Certain inequalities of Kober and Lazarević type

Yogesh J. Bagul ${ }^{1}$, S. K. Panchal ${ }^{2}$,
${ }^{1}$ Department of Mathematics, K. K. M. College, Manwath, Dist :
Parbhani(M.S.) - 431505, India.
Email : yjbagul@gmail.com
${ }^{2}$ Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad(M. S.) - 431004, India.
Email : drpanchalsk@gmail.com

Abstract

In this work, the authors present new lower and upper bounds for $\cos x$ and $\cosh x$, thus improving some generalized inequalities of Kober and Lazarević type.

Keywords : Lazarević inequality; Kober's inequality; sharp bounds; exponential bounds; hyperbolic cosine.

Mathematics Subject Classification(2010) : 26D05, 26D07.

1 Introduction

There has been growing interest among the researchers in generalizing and sharpening the Kober type [12] and Lazarević type [1, 2] inequalities. The famous inequalities are respectively given by

$$
\begin{equation*}
1-\frac{2 x}{\pi} \leqslant \cos x \leqslant 1-\frac{x^{2}}{\pi} ; x \in[0, \pi / 2] \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\cosh x<\left(\frac{\sinh x}{x}\right)^{p} ; \forall x>0 \tag{1.2}
\end{equation*}
$$

if and only if $p \geqslant 3$.

RGMIA Res. Rep. Coll. 21 (2018), Art. 137, 8 pp. Received 23/11/18

In $[5,10,11,14]$ the generalizations and refinements of (1.1) are appeared.
B. A. Bhayo and J. Sándor[10] refine the inequality of type (1.1) as follows:

$$
\begin{equation*}
1-\frac{x^{2} / 2}{1+x^{2} / 12}<\cos x<1-\frac{24 x^{2} /\left(5 \pi^{2}\right)}{1+4 x^{2} /\left(5 \pi^{2}\right)} ; x \in(0, \pi / 2) \tag{1.3}
\end{equation*}
$$

They further refine the upper bound of $\cos x$ in (1.3) as

$$
\begin{equation*}
\left(\frac{\pi^{2}-4 x^{2}}{12}\right)^{3 / 2}<\cos x<\left(1-\frac{x^{2}}{3}\right)^{3 / 2} ; x \in(0, \pi / 2) \tag{1.4}
\end{equation*}
$$

In [3-7], the generalizations and refinements of inequality of type (1.2) i.e. bounds of $\cosh x$ are appeared. The natural exponential bounds of $\cosh x$ were established very recently in [9], as follows:

$$
\begin{equation*}
e^{a x^{2}}<\cosh x<e^{x^{2} / 2} ; x \in(0,1) \tag{1.5}
\end{equation*}
$$

where $a \approx 0.433781$.
In [13] it is given that, for all non-zero real numbers x, the inequality

$$
\begin{equation*}
\cosh x<\left(\frac{\sinh x}{x}\right)^{3}-\frac{12}{5}\left(1-\frac{x}{\sinh x}\right)^{2} \tag{1.6}
\end{equation*}
$$

holds.
The main purpose of this paper is to refine the above mentioned bounds and present new improved sharp bounds for $\cos x$ and $\cosh x$.

2 Two Lemmas

Following are the tools to prove our main results.
Lemma 1. (The Mitrinović - Adamović inequality [2, p.238]): For $x \in\left(0, \frac{\pi}{2}\right)$ one has

$$
\begin{equation*}
\cos x<\left(\frac{\sin x}{x}\right)^{3} \tag{2.1}
\end{equation*}
$$

For the recent refined form of (2.1), we refer reader to [15].
Lemma 2. (l'Hôpital's Rule of Monotonicity [8, Thm. 1.25]): Let f, g : $[l, m] \rightarrow \mathbb{R}$ be two continuous functions which are derivable in (l, m) and $g^{\prime} \neq 0$ in (l, m). If f^{\prime} / g^{\prime} is increasing (or decreasing) in (l, m), then the functions $\frac{f(x)-f(l)}{g(x)-g(l)}$ and $\frac{f(x)-f(m)}{g(x)-g(m)}$ are also increasing (or decreasing) on (l,m). If f^{\prime} / g^{\prime} is strictly monotone, then the monotonicity in the conclusion is also strict.

3 Main Results

In our main results we first give more sharp bounds for $\cos x$ than the corresponding bounds given in (1.1).

Theorem 1. If $x \in(0, \pi / 2)$ then

$$
\begin{equation*}
1-\frac{x^{2}}{2}<\cos x<1-\frac{4 x^{2}}{\pi^{2}} . \tag{3.1}
\end{equation*}
$$

Proof. Let, $1-\frac{x^{2}}{a}<\cos x<1-\frac{x^{2}}{b}$, which implies that, $a<\frac{x^{2}}{1-\cos x}<b$.

$$
\text { Then } f(x)=\frac{x^{2}}{1-\cos x}=\frac{f_{1}(x)}{f_{2}(x)} \text {, }
$$

where $f_{1}(x)=x^{2}$ and $f_{2}(x)=1-\cos x$ with $f_{1}(0)=f_{2}(0)=0$. By Differentiation we get

$$
\frac{f_{1}^{\prime}(x)}{f_{2}^{\prime}(x)}=\frac{2 x}{\sin x}=\frac{f_{3}(x)}{f_{4}(x)}
$$

where $f_{3}(x)=2 x$ and $f_{4}(x)=\sin x$, with $f_{3}(0)=f_{4}(0)=0$. Differentiation gives us
$\frac{f_{3}^{\prime}(x)}{f_{4}^{\prime}(x)}=\frac{2}{c o s x}$, which is clearly strictly increasing in $(0, \pi / 2)$. By Lemma 2, $f(x)$ is strictly increasing in $(0, \pi / 2)$. Therefore

$$
f(0+)<f(x)<f(\pi / 2)
$$

Consequently, $a=f(0+)=2$, by l'Hôpital's rule and $b=f(\pi / 2)=$ $\frac{(\pi / 2)^{2}}{1-\cos (\pi / 2)}=\frac{\pi^{2}}{4}$.

Remark 1. By using lemma 2, we can also obtain that, $\cos x<\frac{2}{2+x^{2}}$ in ($0, \pi / 2$). Thus

$$
\begin{equation*}
\frac{2-x^{2}}{2}<\cos x<\frac{2}{2+x^{2}} ; x \in(0, \pi / 2) \tag{3.2}
\end{equation*}
$$

The upper bounds of (1.3) and (1.4) are refined in the next theorem.
Theorem 2. For any $x \in(0, \pi / 2)$ one has

$$
\begin{equation*}
1-\frac{x^{2} / 2}{1+x^{2} / 12}<\cos x<1-\frac{x^{2} / 2}{1+x^{2} / b} \tag{3.3}
\end{equation*}
$$

where the constants 12 and $b \approx 10.557960$ are best possible.

Proof. Let $1-\frac{x^{2} / 2}{1+x^{2} / a}<\cos x<1-\frac{x^{2} / 2}{1+x^{2} / b}$, which implies that, $\frac{1}{a}<f(x)<\frac{1}{b} ;$ where

$$
f(x)=\frac{x^{2}-2(1-\cos x)}{2 x^{2}(1-\cos x)}=\frac{1}{2(1-\cos x)}-\frac{1}{x^{2}}
$$

Therefore,

$$
f^{\prime}(x)=\frac{-\sin x}{2(1-\cos x)^{2}}+\frac{2}{x^{3}}
$$

Using (2.1) we have

$$
16 \sin ^{4}\left(\frac{x}{2}\right)>2 x^{3} \sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right)
$$

, which gives

$$
4(1-\cos x)^{2}-x^{3} \sin x>0
$$

. So that $f^{\prime}(x)>0$. Thus, $f(x)$ is increasing in ($0, \pi / 2$). Hence $a=\frac{1}{f(0+)}=$ 12 by l'Hôpital's rule and $b=\frac{1}{f(\pi / 2)} \approx 10.557960$.

Note: Though the strict comparison may not be done between the bounds; the bounds in (3.3) are better than the corresponding bounds in (1.3) and (1.4).

In the following theorem, we conclude that the bounds of $\cosh x$ are more sharp than the corresponding bounds in (1.5).

Theorem 3. If $x \in(0,1)$ then

$$
\begin{equation*}
1+\frac{x^{2}}{2}<\cosh x<1+\frac{x^{2}}{b} \tag{3.4}
\end{equation*}
$$

with the best possible constants 2 and $b \approx 1.841348$.
Proof. Let, $1+\frac{x^{2}}{a}<\cosh x<1+\frac{x^{2}}{b}$, which implies that, $b<\frac{x^{2}}{\cosh x-1}<a$.

$$
\text { Then } f(x)=\frac{x^{2}}{\cosh x-1}=\frac{f_{1}(x)}{f_{2}(x)} \text {, }
$$

where $f_{1}(x)=x^{2}$ and $f_{2}(x)=\cosh x-1$ with $f_{1}(0)=f_{2}(0)=0$. By differentiation

$$
\frac{f_{1}^{\prime}(x)}{f_{2}^{\prime}(x)}=\frac{2 x}{\sinh x}=\frac{f_{3}(x)}{f_{4}(x)}
$$

where $f_{3}(x)=2 x$ and $f_{4}(x)=\sinh x$ with $f_{3}(0)=f_{4}(0)=0$. Differentiation gives

$$
\frac{f_{3}^{\prime}(x)}{f_{4}^{\prime}(x)}=\frac{2}{\cosh x}
$$

which is clearly decreasing in $(0,1)$. By lemma $2, f(x)$ is also strictly decreasing in $(0,1)$. Clearly, then $a=f(0+)=2$, by l'Hôpital's rule and $b=f(1-)=\frac{1}{\cosh 1-1} \approx 1.841348$.

Note : There is no strict comparison between the corresponding bounds of coshx in (1.5) and (3.4).
Corollary 1. If $x \in(0,1)$ then

$$
\begin{equation*}
2<\cos x+\cosh x<2+c \cdot x^{2} \tag{3.5}
\end{equation*}
$$

with the best possible constant $c \approx 0.137796$.
Proof. Combining (3.1) and (3.4), the assertion follows.

In the following theorem we give more tight bounds of $\cosh x$ than the corresponding bounds given in (1.5) and (1.6).
Theorem 4. For $x \in(0,1)$ one has

$$
\begin{equation*}
1+\frac{a x^{2}}{\pi^{2}-x^{2}}<\cosh x<1+\frac{(\pi x)^{2} / 2}{\pi^{2}-x^{2}} \tag{3.6}
\end{equation*}
$$

where the constants $a \approx 4.816910$ and $\frac{\pi^{2}}{2}$ are best possible.
Proof. Let $1+\frac{a x^{2}}{\pi^{2}-x^{2}}<\cosh x<1+\frac{b x^{2}}{\pi^{2}-x^{2}}$, which implies that

$$
a<\frac{(\cosh x-1)\left(\pi^{2}-x^{2}\right)}{x^{2}}<b \text {. Then } f(x)=\frac{(\cosh x-1)\left(\pi^{2}-x^{2}\right)}{x^{2}} .
$$

Therefore

$$
f^{\prime}(x)=\frac{\pi^{2} x \sinh x-2 \pi^{2}(\cosh x-1)-x^{3} \sinh x}{x^{3}}
$$

Now by Taylor's series expansion we have

$$
\begin{aligned}
\pi^{2} x \sinh x & =\pi^{2}\left(x^{2}+\frac{x^{4}}{6}+\frac{x^{6}}{120}+\frac{x^{8}}{5040}+\ldots \ldots \ldots \ldots \ldots\right) \\
-2 \pi^{2}(\cosh x-1) & =-\pi^{2}\left(x^{2}+\frac{x^{4}}{12}+\frac{x^{6}}{360}+\frac{x^{8}}{20160}+\ldots \ldots \ldots . .\right) \\
-x^{3} \sinh x & =-x^{4}-\frac{x^{6}}{6}-\frac{x^{8}}{120}-\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{aligned}
$$

Hence

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{x^{3}}\left[\frac{\left(\pi^{2}-12\right)}{12} x^{4}+\frac{\left(\pi^{2}-30\right)}{180} x^{6}+\frac{\left(3 \pi^{2}-168\right)}{20160} x^{8}+\ldots \ldots \ldots \ldots\right] \\
& =-\left(\frac{12-\pi^{2}}{12}\right) x-\left(\frac{30-\pi^{2}}{180}\right) x^{3}-\left(\frac{168-3 \pi^{2}}{20160}\right) x^{5}
\end{aligned}
$$

Thus, $f^{\prime}(x)<0$ in $(0,1)$. So that $f(x)$ is strictly decreasing in $(0,1)$. Consequently, $a=f(1-)=(\cosh 1-1)\left(\pi^{2}-1\right) \approx 4.816910$ and $b=f(0+)=\frac{\pi^{2}}{2}$ by l'Hôpital's rule. This completes the proof of theorem.

4 An Application

R. Klén, M. Visuri and M. Vuorinen [6, Theorem 3.1] proved the following double inequality

$$
\begin{equation*}
1-\frac{x^{2}}{6} \leqslant \frac{\sin x}{x} \leqslant 1-\frac{2 x^{2}}{3 \pi^{2}} ; x \in(-\pi / 2, \pi / 2) \tag{4.1}
\end{equation*}
$$

A reader can see the refined form of (4.1) in the last theorem.
Theorem 5. For $x \in(-\pi / 2, \pi / 2)$, it is true that

$$
\begin{equation*}
1-\frac{x^{2}}{6} \leqslant \frac{\sin x}{x} \leqslant 1-\frac{4 x^{2}}{3 \pi^{2}} ; x \in(-\pi / 2, \pi / 2) \tag{4.2}
\end{equation*}
$$

Proof. Clearly equality holds at $x=0$. Due to symmetry, it suffices to prove the theorem in $(0, \pi / 2)$. On integrating (3.1), we have

$$
\int_{0}^{x}\left(1-\frac{t^{2}}{2}\right) d t<\int_{0}^{x} \cos t d t<\int_{0}^{x}\left(1-\frac{4 t^{2}}{\pi^{2}}\right) d t
$$

where $x \in(0, \pi / 2)$. i. e.

$$
x-\frac{x^{3}}{6}<\sin x<x-\frac{4 x^{3}}{3 \pi^{2}}
$$

which proves our result.

References

[1] I. Lazarević, Neke nejednakosti sa hiperbolickim funkcijama, Univerzitet u Beogradu. Publikacije Elektrotechničkog Fakulteta. Serija Matematika i Fizika, Vol. 170 (1966), pp. 41-48.
[2] D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, Berlin 1970.
[3] C. P. Chen, J. W. Zhao and F. Qi, Three inequalities involving hyperbolically trigonometric functions, RGMIA Res. Rep. Coll. 6(3)(2003), Art. 4, pp. 437-443.
[4] R. Redheffer, problem 5642, Amer. Math. monthly 76(1969), 422.
[5] L. Zhu, J.Sun, Six new Redheffer-type inequalities for circular and hyperbolic functions, Comput. Math. Appl. Vol. 56 No. 2, pp. 522-529, 2008.
[6] R. Klén, M. Visuri and M. Vuorinen, On Jordan Type Inequalities for Hyperbolic Functions, J. Inequal. and Appl. Vol. (2010), 14 pages, Art. ID 362548, 2010
[7] Yupei LV, Gendi Wang, Yuming Chu, A note on Jordan type inequalities for hyperbolic functions, Appl. Math. Lett. Vol. 25, pp. 505-508, 2012.
[8] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Conformal Invarients, Inequalities and Quasiconformal maps, John Wiley and Sons, New York, 1997.
[9] Yogesh J. Bagul, On Exponential Bounds of Hyperbolic Cosine, Bulletin Of The International Mathematical Virtual Institute, Vol. 8 , No. 2, pp. 365-367, 2018.
[10] Barkat Ali Bhayo and József Sándor, On Jordan's and Kober's Inequality, Acta Et Commentationes Universitatis tartuensis de Mathematica, Vol. 20, No. 2, Dec. 2016.
[11] J. Sándor, On new refinements of Kober's and Jordan's trigonometric inequalities, Notes Number Theory Discrete Math. Vol. 19, No. 1, pp. 73-83, (2013).
[12] H. Kober, Approximation by integral functions in the complex domain, Trans. Amer. Math. Soc. Vol. 56, No. 1, pp. 7 - 31, 1944.
[13] Shan-He Wu, Shu-Guang Li, Mihály Bencze, Sharpened versions of Mitrinović-Adamović, Lazarević and Wilker's inequalities for trigonometric and hyperbolic functions, J. Nonlinear Sci. Appl. Vol. 9 , pp. 2688-2696, 2016.
[14] X. Zhang, G. Wang and Y. Chu, Extensions and sharpenings of Jordan's and Kober's inequalities, J. Inequal. Pure. Appl. Math. Vol. 7 , No. 2, Article 63, 3 pages, 2006.
[15] J. Sándor, Refinements of the Mitrinović - Adamović inequality, with application, Notes Number Theory Discrete Math. Vol. 23, No. 1, pp. 4-6, 2017.

