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1 Introduction

There has been growing interest among the researchers in generalizing and
sharpening the Kober type [12] and Lazarević type [ 1, 2 ] inequalities. The
famous inequalities are respectively given by

1− 2x

π
6 cosx 6 1− x2

π
; x ∈ [0, π/2] (1.1)

and

coshx <

(
sinhx

x

)p
; ∀x > 0 (1.2)

if and only if p > 3.
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In [5, 10, 11, 14] the generalizations and refinements of (1.1) are appeared.
B. A. Bhayo and J. Sándor[10] refine the inequality of type (1.1) as follows:

1− x2/2

1 + x2/12
< cosx < 1− 24x2/(5π2)

1 + 4x2/(5π2)
; x ∈ (0, π/2) (1.3)

They further refine the upper bound of cosx in (1.3) as(
π2 − 4x2

12

)3/2

< cosx <

(
1− x2

3

)3/2

; x ∈ (0, π/2) (1.4)

In [3 - 7], the generalizations and refinements of inequality of type (1.2) i.e.
bounds of coshx are appeared. The natural exponential bounds of coshx
were established very recently in [9], as follows:

eax
2

< coshx < ex
2/2; x ∈ (0, 1) (1.5)

where a ≈ 0.433781.
In [13] it is given that, for all non-zero real numbers x, the inequality

coshx <

(
sinhx

x

)3

− 12

5

(
1− x

sinhx

)2
(1.6)

holds.
The main purpose of this paper is to refine the above mentioned bounds and
present new improved sharp bounds for cosx and coshx.

2 Two Lemmas

Following are the tools to prove our main results.

Lemma 1. (The Mitrinović - Adamović inequality [2, p.238]): For x ∈ (0, π
2
)

one has

cosx <

(
sinx

x

)3

. (2.1)

For the recent refined form of (2.1), we refer reader to [15].

Lemma 2. (l’Hôpital’s Rule of Monotonicity [8, Thm. 1.25]): Let f, g :
[l,m] → R be two continuous functions which are derivable in (l,m) and
g′ 6= 0 in (l,m). If f ′/g′ is increasing (or decreasing) in (l,m), then the

functions f(x)−f(l)
g(x)−g(l) and f(x)−f(m)

g(x)−g(m)
are also increasing (or decreasing) on (l,m).

If f ′/g′ is strictly monotone, then the monotonicity in the conclusion is also
strict.
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3 Main Results

In our main results we first give more sharp bounds for cosx than the corre-
sponding bounds given in (1.1).

Theorem 1. If x ∈ (0, π/2) then

1− x2

2
< cosx < 1− 4x2

π2
. (3.1)

Proof. Let, 1− x2

a
< cosx < 1− x2

b
, which implies that, a < x2

1−cosx < b.

Then f(x) = x2

1−cosx = f1(x)
f2(x)

,

where f1(x) = x2 and f2(x) = 1− cosx with f1(0) = f2(0) = 0. By Differen-
tiation we get

f ′1(x)

f ′2(x)
= 2x

sinx
= f3(x)

f4(x)

where f3(x) = 2x and f4(x) = sinx, with f3(0) = f4(0) = 0. Differentiation
gives us
f ′3(x)

f ′4(x)
= 2

cosx
, which is clearly strictly increasing in (0, π/2). By Lemma 2 ,

f(x) is strictly increasing in (0, π/2). Therefore

f(0+) < f(x) < f(π/2)

Consequently, a = f(0+) = 2, by l’Hôpital’s rule and b = f(π/2) =
(π/2)2

1−cos(π/2) = π2

4
.

Remark 1. By using lemma 2, we can also obtain that, cosx < 2
2+x2

in
(0, π/2). Thus

2− x2

2
< cosx <

2

2 + x2
; x ∈ (0, π/2). (3.2)

The upper bounds of (1.3) and (1.4) are refined in the next theorem.

Theorem 2. For any x ∈ (0, π/2) one has

1− x2/2

1 + x2/12
< cosx < 1− x2/2

1 + x2/b
(3.3)

where the constants 12 and b ≈ 10.557960 are best possible.
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Proof. Let 1− x2/2
1+x2/a

< cosx < 1− x2/2
1+x2/b

, which implies that,
1
a
< f(x) < 1

b
; where

f(x) =
x2 − 2(1− cosx)

2x2(1− cosx)
=

1

2(1− cosx)
− 1

x2

.
Therefore,

f ′(x) =
−sinx

2(1− cosx)2
+

2

x3

.
Using (2.1) we have

16 sin4
(x

2

)
> 2x3 sin

(x
2

)
cos
(x

2

)
, which gives

4 (1− cosx)2 − x3 sinx > 0

. So that f ′(x) > 0. Thus, f(x) is increasing in (0, π/2). Hence a = 1
f(0+)

=

12 by l’Hôpital’s rule and b = 1
f(π/2)

≈ 10.557960.

Note: Though the strict comparison may not be done between the
bounds; the bounds in (3.3) are better than the corresponding bounds in
(1.3) and (1.4).

In the following theorem, we conclude that the bounds of coshx are more
sharp than the corresponding bounds in (1.5).

Theorem 3. If x ∈ (0, 1) then

1 +
x2

2
< coshx < 1 +

x2

b
(3.4)

with the best possible constants 2 and b ≈ 1.841348.

Proof. Let, 1+ x2

a
< coshx < 1+ x2

b
, which implies that, b < x2

coshx−1 < a.

Then f(x) = x2

coshx−1 = f1(x)
f2(x)

,

where f1(x) = x2 and f2(x) = coshx − 1 with f1(0) = f2(0) = 0. By differ-
entiation

f ′1(x)

f ′2(x)
= 2x

sinhx
= f3(x)

f4(x)
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where f3(x) = 2x and f4(x) = sinhx with f3(0) = f4(0) = 0. Differentiation
gives

f ′3(x)

f ′4(x)
=

2

coshx

which is clearly decreasing in (0, 1). By lemma 2, f(x) is also strictly de-
creasing in (0, 1). Clearly, then a = f(0+) = 2, by l’Hôpital’s rule and
b = f(1−) = 1

cosh1−1 ≈ 1.841348.

Note : There is no strict comparison between the corresponding bounds
of coshx in (1.5) and (3.4).

Corollary 1. If x ∈ (0, 1) then

2 < cosx+ coshx < 2 + c.x2 (3.5)

with the best possible constant c ≈ 0.137796.

Proof. Combining (3.1) and (3.4), the assertion follows.

In the following theorem we give more tight bounds of coshx than the
corresponding bounds given in (1.5) and (1.6).

Theorem 4. For x ∈ (0, 1) one has

1 +
ax2

π2 − x2
< coshx < 1 +

(πx)2/2

π2 − x2
(3.6)

where the constants a ≈ 4.816910 and π2

2
are best possible.

Proof. Let 1 + ax2

π2−x2 < coshx < 1 + bx2

π2−x2 , which implies that

a < (coshx−1)(π2−x2)
x2

< b. Then f(x) = (coshx−1)(π2−x2)
x2

.

Therefore

f ′(x) =
π2 x sinhx− 2π2(coshx− 1)− x3 sinhx

x3
.

Now by Taylor’s series expansion we have

π2 x sinhx = π2

(
x2 +

x4

6
+

x6

120
+

x8

5040
+ ...............

)
,

−2π2 (coshx− 1) = −π2

(
x2 +

x4

12
+

x6

360
+

x8

20160
+ ...........

)
,

−x3 sinhx = −x4 − x6

6
− x8

120
− .................................
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Hence

f ′(x) =
1

x3

[
(π2 − 12)

12
x4 +

(π2 − 30)

180
x6 +

(3π2 − 168)

20160
x8 + ............

]
= −

(
12− π2

12

)
x−

(
30− π2

180

)
x3 −

(
168− 3π2

20160

)
x5

Thus, f ′(x) < 0 in (0, 1). So that f(x) is strictly decreasing in (0, 1) . Con-
sequently, a = f(1−) = (cosh1− 1)(π2 − 1) ≈ 4.816910 and b = f(0+) = π2

2

by l’Hôpital’s rule. This completes the proof of theorem.

4 An Application

R. Klén, M. Visuri and M. Vuorinen [6, Theorem 3.1] proved the following
double inequality

1− x2

6
6
sinx

x
6 1− 2x2

3π2
; x ∈ (−π/2, π/2). (4.1)

A reader can see the refined form of (4.1) in the last theorem.

Theorem 5. For x ∈ (−π/2, π/2), it is true that

1− x2

6
6
sinx

x
6 1− 4x2

3π2
; x ∈ (−π/2, π/2). (4.2)

Proof. Clearly equality holds at x = 0. Due to symmetry, it suffices to
prove the theorem in (0, π/2). On integrating (3.1), we have∫ x

0

(
1− t2

2

)
dt <

∫ x

0

cost dt <

∫ x

0

(
1− 4t2

π2

)
dt

where x ∈ (0, π/2). i. e.

x− x3

6
< sinx < x− 4x3

3π2

which proves our result.
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