

2

�
i

�
:

We also have

z0 (t) = Ri exp (it) and jz0 (t)j = R

for t 2 [a; b] :
In what follows we assume that f is de�ned on a domain containing the circular

path [a;b];R and that f is holomorphic on that domain.
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Consider the circular path [a;b];R and assume that v = R exp (is) 2 [a;b];R with
s 2 [a; b] : Then by using the inequality (2.1) we get�����Ri

Z b

a

f (R exp (it)) exp (it) dt

�
�
f (R exp (is)) + f 0 (R exp (is))

�
R exp (ib) +R exp (ia)

2
�R exp (is)

��
�2Ri sin

�
b� a
2

�
exp

��
a+ b

2

�
i

�����
� 1

2
sup
t2[a;b]

jf 00 (R exp (it))jR
Z b

a

jR exp (it)�R exp (is)j2 dt

=
1

2
sup
t2[a;b]

jf 00 (R exp (it))jR3
Z b

a

4 sin2
�
s� t
2

�
dt

= 2 sup
t2[a;b]

jf 00 (R exp (it))jR3
Z b

a

sin2
�
s� t
2

�
dt;

which is equivalent to

(3.2)

�����
Z b

a

f (R exp (it)) exp (it) dt

� 2R
�
f (R exp (is)) + f 0 (R exp (is))

�
exp (ib) + exp (ia)

2
� exp (is)

��
� sin

�
b� a
2

�
exp

��
a+ b

2

�
i

�����
� 2 sup

t2[a;b]
jf 00 (R exp (it))jR2

Z b

a

sin2
�
s� t
2

�
dt

for s 2 [a; b] :
Since

sin2
�
s� t
2

�
=
1� cos (s� t)

2
;

hence Z b

a

sin2
�
s� t
2

�
dt

=

Z b

a

1� cos (s� t)
2

dt =
1

2
[b� a� sin (b� s)� sin (s� a)]

=
1

2

�
b� a� 2 sin

�
b� a
2

�
cos

�
a+ b

2
� s
��

=
b� a
2

� sin
�
b� a
2

�
cos

�
a+ b

2
� s
�

for s 2 [a; b] :
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Therefore by (3.2) we get

(3.3)

�����
Z b

a

f (R exp (it)) exp (it) dt

� 2R
�
f (R exp (is)) + f 0 (R exp (is))

�
exp (ib) + exp (ia)

2
� exp (is)

��
� sin

�
b� a
2

�
exp

��
a+ b

2

�
i

�����
� 2R2 sup

t2[a;b]
jf 00 (R exp (it))j

�
b� a
2

� sin
�
b� a
2

�
cos

�
a+ b

2
� s
��

for s 2 [a; b] :
In particular, for s = a+b

2 ; we obtain from (3.3) the best possible inequality

(3.4)

�����
Z b

a

f (R exp (it)) exp (it) dt

� 2R
�
f

�
R exp

�
a+ b

2
i

��
+ f 0

�
R exp

�
a+ b

2
i

��
�
�
exp (ib) + exp (ia)

2
� exp

�
a+ b

2
i

���
� sin

�
b� a
2

�
exp

��
a+ b

2

�
i

�����
� 2R2 sup

t2[a;b]
jf 00 (R exp (it))j

�
b� a
2

� sin
�
b� a
2

��
:

By utilising the inequality (2.16) for the circular path [a;b];R and v = R exp (is) 2
[a;b];R with s 2 [a; b] ; we also get

(3.5)

����f (R exp (ib)) sin�b� s2
�
exp

��
s+ b

2

�
i

�
+ f (R exp (ia)) sin

�
s� a
2

�
exp

��
a+ s

2

�
i

�
+ f (R exp (is)) sin

�
b� a
2

�
exp

��
a+ b

2

�
i

�
�
Z b

a

f (R exp (it)) exp (it) dt

�����
� R2 sup

t2[a;b]
jf 00 (R exp (it))j

�
b� a
2

� sin
�
b� a
2

�
cos

�
a+ b

2
� s
��
:
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In particular, for s = a+b
2 ; we get from (3.5) best possible inequality

(3.6)

����f (R exp (bi)) sin�b� a4
�
exp

��
a+ 3b

4

�
i

�
+ f (R exp (ia)) sin

�
b� a
4

�
exp

��
3a+ b

4

�
i

�
+ f

�
R exp

�
a+ b

2
i

��
sin

�
b� a
2

�
exp

��
a+ b

2

�
i

�
�
Z b

a

f (R exp (it)) exp (it) dt

�����
� R2 sup

t2[a;b]
jf 00 (R exp (it))j

�
b� a
2

� sin
�
b� a
2

��
:
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