INEQUALITIES OF JENSEN’S TYPE FOR K-BOUNDED
MODULUS CONVEX COMPLEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let D C C be a convex domain of complex numbers and K > 0.
We say that the function f: D C C — C is called K-bounded modulus convex,
for the given K > 0, if it satisfies the condition
1
(A=2)f @)+ A (W) = (A =Nz + )| < KA1 =A) |z —y|?

for any z, y € D and X\ € [0,1].

In this paper we establish some new Jensen’s type inequalities for the com-
plex integral on v, a smooth path from C and K-bounded modulus convex
functions. Some examples for the complex exponential and complex logarithm
are also given.

1. INTRODUCTION

Let (X; |||l x) and (Y7 ||-]|y) be two normed linear spaces over the complex num-
ber field C. Let C be a convex set in X. In the recent paper [3] we introduced the
following class of functions:

Definition 1. A mapping F': C C X — Y is called K-bounded norm convez, for
some given K > 0, if it satisfies the condition
1
LD @ =2 F(2) +AF (y) = F (1= Na+Ay)lly < KA =N [lz — yllx
for any z, y € C and X\ € [0,1]. For simplicity, we denote this by F € BN i (C).
We have from (1.1) for A =
)

HF(x);F(y F<x;y>

for any z, y € C.

We observe that BN i (C) is a convex subset in the linear space of all functions
defined on C' and with values in Y.

In the same paper [3], we obtained the following result which provides a large
class of examples of such functions.

the Jensen’s inequality

1 2
< Klle -yl
Y

Theorem 1. Let (X, ||| ) and (Y, |-||y-) be two normed linear spaces, C an open
convex subset of X and F : C — Y a twice-differentiable mapping on C. Then for
any z, y € C and X € [0,1] we have

(12) 0 =X F @)+ AF ()~ F (1= N+ 2)ly < ZKAQ =)y —al%
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where
(1.3) Kpn = sggHF" (Dl zix2v)

is assumed to be finite, namely F € BNKF,, (C).
We have the following inequalities of Hermite-Hadamard type [3]:

Theorem 2. Let (X;||||x) and (Y;]|-|ly) be two normed linear spaces over the
complex number field C with’ Y complete. Assume that the mapping F: C C X —Y
is continuous on the convex set C in the norm topology. If F € BNk (C) for some
K > 0, then we have

[P e ne ) 0 < K le -l
and
(15) ]/01F<<1A)mmy)dAF(x;y)HY < o Kzl

for any x, y € C.
The constants 1—12 and i are best possible.

Following [1, p. 59], let (X, ||| ) and (Y, ||-|ly-) be two normed linear spaces, {2
an open subset of X and F: Q =Y. Ifa € Q, u € X\ {0} and if the limit

1
}im n [F (a+ tu) — F (a)]
exists, then we denote this derivative 9, F (a) . It is called the directional derivative
of F' at a in the direction u. If the directional derivative is defined in all directions
and there is a continuous linear mapping ® from X into Y such that for all u € X

OuF (a) = @ (u),

then we say that F' is Gateaux-differentiable at a and that ® is the Gateaux dif-
ferential of F at a. If a mapping F is differentiable at a point a, then clearly all its
directional derivatives exist and we have

OuF (a) = F' (a)u, ue X.

Thus F' is Gateaux-differentiable at a. However, the Gateaux differential may exist
without the differential existing. The existence of directional derivatives at a point
does not imply that the mapping is Gateaux-differentiable. To distinguish the
differential from the Gateaux differential, the differential is often referred as the
Fréchet differential.

In an earlier and more comprehensive version of [3], see [2], we also obtained the
following Jensen’s type discrete inequality:

Theorem 3. Let (X;|-||y) and (Y;|-|ly) be two normed linear spaces over the
complex number field C. Assume that the mapping F : C C X — Y is defined on
the open convex set C and F € BNk (C) for some K > 0. If x; € C, p > 0 for
ke {l,..n} with >} _px =1 and F is Gateaua-differentiable at Y ,_, pray €
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C, then for any y; € C and g¢; > 0 for j € {1,....,m} with 337", q; = 1 and
D ie145Yj = D —1 PrTk we have

m n m n 2
1
(1.6) Z%’F(yj) - F (ZPH%) < QKZ(JJ' Yi— > Dk
Jj=1 k=1 v Jj=1 k=1 X
In particular, we have
2
n n 1 n n
(1.7) ZPJ'F(%') - F (me) < iK ij Tj— Zpkwk
i=1 k=1 Y Jj=1 k=1 X

If (X;(-,-)) is an inner product space, then

n n 2
E pjl|T; — E Pk =
j=1 k=1

n 9
ij ]y —
x g=1
and by (1.7) we have

(18) |D_piF (z;) - F <Zpkzk> <
j=1 k=1

Y

2
X

n
> prwy
k=1

N | =

2
X

n n
2
K ij ;% — Zpkl“k
j=1 k=1

Corollary 1. Let (X, ||-|| ) and (Y, ||-|ly-) be two normed linear spaces, C an open
convex subset of X and F : C — 'Y a twice-differentiable mapping on C. If xy, € C,
pe >0 for ke {1,...,n} with Y ;_, pr =1, then

(19) > p;F(z;)—F <Zpkxk>
=1 p

Y
2

1 n n
< 5 Sup IE" (2]l £(x2.v) ij Tj— Zpkxk
zeC =1 k=1
J
Let D C C be a convex domain of complex numbers and K > 0. Following
Definition 1, we say that the function F': D C C — C is called K-bounded modulus
conver, for the given K > 0, if it satisfies the condition

X

(1.10)  [(I=A) F(z)+AF(y) = F((1 =)z + Ay < %K/\(l — Az -yl

for any x, y € D and A € [0,1]. For simplicity, we denote this by F € BMg (D).

All the above results can be translated for complex functions defined on convex
subsets D C C.

In the following, in order to obtain several inequalities for the complex integral,
we need the following facts.

Suppose 7 is a smooth path from C parametrized by z (t), ¢t € [a,b] and f is a
complex function which is continuous on 7. Put z(a) = v and z (b) = w with wu,
w € C. We define the integral of f on v, , = as

b
/ f@de= [ f(o)de:= / £z (0) 7 (6)dt.

We observe that that the actual choice of parametrization of 7 does not matter.
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This definition immediately extends to paths that are piecewise smooth. Suppose
« is parametrized by z (¢), t € [a,b], which is differentiable on the intervals [a, (]
and [c, b], then assuming that f is continuous on v we define

(2)dz := (2)dz + f(2)dz
Vurw Y Vo, w

where v := zz. This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

b
f () |dz] = / F (2 ()12 ()] dt

and the length of the curve + is then

() = / BGE / 1 @l

Let f and g be holomorphic in D, and open domain and suppose v C D is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
by parts formula

(1.11) f(2)g () dz = f (w) g (w) = f(u)g(u) —/ f'(2) g (2)dz.

Yu,w Yu,w

We recall also the triangle inequality for the complex integral, namely

[{f(z) dz

where [|f[| o = sup.e, |f (2)]-
We also define the p-norm with p > 1 by

71 = ([ 1700 |dz|)1/p.

1Ay o= / 1F (o)) |dz]
Yy

(1.12)

< / £ @l 1d2] < £, o £ ()

For p = 1 we have

If p, ¢ > 1 with % + % =1, then by Hoélder’s inequality we have

1
17110 < OISl -
In the recent paper [5] we obtained the following results:

Theorem 4. Let D C C be a convexr domain of complex numbers and K > 0.
Assume that f is holomorphic on D and f € BMg (D). If v C D parametrized by
z(t), t € [a,b] is a piecewise smooth path from z(a) = u to z (b) = w and v € D,

then
1) | [ serie= s+ (2 o) -

1
< fK/ |z — v]? |dz]
2 ol
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and

(L1) |31 @) =)+ f () =)+ £ @) (w=w)] - [ £(:)ds

.
1

< fK/ 12— of?|dz].
4 Y

Motivated by the above results, in this paper we establish some new Jensen’s
type inequalities for the complex integral on <, a smooth path from C and K-
bounded modulus convex functions. Some examples for the complex exponential
and complex logarithm are also given.

2. GENERAL INTEGRAL INEQUALITIES
We have:

Theorem 5. Let G C C be a convexr domain of complex numbers and K > 0 and
that F' is holomorphic on G with F € BMk (G). Assume also that f : D — G s
continuous on D, v C D parametrized by z (t), t € [a,b] is a piecewise smooth path
from z (a) = u to z (b) = w with w # u and — f,yf(z)dz € G, then

w—u

(2.1) 'wlul(Fof)(v)dv—F(wluLf(z)dz)‘

— [Jfe - o= [ 1@

|w - u| y
Proof. Let x, y € G. Since F € BMg (G), then we have

2
|dv] .

<k
-2

F (1= 0+ Ay) — F () + AF (@) = F )]l € 3EAQ = A) |z —

that implies that
Flx+X(y—=z))— F(x)

: K1 =Ne—yP

DN =

+F<x>—F<y>\<

for A € (0,1).
Since F' is holomorphic on G, then by letting A — 04, we get

/(@) (y — ) + F (@) = F ()| < 3 K | — o
that is equivalent to
(22) IFy) ~F(2) = F' () (s~ )] < 3K |y — af

for all z, y € G.
If we take in (2.2) z = —1 [, f (2) dz, then we get

u

(23) }F@)—F( = Fle)a:)

w—u

(e ) - o)
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for all y € G.
If we take in this inequality y = f (v), v € ~, then we get

21 |Fonw-r( 1 e )
e <wiuLf(2)dZ> (f(v)wiuLf(Z)dZ>'
wiu[yf(z)dzr

1
SR

for all v € 7.
We have

25 o [ |wenw-r (5 [ree)
el )( = [ 1)
~oms [wenwa-r (G5 [ 1)
- (5 [ )( w5 1)
- [wenwa-r (G [ @),

d (2.5) we get
e [epma ( /f )
SrEAl -r (ot [ o)
—F’(wiuLf<z>dz) <f(v)—wiu/vf(2)d2>‘dvl

11 1 ?
<K - dz| |d
< s [ - [ i,
which proves the inequality (2.1). O

By using (2.4) an

Corollary 2. With the assumptions of Theorem 5 and if
1E" | g o0 = sup |[F"” (2)] < o0,
’ zeG

then

(2.6) ’wiu[{(Fof)(v)dv—F(wiu/wf(z)dzﬂ

1, ., 1 1 2
< 50l gy [ |10 - 55 [ 1 @] 1ol
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Remark 1. If we take D = G, v C G and f(z) = z, then by (2.6) we get the
Hermite-Hadamard type inequality (see also [5])

2.7) wiuLFQWM—F<w;uN

1 1
<~ ||F" B
_2” HG,oo |wu|/Y v

provided F' is holomorphic on G and |[F"|| 4 o, = sup,cq |[F" (2)| < oo.

w4+ u 2
2

|dv],

We also have:

Theorem 6. Let G C C be a convex domain of complex numbers and K > 0 and
that F' is holomorphic on G with F € BMgk (G) . Assume also that f : D — G is
continuous on D, v C D parametrized by z (t) , t € [a,b] is a piecewise smooth path
from z (a) = u to z (b) = w with w # u,

, [, (F o f) () f (v) dv
(2.8) [Y(F o f)(v)dv #0 and fﬁ/ (F o f) (v)do €q,
then
F'o dv

29) F(fv} F/sz) (v) )_wl_u/(Fof)(z)dz

1, AF v) f (v) dv ’

< 3K L_POf() ~ 1) 1l
Proof. From (2.2) we get
(2.10) [F(y) = F(f () =F (f () (y— f ()] < %K|y —f )?

for any y € G and for v € D.
Taking the integral in (2.10) we get

1)

/ [F(y) = F(f () = F' (f (v)) (y = f ()] |dv]

1 1 )
<=-K — d
< Ky | v S @F i

for y € G.
Using the properties of integral and modulus, we also have

1

w—u

(2.12) ‘ /[F (y) = F (f (w)) = F'(f (w)) (y = [ (w))] dw‘

/ﬁww—qu»—quM@—fmmuM

= w =yl

for y € G.
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Now, observe that

1

w—1Uu

/HWM*FUwD=VU@D@ff@HM

—F() - [ Fop i

v [ @en@avs = [ (Fen@iwa

w—u o

and by (2.11) and (2.12) we get the following inequality of interest

1

w—1Uu

@w>\mw— [@eonwa

v [Wen@dns —— [ e @ @

Y

1 1 )
<K—— -
< 3Ky [ =7 GO

w—u

for y € G.
If we take in (2.13)

J, (F" o f)(v) f (v) dv co
I (o f) (v)dv ’

then we get the desired result (2.9). ]

Corollary 3. With the assumptions of Corollary 2 and Theorem 6 we have

F(L@”ﬁﬂwﬂww>_w1

2149 [ Fop(a

L(Fof) (2)dz

F’Of (v) f (v) dv
L (F"o f) (v) dv

We have by the integration by parts formula (1.11) that

LF’(v)vdv_F(w)wF(u)uLF(v)dv

—u
2
|dz| .

< IF” 7 )

||Goo |’U)

and
/F’(v)dv:F(w)—F(u).

Therefore we can state the following result as well:

Remark 2. Let G C C be a convexr domain of complex numbers and that F is
holomorphic on G with [|[F"|| 5 . = sup,cq [F" (2)| < oo. Assume also that v C D
parametrized by z (t), t € [a,b] is a piecewise smooth path from z (a) = u to z (b) =
w with w # u, F(w) # F (u) and

F(w)wa(u)ufva(v)dv

F(w) - F(u) €6

(2.15)
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then by (2.14) we get

Fw)w—F(uwu— [ F(v 1

(2.16) F( F{w) = F () >_w—uLF(Z)dZ
1, ., Fuu— [ F(v ?
=3 lF HGOC\w F(w)—F(u) ~ | Ml

3. SOME EXAMPLES

If we consider the function F'(z) = expz, z € C and v C C parametrized by
z(t), t € [a,b] is a piecewise smooth path from z (a) = u to z (b) = w with w # u,
then by (2.6) we have for continuous function f: vy — C

1Lj£<f(z)dZ)‘

(3.1) 'wl_u/v(exmf) (v) dv — exp (wi

2

1
< 5 Il S LG LS N
while from (2.6) we obtain
(3.2) expw—expu_exp<w+u>’
w—u
1 1 w+ul?
<= S ) - dv|.
< gl gy [ o= 25 e
From (2.14) we get
I, (expof) (v) f (v) dv 1
3.3 p| = — / expof)(z)dz
(3.3) ( f,y(expOf)(v)dv w—u ,y( ) (2)
2
| : /mexpof)u (v) do
= llexplla o — f(2)| |dz|,
< 3lelon i | 1" T romep o ol
while from (2.15) we get
(3.4) eXp((w—l)expw—(u—l)expu) _ exXpw —expu
expw — expu w—u
1 ~1 —(u—1 2
<~ Jlexpllg o (w=Dexpw — (u— 1) expu —z‘ 1dz|.
2 " |w — exXpw — expu

Consider the function F'(z) = Log(z) where Log(z) = In|z| + ¢ Arg(z) and
Arg (2) is such that 0 < Arg(z) < 27. Log is called the "principal branch" of the
complex logarithmic function. F is analyticon allof L := C\ {z + iy : > 0, y = 0}
and F’ () = L on this set.

If we consider g : D — C, g (z) = £ where D C L, then F is a primitive of g on
D and if v C D parametrized by z (¢), ¢t € [a,b] is a piecewise smooth path from
z(a) = u to z (b) = w, then

dz

= Log (w) — Log (u) .
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Also, the function G : L — C, G (2) = zLog (z) — z is analytic on L and G’ (z) =
Log(z), z € L.

Assume also that f: D — L is continuous on D, v C D parametrized by z (¢),
t € [a,b] is a piecewise smooth path from 2z (a) = u to z (b) = w with w # u and
—L fﬁ/ f(2)dz € L, then from (2.1) for F (z) = Log z, we get

fu/f )

(3.5) ‘L(Logof)( )dv—L0g<

2

1 1
= dz| |d
3 T e RAGLE N
where d, := inf,¢ |2| is assumed to be p051tlve and finite.
For v C L and f (2) = 2z, we get from (3.5) that
(3.6) 'wLog(w) —ulLog(u) Log (w—l—u) B 1‘
w— U 2
2
1 1 / w4+ u
<——— [ o= ——| |dv|,
2d2|w—ul J, 2
where d, :=inf ¢ |2| is assumed to be positive and finite.
Further, for F'(z) = Log z we have
w Logw — v Logu — fv Log zdz
Logw — Logu
w Logw — uLogu — w Log (w) + w + u Log (u) —
N Logw — Logu
_ w—u
- Logw — Logu’
So, if Logw # Logu and
w—u
Logw — Logwu
then by (2.16) we get
— L —ulL
37) |Log w—u ~ wLog (w) — uLog (u) 41
Logw — Logu w—u
1 1 w— U 2
<= —z| |dz|.
2d2 |w ~ |Logw — Logu

Assume also that f: D — L is continuous on D, v C D parametrized by z (¢),
t € [a,b] is a piecewise smooth path from z (a) = u to z (b) = w with w # u and
s fﬂ/ f(2)dz € L, then from (2.1) for F (z) = 271, we get

o frerte- (G5 [ree)

Si
Elo—ul J;

(3.8)

2
|dv,

—wlufyf(z)dz

where d, :=inf,¢ |2| is assumed to be positive and finite.
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For v C L and f (2) = 2z, we get from (3.8) that

—1 2
(3.9) Log (w) —Log(u) (w+wu < 1 /v_w—i—u do].
w—1u 2 d3 lw —ul J, 2
Further, for F (2) = z=! we have
F(w)w—F(u)u—va(v)dv ~ —Log (w) + Log (u)
F(w) = F(u) B v
L -L
_ Log(w) —Log(u)
w—u
for w # u and u, w € L.
If w # v and u, w € L with
L - L
og(w) —Log(w) o

w—u
then by (2.16) we get
(3.10) <Log (w) — Log (u) wu) -1 ~ Log (w) — Log (u)

w—u w—u
1 L ~L 2
< / og(w) —Log(u) d2].
d3 |w —ul J, w—u
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