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ABSTRACT. In this paper, we define a new identity for twice differentiable mappings and

obtained some new estimates on the generalization of Hadamard’s and Simpson’s type

inequalities for quasi-geometrically convex mappings using of this identity.

1. INTRODUCTION AND PRELIMINARY RESULTS

A convex function is a continuous function whose value at the midpoint of every interval

in its domain does not exceed the arithmetic mean of its value at the ends of the interval. An

important mathematical problem is to investigate how function behaves under the action

of means. The best known case is that of midpoint convex (or Jensen convex) functions,

which deals with the arithmetic mean [7, pp.2].

More generally, a function f(x) is convex on an interval [a, b], if for any two points x, y ∈
[a, b] and α, β ∈ (0, 1], we have

f(αx+ βy) ≤ αf(x) + βf(y)

A real valued function defined on nonempty subinterval I of R is called convex if we

replace α+β = 1 for all points x and y ∈ I in above inequality. It is called strictly convex

if the above inequality holds strictly whenever x and y are distinct points. If −f is convex

(respectively, strictly convex) then we say that f is concave (respectively, strictly concave).

A function is called affine if it is both convex and concave.

The appearance of the new mathematical inequality often puts on firm foundation for the

heuristic algorithms and procedures used in applied sciences. Among others one of the

main inequality, which gives us an explicit error bounds in the trapezoidal and midpoint
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rules of a smooth function, called Hermit-Hadamard’s inequality defined as

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(t)dt ≤ f(a) + f(b)

2
(1.1)

where f : [a, b]→ R is a convex function. Both inequalities hold in the reversed direction

for f to be concave. We note that Hermit-Hadamard’s inequality (1.1) may be regarded

as a refinement of the concept of convexity and it follows easily from Jensens inequality.

Inequality (1.1) has received renewed attention in recent years and a remarkable variety

of refinements and generalizations have been found in literature and the references cited

therein. The second well known inequality in literature as Simpson’s Inequality defined as∣∣∣∣∣13
[
2f

(
a+ b

2

)
+
f(a)+f(b)

2

]
− 1

b−a

∫ b

a

f(x)dx

∣∣∣∣∣≤ 1

2880
‖ f (iv) ‖∞ (b−a)4 (1.2)

where f : [a, b] → R is a four times continuous differentiable mapping on (a, b) and

‖ f (iv) ‖∞= supx∈(a,b)
∣∣f (iv)(x)∣∣ < ∞. It is well known that if the mapping f is neither

four times differentiable nor is the fourth derivative f (iv) bounded on (a, b), then we cannot

apply the classical Simpson quadrature formula.

The notion of quasi-convex functions generalizes the notion of convex functions. More

exactly, a function f : [a, b]→ R is said quasi-convex on [a, b] if

f(αx+ βy) ≤ sup{f(x), f(y)}

where x, y ∈ [a, b], α, β ∈ (0, 1] and α+ β = 1. The notion of geometrically convex first

introduce by Niculescu, C. P. in [5] and [6] and produced as

Definition 1. A function f : I ⊆ R+ → R+ is said to beGG-convex (called geometrically

convex function) if

f
(
xαyβ

)
≤ fα(x)fβ(y)

where x, y ∈ [a, b], α, β ∈ (0, 1] and α+ β = 1.

Niculescu in same article defined the term geometric − arithmatically convex with

notation GA-convex as

Definition 2. A function f : I ⊆ R+ → R is said to be GG-convex (called geometrically

convex function) if

f
(
xαyβ

)
≤ αf(x) + βf(y)

where x, y ∈ [a, b], α, β ∈ (0, 1] and α+ β = 1.

In [1], İşcan, İ. gave definition of quasi-geometrically convexity as follows:
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Definition 3. A function f : I ⊆ R+ → R is said to be quasi-convex if

f
(
xαyβ

)
≤ sup{f(x), f(y)}

where x, y ∈ [a, b], α, β ∈ (0, 1] and α+ β = 1.

Clearly, any GA-convex and geometrically convex functions are quasi-geometrically

convex functions. Furthermore, there exist quasi-geometrically convex functions which

are neither GA-convex nor GG-convex [1].

Recently, İşcan, İ. et.al in [4] established some results based on single differentiability for

quasi-geometrically convex functions using the identity

Lemma 1. A function f : I ⊆ R+ → R be a differentiable function on Io such that

f ∈ L1([a, b]) , where a, b ∈ I with a < b. Then for all λ, µ ∈ R, we have:

If (λ, µ, a, b) = ln

(
b

a

){∫ 1
2

0

(t− µ)a1−tbtf ′
(
a1−tbt

)
dt

+

∫ 1

1
2

(t− λ)a1−tbtf ′
(
a1−tbt

)
dt

}
(1.3)

where

If (λ, µ, a, b) = (λ− µ) f
(√

ab
)
+ µf(a) + (1− λ) f(b)− 1

ln
(
b
a

) ∫ b

a

f(u)

u
du

where a, b ∈ I with a < b and λ, µ ∈ R.

This article is in the continuation of [4]. The main purpose of this article is to establish

some new general integral inequalities of Hermite-Hadamard and Simpson type for twice

differentiable quasi-geometrically convex functions by using a new integral identity.

2. MAIN RESULTS

In order to prove our main results we need the following identity.

Lemma 2. A function f : I ⊆ R+ → R be a differentiable function on Io such that

f ∈ L1([a, b]) , where a, b ∈ I with a < b. Then for all λ, µ ∈ R, we have

|Mf (λ, µ, a, b)| =
(
ln

(
b

a

))2
{∫ 1

2

0

t(t− µ)a2(1−t)b2tf ′′
(
a1−tbt

)
dt

+

∫ 1

1
2

(1− t)(t− λ)a2(1−t)b2tf ′′
(
a1−tbt

)
dt

}
(2.4)
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where

Mf (λ, µ, a, b) = (λ− µ+ 1) f
(√

ab
)
+ µf(a) + (1− λ) f(b)

+

√
ab (λ+ µ− 1)

2
ln

(
b

a

)
f ′
(√

ab
)
− 2

ln (b/a)

∫ b

a

f(u)

u
du

where a, b ∈ I with a < b and λ, µ ∈ R.

Proof. Using integration rules and changing the parameter, we can easily prove the above

result.

Theorem 1. A function f : I ⊆ R+ → R be a twice differentiable function on Io such

that f ′′ ∈ L1([a, b]) , where a, b ∈ I with a < b. If |f ′′|q is quasi−geometrically convex

on [a, b] for some fixed q ≥ 1 and 0 ≤ µ ≤ 1/2 ≤ λ ≤ 1, then the following inequality

holds

|Mf (λ, µ, a, b)| ≤
(
ln

(
b

a

))
(sup {|f ′′(a)|q, |f ′′(b)|q})

1
q

{
c
1− 1

q

1 (µ)c
1
q

3 (µ, q, a, b)

+ c
1− 1

q

2 (λ)c
1
q

4 (λ, q, a, b)

}
(2.5)

where

c1(µ) =
µ3

3
− µ

8
+

1

24

c2(λ) = −λ
3

3
+ λ2 − 7λ

8
+

1

4

c3(µ, q, a, b) =
1

2q
(
2 ln

(
b
a

)) [8µ2a2q(1−µ)L
(
a2qµ, b2qµ

)
− 8µa2q(1−µ)

q
(
2 ln

(
b
a

))×
L
(
a2qµ, b2qµ

)
+

aq

q
(
ln
(
b
a

))L (aq, bq) +
10µa2q

q
(
2 ln

(
b
a

))
+

2(µ− 1)

q
(
2 ln

(
b
a

)) (ab)q + 1− 2µ

2
(ab)q

]

c4(λ, q, a, b) =
1

2q
(
2 ln

(
b
a

)) [2(1− λ)b2q
q
(
2 ln

(
b
a

)) − (2λ− 1)(ab)q

2
+ 4λ(1− λ)a2q(1−λ)×

L
(
a2qλ, b2qλ

)
− 2λaqL (aq, bq) +

8a2q(1−λ)b2qλ

q2
(
2 ln

(
b
a

))2 +
2λ(ab)q

q
(
2 ln

(
b
a

))
− 4b2q

q2
(
2 ln

(
b
a

))2 − 4(ab)q

q2
(
2 ln

(
b
a

))2
]

Proof. Since |f ′′|q is quasi-geometrically convex on [a, b] for all t ∈ [0.1]∣∣f ′′ (a1−tbt)∣∣q ≤ sup
{
|f ′′(a)|q , |f ′′(b)|q

}
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From lemma 2 and using power mean inequality, we have

|Mf (λ, µ, a, b)| =
(
ln

(
b

a

))2

(∫ 1

2

0

|t(t−µ)|dt

)1− 1
q
(∫ 1

2

0

|t(t−µ)|
(
a2(1−t)b2t

)q
×

sup
{
|f ′′(a)|q , |f ′′(b)|q

}) 1
q +

(∫ 1

1
2

|(1− t)(t− λ)|dt

)1− 1
q
(∫ 1

1
2

|(1− t)(t− λ)|

(
a2(1−t)b2t

)q
sup

{
|f ′′(a)|q , |f ′′(b)|q

}) 1
q

}
(2.6)

Let here

c
1− 1

q

1 (µ) =

∫ 1
2

0

|t(t− µ)|dt =
∫ µ

0

(t(µ− t))dt+
∫ 1

2

µ

(t(t− µ))dt = µ3

3
− µ

8
+

1

24

c
1− 1

q

2 (λ) =

∫ 1

1
2

|(1−t)(t−λ)|dt =
∫ λ

1
2

(1−t)(λ−t)dt+
∫ 1

λ

(1−t)(t−λ)dt = −λ
3

3
+λ2−7λ

8
+
1

4

c
1
q

3 (µ, q, a, b)=

∫ 1
2

0

|t(µ−t)|
(
a2(1−t)b2t

)q
dt=

∫ µ

0

t(µ−t)
(
a2(1−t)b2t

)q
dt+

∫ 1
2

µ

t(t−µ)
(
a2(1−t)b2t

)q
dt

Using substitution u = a2(1−t)b2t in c
1
q

3 (µ, q, a, b), we have∫ µ

0

t(µ− t)
(
a2(1−t)b2t

)
dt =

µ(
2 ln

(
b
a

))2 ∫ a2(1−µ)b2µ

a2
uq−1 ln

( u
a2

)
du

− µ(
2 ln

(
b
a

))3 ∫ a2(1−µ)b2µ

a2
uq−1 ln

( u
a2

)
du

∫ µ

0

t(µ−t)
(
a2(1−t)b2t

)
dt=

µa2q(1−µ)b2qµ

q2
(
2 ln

(
b
a

))2 − 2a2q(1−µ)b2qµ

q3
(
2 ln

(
b
a

))3 +
µa2q

q2
(
2 ln

(
b
a

))2 + µa2q

q3
(
2 ln

(
b
a

))3
∫ 1

2

µ

t(t− µ)
(
a2(1−t)b2t

)
dt =

1(
2 ln

(
b
a

))3 ∫ ab

a2(1−µ)b2µ
uq−1

(
ln
( u
a2

))2
du

− µ(
2 ln

(
b
a

))2 ∫ ab

a2(1−µ)b2µ
uq−1 ln

( u
a2

)
du

∫ 1
2

µ

t(t− µ)
(
a2(1−t)b2t

)
dt =

(1− 2µ)(ab)q

8q ln
(
b
a

) +
(µ− 1)(ab)q

q2
(
2 ln

(
b
a

))2 +
3µa2q(1−µ)b2qu

q2
(
2 ln

(
b
a

))2
+

2(ab)q

q3
(
2 ln

(
b
a

))3 − 2a2q(1−µ)b2qµ

q3
(
2 ln

(
b
a

))3
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finally, we get

c3(µ, q, a, b) =
1

2q
(
2 ln

(
b
a

)) [8µ2a2q(1−µ)L
(
a2qµ, b2qµ

)
− 8µa2q(1−µ)

q
(
2 ln

(
b
a

))×
L
(
a2qµ, b2qµ

)
+

aq

q
(
ln
(
b
a

))L (aq, bq) +
10µa2q

q
(
2 ln

(
b
a

))
+

2(µ− 1)

q
(
2 ln

(
b
a

)) (ab)q + 1− 2µ

2
(ab)q

]

And

c
1
q

4 (λ, q, a, b) =

∫ 1

1
2

|(1− t)(t− λ)|
(
a2(1−t)b2t

)q
dt

=

∫ λ

1
2

t(µ− t)
(
a2(1−t)b2t

)q
dt+

∫ 1

λ

t(t− µ)
(
a2(1−t)b2t

)q
dt

Using same substitution u = a2(1−t)b2t in c
1
q

4 (λ, q, a, b), we have

c4(λ, q, a, b) =
1

2q
(
2 ln

(
b
a

)) [2(1− λ)b2q
q
(
2 ln

(
b
a

)) − (2λ− 1)(ab)q

2
+ 4λ(1− λ)a2q(1−λ)×

L
(
a2qλ, b2qλ

)
− 2λaqL (aq, bq) +

8a2q(1−λ)b2qλ

q2
(
2 ln

(
b
a

))2 +
2λ(ab)q

q
(
2 ln

(
b
a

))
− 4b2q

q2
(
2 ln

(
b
a

))2 − 4(ab)q

q2
(
2 ln

(
b
a

))2
]

This completes the proof.

Corollary 1. A function f : I ⊆ R+ → R be a twice differentiable function on Io such

that f ′′ ∈ L1([a, b]) , where a, b ∈ I with a < b. If |f ′′|q is quasi−geometrically convex

on [a, b] for some fixed q ≥ 1 and for l,m ∈ R with l < m, then the following inequality

holds∣∣∣∣mf

(
l

m
, a, b

)∣∣∣∣ ≤ 8l3 − 3m2l +m3

24m3

(
ln

(
b

a

))
(sup {|f ′′(a)|q, |f ′′(b)|q})

1
q ×{

c
1
q

3

(
l

m
, q, a, b

)
+ c

1
q

4

(
l

m
, q, a, b

)}
(2.7)

where

mf

(
l

m
, a, b

)
= 2

(
m− l
m

)
f
(√

ab
)
+

l

m
(f(a) + f(b))− 2

ln
(
b
a

) ∫ b

a

f(u)

u
du



Integral Inequalities for twice Differentiable Mappings 7

and

c1

(
l

m

)
= c2

(
l

m

)
=

8l3 − 3m2l +m3

24m3

c3

(
l

m
, q, a, b

)
=

1

2q
(
2 ln

(
b
a

)) [8l
m
a

2q(m−l)
m

(
lq
(
2 ln

(
b
a

))
−m

mq
(
2 ln

(
b
a

)) )L
(
a2q

l
m , b2q

l
m

)
+

aq

q
(
ln
(
b
a

))L (aq, bq)+
10la2q

mq
(
2 ln

(
b
a

))− 2(m−l)
mq
(
2 ln

(
b
a

)) (ab)q
+

(m−2l)
2m

(ab)q
]

c4

(
l

m
, q, a, b

)
=

1

2q
(
2 ln

(
b
a

)) [8l
m
b

2q(m−l)
m

(
lq
(
2 ln

(
b
a

))
−m

mq
(
2 ln

(
b
a

)) )L
(
a2q

l
m , b2q

l
m

)
+

bq

q
(
ln
(
b
a

))L (aq, bq)+
10lb2q

mq
(
2 ln

(
b
a

))− 2(m−l)
mq
(
2 ln

(
b
a

)) (ab)q
+

(m−2l)
2m

(ab)q
]

Proof. Proof is exchangeable with Theorem 1 with the substitution µ = l
m and λ = 1− l

m .

Theorem 2. A function f : I ⊆ R+ → R be a twice differentiable function on Io such that

f ′′ ∈ L1([a, b]) , where a, b ∈ I with a < b. If |f ′′|q is quasi− geometrically convex on

[a, b] for some fixed conjugate numbers p, q ≥ 0 where q > 1 and 0 ≤ µ ≤ 1/2 ≤ λ ≤ 1,

then the following inequality holds

|Mf (λ, µ, a, b) | ≤
(
ln

(
b

a

))2

(sup {|f ′′(a)|q, |f ′′(b)|q})
1
q{

c
1
p

5 (p, µ)c
1
q

7 (q, a, b) + c
1
p

6 (p, λ)c
1
q

8 (q, a, b)

}
(2.8)

where

c5(p, µ) =
1

1− µ

[
(1− 2µ)p+1

4p+1(p+ 1)

]
, c6(p, λ) =

(2λ− 1)p+1

λ4p+1(p+ 1)

c7(q, a, b) =
aq

2
L (aq, bq) , c8(q, a, b) =

bq

2
L (aq, bq)
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Proof. From lemma 2 by applying Hölder inequality and using the quasi−geometrically
convexity on [a, b] of |f ′′|q , we have

|Mf (λ, µ, a, b)| =
(
ln

(
b

a

))2

(∫ 1

2

0

|t(µ− t)|pdt

) 1
p
(∫ 1

2

0

(
a2(1−t)b2t

)q
×

sup
{
|f ′′(a)|q , |f ′′(b)|q

}
dt
) 1
q +

(∫ 1

1
2

|(1− t)(t− λ)|pdt

) 1
p
(∫ 1

1
2

(
a2(1−t)b2t

)q
sup

{
|f ′′(a)|q , |f ′′(b)|q

}
dt
) 1
q

}
(2.9)

|Mf (λ, µ, a, b)| =
(
ln

(
b

a

))2 (
sup

{
|f ′′(a)|q , |f ′′(b)|q

}) 1
q


(∫ 1

2

0

|t(µ− t)|pdt

) 1
p

(∫ 1
2

0

(
a2(1−t)b2t

)q
dt

) 1
q

+

(∫ 1

1
2

|(1−t)(t−λ)|pdt

) 1
p
(∫ 1

1
2

(
a2(1−t)b2t

)q
dt

) 1
q

 (2.10)

where

c5(p, µ) =

∫ 1
2

0

|t(µ− t)|pdt=
∫ µ

0

tp(µ− t)pdt+
∫ 1

2

µ

tp(t− µ)pdt = 1

1−µ

[
(1−2µ)p+1

4p+1(p+1)

]

c6(p, µ) =

∫ 1

1
2

|(1−t)(λ−t)|pdt=
∫ λ

1
2

(1−t)p(t−λ)pdt+
∫ 1

λ

(1−t)p(t−λ)pdt = (2λ−1)p+1

λ4p+1(p+1)

Here we use u = a2(1−t)b2t to calculate c
1
q

7 (q, a, b) and c
1
q

8 (q, a, b)

c7(q, a, b) =

∫ 1
2

0

(
a2(1−t)b2t

)q
dt =

aq

2
L (aq, bq)

c8(q, a, b) =

∫ 1

1
2

(
a2(1−t)b2t

)q
dt =

bq

2
L (aq, bq)

Hence (2.8) easily found from (2.10).

Corollary 2. A function f : I ⊆ R+ → R be a twice differentiable function on Io such

that f ′′ ∈ L1([a, b]) , where a, b ∈ I with a < b. If |f ′′|q is quasi−geometrically convex

on [a, b] for some fixed conjugate numbers p, q ≥ 0 with q > 1 and for l,m ∈ R with

l < m, then the following inequality holds

|mf

(
l

m
, a, b

)
| ≤

(
ln

(
b

a

))2
1

mp(p+1)

[
(m−2l)p+1

4p+1(m−l)

]
(sup {|f ′′(a)|q, |f ′′(b)|q})

1
q ×{

c
1
q

7 (q, a, b) + c
1
q

8 (q, a, b)

}
(2.11)

where

c5

(
p,

l

m

)
= c6

(
p,

l

m

)
=

1

mp(p+ 1)

[
(m− 2l)p+1

4p+1(m− l)

]
,
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c7(q, a, b) =
aq

2
L (aq, bq) , c8(q, a, b) =

bq

2
L (aq, bq)

and mf

(
l
m , a, b

)
fixed in Corollary 1.

Proof. Proof is exchangeable with Theorem 2 with the substitution µ = l
m and λ = 1− l

m .

Theorem 3. A function f : I ⊆ R+ → R be a twice differentiable function on Io such that

f ′′ ∈ L1([a, b]) , where a, b ∈ I with a < b. If |f ′′|q is quasi− geometrically convex on

[a, b] for some fixed conjugate numbers p, q ≥ 0 where q > 1 and 0 ≤ µ ≤ 1/2 ≤ λ ≤ 1,

then the following inequality holds

|Mf (λ, µ, a, b) | ≤
(
ln

(
b

a

))2

(sup {|f ′′(a)|q, |f ′′(b)|q})
1
q{

c
1
p

7 (p, a, b)c
1
q

5 (q, µ) + c
1
p

8 (p, a, b)c
1
q

6 (q, λ)

}
(2.12)

where

c5(q, µ) =
1

1− µ

[
(1− 2µ)q+1

4q+1(q + 1)

]
, c6(q, λ) =

(2λ− 1)q+1

λ4q+1(q + 1)

c7(p, a, b) =
ap

2
L (ap, bp) , c8(p, a, b) =

bp

2
L (ap, bp)

and 1
p +

1
q = 1

Proof. From lemma 2 by applying Hölder inequality and using the quasi−geometrically
convexity on [a, b] of |f ′′|q , we have

|Mf (λ, µ, a, b)| =
(
ln

(
b

a

))2

(∫ 1

2

0

(
a2(1−t)b2t

)p
dt

) 1
p
(∫ 1

2

0

|t(µ− t)|q×

sup
{
|f ′′(a)|q , |f ′′(b)|q

}
dt
) 1
q +

(∫ 1

1
2

(
a2(1−t)b2t

)p
dt

) 1
p
(∫ 1

1
2

|(1− t)(t− λ)|q

sup
{
|f ′′(a)|q , |f ′′(b)|q

}
dt
) 1
q

}
(2.13)

|Mf (λ, µ, a, b)| =
(
ln

(
b

a

))2 (
sup

{
|f ′′(a)|q , |f ′′(b)|q

}) 1
q


(∫ 1

2

0

|t(µ− t)|qdt

) 1
q

(∫ 1
2

0

(
a2(1−t)b2t

)p
dt

) 1
p

+

(∫ 1

1
2

|(1−t)(t−λ)|qdt

) 1
q
(∫ 1

1
2

(
a2(1−t)b2t

)p
dt

) 1
p

(2.14)

where

c5(q, µ) =

∫ 1
2

0

|t(µ− t)|qdt= 1

1−µ

[
(1−2µ)q+1

4q+1(q+1)

]
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c6(p, λ) =

∫ 1

1
2

|(1−t)(λ−t)|qdt= (2λ−1)q+1

λ4q+1(q+1)

Here we use u = a2(1−t)b2t to calculate c
1
q

7 (q, a, b) and c
1
q

8 (q, a, b)

c7(p, a, b) =

∫ 1
2

0

(
a2(1−t)b2t

)p
dt =

ap

2
L (ap, bp)

c8(p, a, b) =

∫ 1

1
2

(
a2(1−t)b2t

)p
dt =

bp

2
L (ap, bp)

Hence (2.12) easily found from (2.14).

Corollary 3. A function f : I ⊆ R+ → R be a twice differentiable function on Io such

that f ′′ ∈ L1([a, b]) , where a, b ∈ I with a < b. If |f ′′|q is quasi−geometrically convex

on [a, b] for some fixed conjugate numbers p, q ≥ 0 and for l,m ∈ R with l < m, then the

following inequality holds

|mf

(
l

m
, a, b

)
| ≤

(
ln

(
b

a

))2
1

mq(q+1)

[
(m−2l)q+1

4q+1(m−l)

]
(sup {|f ′′(a)|q, |f ′′(b)|q})

1
q ×{

c
1
p

7 (p, a, b) + c
1
p

8 (p, a, b)

}
(2.15)

where

c5

(
q,

l

m

)
= c6

(
q,

l

m

)
=

1

mq(q + 1)

[
(m− 2l)q+1

4q+1(m− l)

]
,

c7(p, a, b) =
ap

2
L (ap, bp) , c8(p, a, b) =

bp

2
L (ap, bp)

and mf

(
l
m , a, b

)
fixed in Corollary 1.

Proof. Proof is exchangeable with Theorem 3 with the substitution µ = l
m and λ = 1− l

m .
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