INEQUALITIES OF JENSEN'S TYPE FOR K-BOUNDED MODULUS CONVEX COMPLEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

Let $D \subset \mathbb{C}$ be a convex domain of complex numbers and $K>0$. We say that the function $f: D \subset \mathbb{C} \rightarrow \mathbb{C}$ is called K-bounded modulus convex, for the given $K>0$, if it satisfies the condition $$
|(1-\lambda) f(x)+\lambda f(y)-f((1-\lambda) x+\lambda y)| \leq \frac{1}{2} K \lambda(1-\lambda)|x-y|^{2}
$$ for any $x, y \in D$ and $\lambda \in[0,1]$. In this paper we establish some new Jensen's type inequalities for the complex integral on γ, a smooth path from \mathbb{C} and K-bounded modulus convex functions. Some examples for the complex exponential and complex logarithm are also given.

1. Introduction

Let $\left(X ;\|\cdot\|_{X}\right)$ and $\left(Y ;\|\cdot\|_{Y}\right)$ be two normed linear spaces over the complex number field \mathbb{C}. Let C be a convex set in X. In the recent paper [3] we introduced the following class of functions:
Definition 1. A mapping $F: C \subset X \rightarrow Y$ is called K-bounded norm convex, for some given $K>0$, if it satisfies the condition

$$
\begin{equation*}
\|(1-\lambda) F(x)+\lambda F(y)-F((1-\lambda) x+\lambda y)\|_{Y} \leq \frac{1}{2} K \lambda(1-\lambda)\|x-y\|_{X}^{2} \tag{1.1}
\end{equation*}
$$

for any $x, y \in C$ and $\lambda \in[0,1]$. For simplicity, we denote this by $F \in \mathcal{B} \mathcal{N}_{K}(C)$.
We have from (1.1) for $\lambda=\frac{1}{2}$ the Jensen's inequality

$$
\left\|\frac{F(x)+F(y)}{2}-F\left(\frac{x+y}{2}\right)\right\|_{Y} \leq \frac{1}{8} K\|x-y\|_{X}^{2}
$$

for any $x, y \in C$.
We observe that $\mathcal{B} \mathcal{N}_{K}(C)$ is a convex subset in the linear space of all functions defined on C and with values in Y.

In the same paper [3], we obtained the following result which provides a large class of examples of such functions.

Theorem 1. Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be two normed linear spaces, C an open convex subset of X and $F: C \rightarrow Y$ a twice-differentiable mapping on C. Then for any $x, y \in C$ and $\lambda \in[0,1]$ we have

$$
\begin{equation*}
\|(1-\lambda) F(x)+\lambda F(y)-F((1-\lambda) x+\lambda y)\|_{Y} \leq \frac{1}{2} K \lambda(1-\lambda)\|y-x\|_{X}^{2} \tag{1.2}
\end{equation*}
$$

[^0]Key words and phrases. Complex integral, Continuous functions, Holomorphic functions, Jensen's inequality, Hermite-Hadamard inequality, Midpoint inequality, Trapezoid inequality.
where

$$
\begin{equation*}
K_{F^{\prime \prime}}:=\sup _{z \in C}\left\|F^{\prime \prime}(z)\right\|_{\mathcal{L}\left(X^{2} ; Y\right)} \tag{1.3}
\end{equation*}
$$

is assumed to be finite, namely $F \in \mathcal{B N}_{K_{F^{\prime \prime}}}(C)$.
We have the following inequalities of Hermite-Hadamard type [3]:
Theorem 2. Let $\left(X ;\|\cdot\|_{X}\right)$ and $\left(Y ;\|\cdot\|_{Y}\right)$ be two normed linear spaces over the complex number field \mathbb{C} with Y complete. Assume that the mapping $F: C \subset X \rightarrow Y$ is continuous on the convex set C in the norm topology. If $F \in \mathcal{B N}_{K}(C)$ for some $K>0$, then we have

$$
\begin{equation*}
\left\|\frac{F(x)+F(y)}{2}-\int_{0}^{1} F((1-\lambda) x+\lambda y) d \lambda\right\|_{Y} \leq \frac{1}{12} K\|x-y\|_{X}^{2} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\int_{0}^{1} F((1-\lambda) x+\lambda y) d \lambda-F\left(\frac{x+y}{2}\right)\right\|_{Y} \leq \frac{1}{24} K\|x-y\|_{X}^{2} \tag{1.5}
\end{equation*}
$$

for any $x, y \in C$.
The constants $\frac{1}{12}$ and $\frac{1}{24}$ are best possible.
Following [1, p. 59], let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be two normed linear spaces, Ω an open subset of X and $F: \Omega \rightarrow Y$. If $a \in \Omega, u \in X \backslash\{0\}$ and if the limit

$$
\lim _{t \rightarrow 0} \frac{1}{t}[F(a+t u)-F(a)]
$$

exists, then we denote this derivative $\partial_{u} F(a)$. It is called the directional derivative of F at a in the direction u. If the directional derivative is defined in all directions and there is a continuous linear mapping Φ from X into Y such that for all $u \in X$

$$
\partial_{u} F(a)=\Phi(u)
$$

then we say that F is Gâteaux-differentiable at a and that Φ is the Gâteaux differential of F at a. If a mapping F is differentiable at a point a, then clearly all its directional derivatives exist and we have

$$
\partial_{u} F(a)=F^{\prime}(a) u, u \in X
$$

Thus F is Gâteaux-differentiable at a. However, the Gâteaux differential may exist without the differential existing. The existence of directional derivatives at a point does not imply that the mapping is Gâteaux-differentiable. To distinguish the differential from the Gâteaux differential, the differential is often referred as the Fréchet differential.

In an earlier and more comprehensive version of [3], see [2], we also obtained the following Jensen's type discrete inequality:

Theorem 3. Let $\left(X ;\|\cdot\|_{X}\right)$ and $\left(Y ;\|\cdot\|_{Y}\right)$ be two normed linear spaces over the complex number field \mathbb{C}. Assume that the mapping $F: C \subset X \rightarrow Y$ is defined on the open convex set C and $F \in \mathcal{B N}_{K}(C)$ for some $K>0$. If $x_{k} \in C, p_{k} \geq 0$ for $k \in\{1, \ldots, n\}$ with $\sum_{k=1}^{n} p_{k}=1$ and F is Gâteaux-differentiable at $\sum_{k=1}^{n} p_{k} x_{k} \in$
C, then for any $y_{j} \in C$ and $q_{j} \geq 0$ for $j \in\{1, \ldots, m\}$ with $\sum_{j=1}^{m} q_{j}=1$ and $\sum_{j=1}^{m} q_{j} y_{j}=\sum_{k=1}^{n} p_{k} x_{k}$ we have

$$
\begin{equation*}
\left\|\sum_{j=1}^{m} q_{j} F\left(y_{j}\right)-F\left(\sum_{k=1}^{n} p_{k} x_{k}\right)\right\|_{Y} \leq \frac{1}{2} K \sum_{j=1}^{m} q_{j}\left\|y_{j}-\sum_{k=1}^{n} p_{k} x_{k}\right\|_{X}^{2} \tag{1.6}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
\left\|\sum_{j=1}^{n} p_{j} F\left(x_{j}\right)-F\left(\sum_{k=1}^{n} p_{k} x_{k}\right)\right\|_{Y} \leq \frac{1}{2} K \sum_{j=1}^{n} p_{j}\left\|x_{j}-\sum_{k=1}^{n} p_{k} x_{k}\right\|_{X}^{2} \tag{1.7}
\end{equation*}
$$

If $(X ;\langle\cdot, \cdot\rangle)$ is an inner product space, then

$$
\sum_{j=1}^{n} p_{j}\left\|x_{j}-\sum_{k=1}^{n} p_{k} x_{k}\right\|_{X}^{2}=\sum_{j=1}^{n} p_{j}\left\|x_{j}\right\|_{X}^{2}-\left\|\sum_{k=1}^{n} p_{k} x_{k}\right\|_{X}^{2}
$$

and by (1.7) we have

$$
\begin{equation*}
\left\|\sum_{j=1}^{n} p_{j} F\left(x_{j}\right)-F\left(\sum_{k=1}^{n} p_{k} x_{k}\right)\right\|_{Y} \leq \frac{1}{2} K\left[\sum_{j=1}^{n} p_{j}\left\|x_{j}\right\|_{X}^{2}-\left\|\sum_{k=1}^{n} p_{k} x_{k}\right\|_{X}^{2}\right] \tag{1.8}
\end{equation*}
$$

Corollary 1. Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be two normed linear spaces, C an open convex subset of X and $F: C \rightarrow Y$ a twice-differentiable mapping on C. If $x_{k} \in C$, $p_{k} \geq 0$ for $k \in\{1, \ldots, n\}$ with $\sum_{k=1}^{n} p_{k}=1$, then

$$
\begin{align*}
\| \sum_{j=1}^{n} p_{j} F\left(x_{j}\right)-F\left(\sum_{k=1}^{n} p_{k} x_{k}\right) & \|_{Y} \tag{1.9}\\
& \leq \frac{1}{2} \sup _{z \in C}\left\|F^{\prime \prime}(z)\right\|_{\mathcal{L}\left(X^{2} ; Y\right)} \sum_{j=1}^{n} p_{j}\left\|x_{j}-\sum_{k=1}^{n} p_{k} x_{k}\right\|_{X}^{2}
\end{align*}
$$

Let $D \subset \mathbb{C}$ be a convex domain of complex numbers and $K>0$. Following Definition 1, we say that the function $F: D \subset \mathbb{C} \rightarrow \mathbb{C}$ is called K-bounded modulus convex, for the given $K>0$, if it satisfies the condition

$$
\begin{equation*}
|(1-\lambda) F(x)+\lambda F(y)-F((1-\lambda) x+\lambda y)| \leq \frac{1}{2} K \lambda(1-\lambda)|x-y|^{2} \tag{1.10}
\end{equation*}
$$

for any $x, y \in D$ and $\lambda \in[0,1]$. For simplicity, we denote this by $F \in \mathcal{B} \mathcal{M}_{K}(D)$.
All the above results can be translated for complex functions defined on convex subsets $D \subset \mathbb{C}$.

In the following, in order to obtain several inequalities for the complex integral, we need the following facts.

Suppose γ is a smooth path from \mathbb{C} parametrized by $z(t), t \in[a, b]$ and f is a complex function which is continuous on γ. Put $z(a)=u$ and $z(b)=w$ with u, $w \in \mathbb{C}$. We define the integral of f on $\gamma_{u, w}=\gamma$ as

$$
\int_{\gamma} f(z) d z=\int_{\gamma_{u, w}} f(z) d z:=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

We observe that that the actual choice of parametrization of γ does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose γ is parametrized by $z(t), t \in[a, b]$, which is differentiable on the intervals $[a, c]$ and $[c, b]$, then assuming that f is continuous on γ we define

$$
\int_{\gamma_{u, w}} f(z) d z:=\int_{\gamma_{u, v}} f(z) d z+\int_{\gamma_{v, w}} f(z) d z
$$

where $v:=z z$. This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

$$
\int_{\gamma_{u, w}} f(z)|d z|:=\int_{a}^{b} f(z(t))\left|z^{\prime}(t)\right| d t
$$

and the length of the curve γ is then

$$
\ell(\gamma)=\int_{\gamma_{u, w}}|d z|=\int_{a}^{b}\left|z^{\prime}(t)\right| d t
$$

Let f and g be holomorphic in D, and open domain and suppose $\gamma \subset D$ is a piecewise smooth path from $z(a)=u$ to $z(b)=w$. Then we have the integration by parts formula

$$
\begin{equation*}
\int_{\gamma_{u, w}} f(z) g^{\prime}(z) d z=f(w) g(w)-f(u) g(u)-\int_{\gamma_{u, w}} f^{\prime}(z) g(z) d z \tag{1.11}
\end{equation*}
$$

We recall also the triangle inequality for the complex integral, namely

$$
\begin{equation*}
\left|\int_{\gamma} f(z) d z\right| \leq \int_{\gamma}|f(z)||d z| \leq\|f\|_{\gamma, \infty} \ell(\gamma) \tag{1.12}
\end{equation*}
$$

where $\|f\|_{\gamma, \infty}:=\sup _{z \in \gamma}|f(z)|$.
We also define the p-norm with $p \geq 1$ by

$$
\|f\|_{\gamma, p}:=\left(\int_{\gamma}|f(z)|^{p}|d z|\right)^{1 / p}
$$

For $p=1$ we have

$$
\|f\|_{\gamma, 1}:=\int_{\gamma}|f(z)||d z|
$$

If $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, then by Hölder's inequality we have

$$
\|f\|_{\gamma, 1} \leq[\ell(\gamma)]^{1 / q}\|f\|_{\gamma, p}
$$

In the recent paper [5] we obtained the following results:
Theorem 4. Let $D \subset \mathbb{C}$ be a convex domain of complex numbers and $K>0$. Assume that f is holomorphic on D and $f \in \mathcal{B} \mathcal{M}_{K}(D)$. If $\gamma \subset D$ parametrized by $z(t), t \in[a, b]$ is a piecewise smooth path from $z(a)=u$ to $z(b)=w$ and $v \in D$, then

$$
\begin{equation*}
\left|\int_{\gamma} f(z) d z-\left[f(v)+f^{\prime}(v)\left(\frac{w+u}{2}-v\right)\right](w-u)\right| \leq \frac{1}{2} K \int_{\gamma}|z-v|^{2}|d z| \tag{1.13}
\end{equation*}
$$

and

$$
\begin{align*}
\left\lvert\, \frac{1}{2}[f(w)(w-v)+f(u)(v-u)+f(v)(w-u)]\right. & -\int_{\gamma} f(z) d z \mid \tag{1.14}\\
& \leq \frac{1}{4} K \int_{\gamma}|z-v|^{2}|d z|
\end{align*}
$$

Motivated by the above results, in this paper we establish some new Jensen's type inequalities for the complex integral on γ, a smooth path from \mathbb{C} and K bounded modulus convex functions. Some examples for the complex exponential and complex logarithm are also given.

2. General Integral Inequalities

We have:
Theorem 5. Let $G \subset \mathbb{C}$ be a convex domain of complex numbers and $K>0$ and that F is holomorphic on G with $F \in \mathcal{B M}_{K}(G)$. Assume also that $f: D \rightarrow G$ is continuous on $D, \gamma \subset D$ parametrized by $z(t), t \in[a, b]$ is a piecewise smooth path from $z(a)=u$ to $z(b)=w$ with $w \neq u$ and $\frac{1}{w-u} \int_{\gamma} f(z) d z \in G$, then

$$
\begin{align*}
\left\lvert\, \frac{1}{w-u} \int_{\gamma}(F \circ f)(v) d v\right. & \left.-F\left(\frac{1}{w-u} \int_{\gamma} f(z) d z\right) \right\rvert\, \tag{2.1}\\
& \leq \frac{1}{2} K \frac{1}{|w-u|} \int_{\gamma}\left|f(v)-\frac{1}{w-u} \int_{\gamma} f(z) d z\right|^{2}|d v|
\end{align*}
$$

Proof. Let $x, y \in G$. Since $F \in \mathcal{B} \mathcal{M}_{K}(G)$, then we have

$$
|F((1-\lambda) x+\lambda y)-F(x)+\lambda[F(x)-F(y)]| \leq \frac{1}{2} K \lambda(1-\lambda)|x-y|^{2}
$$

that implies that

$$
\left|\frac{F(x+\lambda(y-x))-F(x)}{\lambda}+F(x)-F(y)\right| \leq \frac{1}{2} K(1-\lambda)|x-y|^{2}
$$

for $\lambda \in(0,1)$.
Since F is holomorphic on G, then by letting $\lambda \rightarrow 0+$, we get

$$
\left|F^{\prime}(x)(y-x)+F(x)-F(y)\right| \leq \frac{1}{2} K|x-y|^{2}
$$

that is equivalent to

$$
\begin{equation*}
\left|F(y)-F(x)-F^{\prime}(x)(y-x)\right| \leq \frac{1}{2} K|y-x|^{2} \tag{2.2}
\end{equation*}
$$

for all $x, y \in G$.
If we take in (2.2) $x=\frac{1}{w-u} \int_{\gamma} f(z) d z$, then we get

$$
\begin{align*}
& \left\lvert\, F(y)-F\left(\frac{1}{w-u} \int_{\gamma} f(z) d z\right)\right. \tag{2.3}\\
& \left.-F^{\prime}\left(\frac{1}{w-u} \int_{\gamma} f(z) d z\right)\left(y-\frac{1}{w-u} \int_{\gamma} f(z) d z\right) \right\rvert\, \\
& \quad \leq \frac{1}{2} K\left|y-\frac{1}{w-u} \int_{\gamma} f(z) d z\right|^{2}
\end{align*}
$$

for all $y \in G$.
If we take in this inequality $y=f(v), v \in \gamma$, then we get

$$
\begin{align*}
&(F \circ f)(v)-F\left(\frac{1}{w-u} \int_{\gamma} f(z) d z\right) \tag{2.4}\\
&-F^{\prime}\left(\frac{1}{w-u} \int_{\gamma} f(z) d z\right)(f(v)\left.-\frac{1}{w-u} \int_{\gamma} f(z) d z\right) \mid \\
& \leq \frac{1}{2} K\left|f(v)-\frac{1}{w-u} \int_{\gamma} f(z) d z\right|^{2}
\end{align*}
$$

for all $v \in \gamma$.
We have

$$
\begin{array}{r}
\frac{1}{w-u} \int_{\gamma}\left[(F \circ f)(v)-F\left(\frac{1}{w-u} \int_{\gamma} f(z) d z\right)\right. \tag{2.5}\\
\left.-F^{\prime}\left(\frac{1}{w-u} \int_{\gamma} f(z) d z\right)\left(f(v)-\frac{1}{w-u} \int_{\gamma} f(z) d z\right)\right] d v \\
\quad=\frac{1}{w-u} \int_{\gamma}(F \circ f)(v) d v-F\left(\frac{1}{w-u} \int_{\gamma} f(z) d z\right) \\
-F^{\prime}\left(\frac{1}{w-u} \int_{\gamma} f(z) d z\right)\left(\frac{1}{w-u} \int_{\gamma} f(v) d v-\frac{1}{w-u} \int_{\gamma} f(z) d z\right) \\
\quad=\frac{1}{w-u} \int_{\gamma}(F \circ f)(v) d v-F\left(\frac{1}{w-u} \int_{\gamma} f(z) d z\right)
\end{array}
$$

By using (2.4) and (2.5) we get

$$
\begin{aligned}
& \left|\frac{1}{w-u} \int_{\gamma}(F \circ f)(v) d v-F\left(\frac{1}{w-u} \int_{\gamma} f(z) d z\right)\right| \\
& \leq \frac{1}{|w-u|} \int_{\gamma} \left\lvert\,(F \circ f)(v)-F\left(\frac{1}{w-u} \int_{\gamma} f(z) d z\right)\right. \\
& \left.-F^{\prime}\left(\frac{1}{w-u} \int_{\gamma} f(z) d z\right)\left(f(v)-\frac{1}{w-u} \int_{\gamma} f(z) d z\right)| | d v \right\rvert\, \\
& \quad \leq \frac{1}{2} K \frac{1}{|w-u|} \int_{\gamma}\left|f(v)-\frac{1}{w-u} \int_{\gamma} f(z) d z\right|^{2}|d v|
\end{aligned}
$$

which proves the inequality (2.1).
Corollary 2. With the assumptions of Theorem 5 and if

$$
\left\|F^{\prime \prime}\right\|_{G, \infty}:=\sup _{z \in G}\left|F^{\prime \prime}(z)\right|<\infty
$$

then

$$
\begin{align*}
& \left|\frac{1}{w-u} \int_{\gamma}(F \circ f)(v) d v-F\left(\frac{1}{w-u} \int_{\gamma} f(z) d z\right)\right| \tag{2.6}\\
& \quad \leq \frac{1}{2}\left\|F^{\prime \prime}\right\|_{G, \infty} \frac{1}{|w-u|} \int_{\gamma}\left|f(v)-\frac{1}{w-u} \int_{\gamma} f(z) d z\right|^{2}|d v|
\end{align*}
$$

Remark 1. If we take $D=G, \gamma \subset G$ and $f(z)=z$, then by (2.6) we get the Hermite-Hadamard type inequality (see also [5])

$$
\begin{align*}
\left|\frac{1}{w-u} \int_{\gamma} F(v) d v-F\left(\frac{w+u}{2}\right)\right| & \tag{2.7}\\
\leq & \frac{1}{2}\left\|F^{\prime \prime}\right\|_{G, \infty} \frac{1}{|w-u|} \int_{\gamma}\left|v-\frac{w+u}{2}\right|^{2}|d v|
\end{align*}
$$

provided F is holomorphic on G and $\left\|F^{\prime \prime}\right\|_{G, \infty}:=\sup _{z \in G}\left|F^{\prime \prime}(z)\right|<\infty$.
We also have:
Theorem 6. Let $G \subset \mathbb{C}$ be a convex domain of complex numbers and $K>0$ and that F is holomorphic on G with $F \in \mathcal{B M}_{K}(G)$. Assume also that $f: D \rightarrow G$ is continuous on $D, \gamma \subset D$ parametrized by $z(t), t \in[a, b]$ is a piecewise smooth path from $z(a)=u$ to $z(b)=w$ with $w \neq u$,

$$
\begin{equation*}
\int_{\gamma}\left(F^{\prime} \circ f\right)(v) d v \neq 0 \text { and } \frac{\int_{\gamma}\left(F^{\prime} \circ f\right)(v) f(v) d v}{\int_{\gamma}\left(F^{\prime} \circ f\right)(v) d v} \in G \tag{2.8}
\end{equation*}
$$

then

$$
\begin{align*}
& \left|F\left(\frac{\int_{\gamma}\left(F^{\prime} \circ f\right)(v) f(v) d v}{\int_{\gamma}\left(F^{\prime} \circ f\right)(v) d v}\right)-\frac{1}{w-u} \int_{\gamma}(F \circ f)(z) d z\right| \tag{2.9}\\
& \leq \frac{1}{2} K \frac{1}{|w-u|} \int_{\gamma}\left|\frac{\int_{\gamma}\left(F^{\prime} \circ f\right)(v) f(v) d v}{\int_{\gamma}\left(F^{\prime} \circ f\right)(v) d v}-f(z)\right|^{2}|d z|
\end{align*}
$$

Proof. From (2.2) we get

$$
\begin{equation*}
\left|F(y)-F(f(v))-F^{\prime}(f(v))(y-f(v))\right| \leq \frac{1}{2} K|y-f(v)|^{2} \tag{2.10}
\end{equation*}
$$

for any $y \in G$ and for $v \in D$.
Taking the integral in (2.10) we get

$$
\begin{align*}
\left.\frac{1}{|w-u|} \int_{\gamma} \right\rvert\, F(y)-F(f(v))-F^{\prime}(f(v)) & (y-f(v))||d v| \tag{2.11}\\
\leq & \frac{1}{2} K \frac{1}{|w-u|} \int_{\gamma}|y-f(v)|^{2}|d v|
\end{align*}
$$

for $y \in G$.
Using the properties of integral and modulus, we also have

$$
\begin{align*}
\left\lvert\, \frac{1}{w-u} \int_{\gamma}\right. & {\left[F(y)-F(f(w))-F^{\prime}(f(w))(y-f(w))\right] d w \mid } \tag{2.12}\\
& \leq \frac{1}{|w-u|} \int_{\gamma}\left|F(y)-F(f(w))-F^{\prime}(f(w))(y-f(w))\right||d w|
\end{align*}
$$

for $y \in G$.

Now, observe that

$$
\begin{aligned}
\frac{1}{w-u} \int_{\gamma}[F(y)-F & \left.(f(v))-F^{\prime}(f(v))(y-f(v))\right] d v \\
& =F(y)-\frac{1}{w-u} \int_{\gamma}(F \circ f)(v) d v \\
- & y \frac{1}{w-u} \int_{\gamma}\left(F^{\prime} \circ f\right)(v) d v+\frac{1}{w-u} \int_{\gamma}\left(F^{\prime} \circ f\right)(v) f(v) d v
\end{aligned}
$$

and by (2.11) and (2.12) we get the following inequality of interest

$$
\begin{align*}
& \left\lvert\, F(y)-\frac{1}{w-u} \int_{\gamma}(F \circ f)(v) d v\right. \tag{2.13}\\
& \left.-y \frac{1}{w-u} \int_{\gamma}\left(F^{\prime} \circ f\right)(v) d v+\frac{1}{w-u} \int_{\gamma}\left(F^{\prime} \circ f\right)(v) f(v) d v \right\rvert\, \\
& \quad \leq \frac{1}{2} K \frac{1}{|w-u|} \int_{\gamma}|y-f(z)|^{2}|d z|
\end{align*}
$$

for $y \in G$.
If we take in (2.13)

$$
y=\frac{\int_{\gamma}\left(F^{\prime} \circ f\right)(v) f(v) d v}{\int_{\gamma}\left(F^{\prime} \circ f\right)(v) d v} \in G
$$

then we get the desired result (2.9).
Corollary 3. With the assumptions of Corollary 2 and Theorem 6 we have

$$
\begin{align*}
& \left|F\left(\frac{\int_{\gamma}\left(F^{\prime} \circ f\right)(v) f(v) d v}{\int_{\gamma}\left(F^{\prime} \circ f\right)(v) d v}\right)-\frac{1}{w-u} \int_{\gamma}(F \circ f)(z) d z\right| \tag{2.14}\\
& \quad \leq \frac{1}{2}\left\|F^{\prime \prime}\right\|_{G, \infty} \frac{1}{|w-u|} \int_{\gamma}\left|\frac{\int_{\gamma}\left(F^{\prime} \circ f\right)(v) f(v) d v}{\int_{\gamma}\left(F^{\prime} \circ f\right)(v) d v}-f(z)\right|^{2}|d z| .
\end{align*}
$$

We have by the integration by parts formula (1.11) that

$$
\int_{\gamma} F^{\prime}(v) v d v=F(w) w-F(u) u-\int_{\gamma} F(v) d v
$$

and

$$
\int_{\gamma} F^{\prime}(v) d v=F(w)-F(u)
$$

Therefore we can state the following result as well:
Remark 2. Let $G \subset \mathbb{C}$ be a convex domain of complex numbers and that F is holomorphic on G with $\left\|F^{\prime \prime}\right\|_{G, \infty}:=\sup _{z \in G}\left|F^{\prime \prime}(z)\right|<\infty$. Assume also that $\gamma \subset D$ parametrized by $z(t), t \in[a, b]$ is a piecewise smooth path from $z(a)=u$ to $z(b)=$ w with $w \neq u, F(w) \neq F(u)$ and

$$
\begin{equation*}
\frac{F(w) w-F(u) u-\int_{\gamma} F(v) d v}{F(w)-F(u)} \in G \tag{2.15}
\end{equation*}
$$

then by (2.14) we get

$$
\begin{align*}
& \left|F\left(\frac{F(w) w-F(u) u-\int_{\gamma} F(v) d v}{F(w)-F(u)}\right)-\frac{1}{w-u} \int_{\gamma} F(z) d z\right| \tag{2.16}\\
& \quad \leq \frac{1}{2}\left\|F^{\prime \prime}\right\|_{G, \infty} \frac{1}{|w-u|} \int_{\gamma}\left|\frac{F(w) w-F(u) u-\int_{\gamma} F(v) d v}{F(w)-F(u)}-z\right|^{2}|d z|
\end{align*}
$$

3. Some Examples

If we consider the function $F(z)=\exp z, z \in \mathbb{C}$ and $\gamma \subset \mathbb{C}$ parametrized by $z(t), t \in[a, b]$ is a piecewise smooth path from $z(a)=u$ to $z(b)=w$ with $w \neq u$, then by (2.6) we have for continuous function $f: \gamma \rightarrow \mathbb{C}$

$$
\begin{align*}
& \left|\frac{1}{w-u} \int_{\gamma}(\exp \circ f)(v) d v-\exp \left(\frac{1}{w-u} \int_{\gamma} f(z) d z\right)\right| \tag{3.1}\\
& \leq \frac{1}{2}\|\exp \|_{G, \infty} \frac{1}{|w-u|} \int_{\gamma}\left|f(v)-\frac{1}{w-u} \int_{\gamma} f(z) d z\right|^{2}|d v|
\end{align*}
$$

while from (2.6) we obtain

$$
\begin{align*}
\left\lvert\, \frac{\exp w-\exp u}{w-u}-\exp \left(\frac{w+u}{2}\right)\right. & \mid \tag{3.2}\\
& \leq \frac{1}{2}\|\exp \|_{G, \infty} \frac{1}{|w-u|} \int_{\gamma}\left|v-\frac{w+u}{2}\right|^{2}|d v|
\end{align*}
$$

From (2.14) we get

$$
\begin{align*}
& \left|\exp \left(\frac{\int_{\gamma}(\exp \circ f)(v) f(v) d v}{\int_{\gamma}(\exp \circ f)(v) d v}\right)-\frac{1}{w-u} \int_{\gamma}(\exp \circ f)(z) d z\right| \tag{3.3}\\
& \quad \leq \frac{1}{2}\|\exp \|_{G, \infty} \frac{1}{|w-u|} \int_{\gamma}\left|\frac{\int_{\gamma}(\exp \circ f)(v) f(v) d v}{\int_{\gamma}(\exp \circ f)(v) d v}-f(z)\right|^{2}|d z|
\end{align*}
$$

while from (2.15) we get

$$
\begin{align*}
& \left|\exp \left(\frac{(w-1) \exp w-(u-1) \exp u}{\exp w-\exp u}\right)-\frac{\exp w-\exp u}{w-u}\right| \tag{3.4}\\
& \quad \leq \frac{1}{2}\|\exp \|_{G, \infty} \frac{1}{|w-u|} \int_{\gamma}\left|\frac{(w-1) \exp w-(u-1) \exp u}{\exp w-\exp u}-z\right|^{2}|d z|
\end{align*}
$$

Consider the function $F(z)=\log (z)$ where $\log (z)=\ln |z|+i \operatorname{Arg}(z)$ and $\operatorname{Arg}(z)$ is such that $0<\operatorname{Arg}(z)<2 \pi$. Log is called the "principal branch" of the complex logarithmic function. F is analytic on all of $\mathbb{L}:=\mathbb{C} \backslash\{x+i y: x \geq 0, y=0\}$ and $F^{\prime}(z)=\frac{1}{z}$ on this set.

If we consider $g: D \rightarrow \mathbb{C}, g(z)=\frac{1}{z}$ where $D \subset \mathbb{L}$, then F is a primitive of g on D and if $\gamma \subset D$ parametrized by $z(t), t \in[a, b]$ is a piecewise smooth path from $z(a)=u$ to $z(b)=w$, then

$$
\int_{\gamma} \frac{d z}{z}=\log (w)-\log (u)
$$

Also, the function $G: \mathbb{L} \rightarrow \mathbb{C}, G(z)=z \log (z)-z$ is analytic on \mathbb{L} and $G^{\prime}(z)=$ $\log (z), z \in \mathbb{L}$.

Assume also that $f: D \rightarrow \mathbb{L}$ is continuous on $D, \gamma \subset D$ parametrized by $z(t)$, $t \in[a, b]$ is a piecewise smooth path from $z(a)=u$ to $z(b)=w$ with $w \neq u$ and $\frac{1}{w-u} \int_{\gamma} f(z) d z \in \mathbb{L}$, then from (2.1) for $F(z)=\log z$, we get

$$
\begin{align*}
\left\lvert\, \frac{1}{w-u} \int_{\gamma}(\log \circ f)(v)\right. & \left.d v-\log \left(\frac{1}{w-u} \int_{\gamma} f(z) d z\right) \right\rvert\, \tag{3.5}\\
\leq & \frac{1}{2} \frac{1}{d_{\gamma}^{2}|w-u|} \int_{\gamma}\left|f(v)-\frac{1}{w-u} \int_{\gamma} f(z) d z\right|^{2}|d v|
\end{align*}
$$

where $d_{\gamma}:=\inf _{z \in \gamma}|z|$ is assumed to be positive and finite.
For $\gamma \subset \mathbb{L}$ and $f(z)=z$, we get from (3.5) that

$$
\begin{align*}
\left\lvert\, \frac{w \log (w)-u \log (u)}{w-u}-\log \left(\frac{w+u}{2}\right.\right. &)-1 \mid \tag{3.6}\\
& \leq \frac{1}{2} \frac{1}{d_{\gamma}^{2}|w-u|} \int_{\gamma}\left|v-\frac{w+u}{2}\right|^{2}|d v|
\end{align*}
$$

where $d_{\gamma}:=\inf _{z \in \gamma}|z|$ is assumed to be positive and finite.
Further, for $F(z)=\log z$ we have

$$
\begin{aligned}
& \frac{w \log w-u \log u-\int_{\gamma} \log z d z}{\log w-\log u} \\
& =\frac{w \log w-u \log u-w \log (w)+w+u \log (u)-u}{\log w-\log u} \\
& =\frac{w-u}{\log w-\log u}
\end{aligned}
$$

So, if $\log w \neq \log u$ and

$$
\frac{w-u}{\log w-\log u} \in \mathbb{L}
$$

then by (2.16) we get

$$
\begin{align*}
& \left\lvert\, \log \left(\frac{w-u}{\log w-\log u}\right)-\right. \left.\frac{w \log (w)-u \log (u)}{w-u}+1 \right\rvert\, \tag{3.7}\\
& \quad \leq \frac{1}{2} \frac{1}{d_{\gamma}^{2}|w-u|} \int_{\gamma}\left|\frac{w-u}{\log w-\log u}-z\right|^{2}|d z|
\end{align*}
$$

Assume also that $f: D \rightarrow \mathbb{L}$ is continuous on $D, \gamma \subset D$ parametrized by $z(t)$, $t \in[a, b]$ is a piecewise smooth path from $z(a)=u$ to $z(b)=w$ with $w \neq u$ and $\frac{1}{w-u} \int_{\gamma} f(z) d z \in \mathbb{L}$, then from (2.1) for $F(z)=z^{-1}$, we get

$$
\begin{align*}
\left\lvert\, \frac{1}{w-u} \int_{\gamma}[f(v)]^{-1} d v-\right. & \left.\left(\frac{1}{w-u} \int_{\gamma} f(z) d z\right)^{-1} \right\rvert\, \tag{3.8}\\
& \leq \frac{1}{d_{\gamma}^{3}|w-u|} \int_{\gamma}\left|f(v)-\frac{1}{w-u} \int_{\gamma} f(z) d z\right|^{2}|d v|
\end{align*}
$$

where $d_{\gamma}:=\inf _{z \in \gamma}|z|$ is assumed to be positive and finite.

For $\gamma \subset \mathbb{L}$ and $f(z)=z$, we get from (3.8) that

$$
\begin{equation*}
\left|\frac{\log (w)-\log (u)}{w-u}-\left(\frac{w+u}{2}\right)^{-1}\right| \leq \frac{1}{d_{\gamma}^{3}|w-u|} \int_{\gamma}\left|v-\frac{w+u}{2}\right|^{2}|d v| \tag{3.9}
\end{equation*}
$$

Further, for $F(z)=z^{-1}$ we have

$$
\begin{aligned}
\frac{F(w) w-F(u) u-\int_{\gamma} F(v) d v}{F(w)-F(u)} & =\frac{-\log (w)+\log (u)}{\frac{1}{w}-\frac{1}{u}} \\
& =\frac{\log (w)-\log (u)}{w-u} w u
\end{aligned}
$$

for $w \neq u$ and $u, w \in \mathbb{L}$.
If $w \neq u$ and $u, w \in \mathbb{L}$ with

$$
\frac{\log (w)-\log (u)}{w-u} w u \in \mathbb{L}
$$

then by (2.16) we get

$$
\begin{align*}
&\left|\left(\frac{\log (w)-\log (u)}{w-u} w u\right)^{-1}-\frac{\log (w)-\log (u)}{w-u}\right| \tag{3.10}\\
& \leq \frac{1}{d_{\gamma}^{3}|w-u|} \int_{\gamma}\left|\frac{\log (w)-\log (u)}{w-u} w u-z\right|^{2}|d z|
\end{align*}
$$

References

[1] R. Coleman, Calculus on Normed Vector Spaces, Springer New York Heidelberg Dordrecht London, 2012.
[2] S. S. Dragomir, Integral inequalities of Hermite-Hadamard type for K-bounded norm convex mappings, Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 149, 23 pp. [Online https://rgmia.org/papers/v17/v17a149.pdf].
[3] S. S. Dragomir, Integral inequalities of Hermite-Hadamard type for K-bounded norm convex mappings, Ukrainian Mathematical Journal, Vol. 68, No. 10, March, 2017, 1530-1551.
[4] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results, Australian J. Math. Anal. Appl., Volume 14, Issue 1, Article 1, pp. 1-287, 2017. [Online http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
[5] S. S. Dragomir, Inequalities of Hermite-Hadamard type for K-bounded modulus convex complex functions, Preprint RGMIA Res. Rep. Coll. 21 (2018), Art. 130, 12 pp. [Online https://rgmia.org/papers/v21/v21a130.pdf].
[6] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online
http://rgmia.org/monographs/hermite_hadamard.html].
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence, in the Mathematical and Statistical Sciences, School of Computer Science \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15, 26D10, 30A10, 30A86.

