Received 29/01/18

SOME INEQUALITIES OF OSTROWSKI AND TRAPEZOID
TYPE FOR HYPERBOLIC p-CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some Ostrowski and Trapezoid type
integral inequalities for hyperbolic p-convex functions.

1. INTRODUCTION

In 1938, A. Ostrowski [16], proved the following inequality concerning the dis-
tance between the integral mean ;1 f; f (t) dt and the value f (z), x € [a, b].

Theorem 1 (Ostrowski). Let f : [a,b] — R be continuous on [a,b] and differ-
entiable on (a,b) such that f' : (a,b) — R is bounded on (a,b), i.e., ||f'|, =

sup |f' (¢)| < co. Then
te(a,b)

b
(1) if(x)—bia/ 7 (5t

2
1 T — atb
< 4+( b_;) 1) (b= a),

for all x € [a,b] and the constant i is the best possible.
The following result of Ostrowski type for convex functions holds.

Theorem 2 (Dragomir, 2002 [8]). Let f : [a,b] C R — R be a convex function on
[a,b]. Then for any x € [a,b] one has the inequality

(1:2) (b= ) ) @) = (@ = 0)* . ()]

N —

b
g/ f@)ydt—(b—a) f(z)
% (=) f2 () = (v =)’ £ (@)] -

IN

The constant % is sharp in both inequalities. The second inequality also holds for
r=a orz=>o
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atb e get the sharp inequalities

[ (22) -2 (25 o0
< —/f P dt — <a+b>

< SO - @ e-a).

For various Ostrowski type inequalities see the recent survey paper [11] and the
references therein.
The following trapezoid type inequality for convex functions also holds.

In particular, for x =

(1.3) 0

IN

A

Theorem 3 (Dragomir, 2002 [8]). Let f : [a,b] C R — R be a convex function on
[a,b]. Then for any x € [a,b] one has the inequality

(1.4) % [(b — 22 f (2) = (@ —a)® f (m)}

b
S(a:—a)f(a)+(b—x)f(b)—/ £ (t)dt

1

Ho-02r 0 -6-o?f @).

The constant % is sharp in both inequalities. The second inequality also holds for
r=aorxz=>.
In particular, for x = %, we get the sharp inequalities

(1.5) 0 < é {Jﬁ <a+b> fL (a;bﬂ (b—a)
fla

b
< ()2 b—bia/af(t)dt

1
SO - @ e-a.

Let I be a finite or infinite open interval of real numbers and p € R, p # 0.

In the following we present the basic definitions and results concerning the class
of hyperbolic p-convex function, see [3]. For other concepts of modified convex
functions see for example [13], [14], [4], [6], [7], [12], [15], [17] and [18].

We consider the hyperbolic functions of a real argument € R defined by

IN

<

h et —e ” e — 1 b et +e7 " e 4+ 1
sinhx := = , coshzx := = ,
2 2e® 2 2e®
sinh z cosh x
tanhx := and cothz := — .
cosh x sinh x

We say that a function f : I — R is hyperbolic p-convex (or sub H-function,
according with [3]) on I, if for any closed subinterval [a,b] of I we have
sinh [p (b — 2)] sinh [p (z — a)]
1.6 < —F—F= ——— = f (b
(16) )= sinh [p (b — a)] (a) sinh [p (b — a)] S )
for all x € [a,b].

If the inequality (1.6) holds with ” > 7| then the function will be called hyperbolic
p-concave on 1.
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Geometrically speaking, this means that the graph of f on [a,b] lies nowhere
above the p-hyperbolic function determined by the equation
H (z) = H (z;a,b, f) := Acosh (px) + Bsinh (px)
where A and B are chosen such that H (a) = f (a) and H (b) = f (b).
If we take x = (1 —t)a +tb € [a,b], t € [0,1], then the condition (1.6) becomes
sinh[p(1—1¢) (b — a)] sinh [pt (b — a)]

(1.7) FA=tatth) < sinh [p (b — a)] sinh [p (b — a)]

fla) + f(b)
for any t € [0,1].
We have the following properties of hyperbolic p-convex on I, [3].

(i) A hyperbolic p-convex function f : I — R has finite right and left deriv-
atives f) (z) and f’ (z) at every point x € I and f’ (z) < f) (x). The
function f is differentiable on I with the exception of an at most countable
set.

(ii) A necessary and sufficient condition for the function f : I — R to be
hyperbolic p-convex function on [ is that it satisfies the gradient inequality

(1.8) f(y) = f(x)cosh[p(y — )] + Ky g sinh [p (y — z)]

for any z, y € I where K, 5 € [f_ (z), f, ()] . If f is differentiable at the
point = then K, r = f' ().

(iii) A necessary and sufficient condition for the function f to be a hyperbolic
p-convex in I, is that the function

@(w):f’(ﬂc)—ﬁ/mf(t)dt

is nondecreasing on I, where a € I.
(iv) Let f : I — R be a two times continuously differentiable function on I.
Then f is hyperbolic p-convex on [ if and only if for all z € I we have

(1.9) f" (@) = p*f (z) > 0.

For other properties of hyperbolic p-convex functions, see [3].

Consider the function f, : (0,00) — (0,00), fr(z) = 2" with p € R\ {0}. If

r € (—00,0) U[1,00) the function is convex and if r € (0,1) it is concave. We have
for r € (—o00,0) U1, 00)

r—1)

£ (@) = P2, () = v (r — 1) 2’2 — pPa” = pla 2 (7‘<

2 —x2>,x>0.

Pl

We observe that f”(z) — p?f, (z) > 0 for x € <07 T(T1)> and f/ (z) —

p?fr(z) < 0 for z € (V T(r_l),oo> , which shows that the power function f,

Ip]
for r € (—o00,0) U [1,00) is hyperbolic p-convex on <O, T(;_l)> and hyperbolic
o
If r € (0,1), then f” (z) — p*f, (z) < 0 for any x > 0, which shows that f, is

T
hyperbolic p-concave on (0, 00) .

p-concave on
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Consider the exponential function f, (x) = exp (ax) for @ # 0 and = € R. Then
N (x) = p*fa (z) = %™ — p?e® = (o —p®) ™, x> 0.
If |a| > |p|, then f, is hyperbolic p-convex on R and if |a| < |p| then f, is
hyperbolic p-concave on R.

In this paper we establish some Ostrowski and Trapezoid type integral inequal-
ities for hyperbolic p-convex functions.

2. OSTROWSKI TYPE INEQUALITIES

‘We have:

Theorem 4. Assume that the function f : I — R is hyperbolic p-convex on I.
Then for any a, b € I with a <b and x € (a,b) we have

@) 5[ @02 @) -]

b T b
s/f@ﬂt;ﬁl/<tafﬂwﬁ+/<btfﬂw%
~f (@) (b—a)
72 0) (b= 2)° = f1 (@) (@ — a)?]

—p[m—a /f dt + (b — ) /f dt}

In particular, if f is differentiable in x, then we have

22 @ o-o (5 -0

b x b
s/ f(t)dt—%pQ V (t—aff(t)dw/ (b—t)Qf(t)dt]

—f(z)(b—a)

<

N |

<

120 -2 = 1} () (= a)?]

x b
—%p2 [(x—a)Q/ f(t)dt+(b—x)2/ f(t)dt].

Proof. We use the Montgomery identity for an absolutely continuous function g :
[a,b] — C that says that

b x b
23 g@-a- [ g@ds= [ -ag@ds— [ 659 () ds

for z € (a,b). This can be proved in one line by integrating by parts on the second
term.
Using the property (iii) from Introduction we have that

(2.4) 7. (a) /1f Vit < £ ( t/f

N |
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for a.e. s € [a,x].
This implies that

f@G-a|re- [ 1ode-a
<|r@-s [ rode-a,

that is equivalent to

£y (a) (s —a) + 97 s—a/sftdt<f’(s)(s—a)
<f(x)(s—a)— s—a/f ) dt + p? S—a/f

for a.e. s € [a,x].
If we integrate this over s € [a, 2] we get

f;(a)/:(s—a)ds—i-ﬁ/a s—a (/f dt>d5</f (s —a)
Sf'(m)/;(s—a)ds—pQ/a s—a ds/aftdt—i—p/a s—a) </thdt>ds

that is equivalent to

(2.5) %f@(a)(x—a) / s—a (/f dt)ds</f (s — a)
f’,(m)(m—a)z—%p (x —a) /aftdt—l—p /a s—a </Gftdt)ds,

for « € (a,b).
Using the property (iii) from Introduction we also have that

(2.6) [ (x /f ydt < f( /f ydt < f( /f

for a.e. s € [z,}].
This implies that

<

DN | =

Py (@) (b—s) - b—s/f

<(rors frma)os
b
Sfi(b)(b—S)—p2(b—8)/a Ft)dt

for a.e s € [z,0].
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If we integrate this over s € [z, ], we get

which is equivalent to

,f+()(b—x) _lp b 2) /f )dt + p? /b(b—s)</:f(t)dt>ds
/f b—s)ds
S%fl(b)(b—x —pf /f ) dt 4 p? /b(b—s)</:f(t)dt>ds

—%fi(ﬂf)( /f t)dt — p/ —s)(/:f(t)dt)ds.

Now, if we add (2.5) with (2.7) and use Montgomery identity (2.3) we get

(2.8) %f;(co(a:—a —p/a s—a (/f dt)
1
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Using the integration by parts, we have

[e-a([rosu-b [ ([ros)ee-)
(L] -

—§/a (5~ a)* £ (5)ds
—ye-a [ rwd- [ -0 reas

Then by (2.8) we get

(29) Lfl (@) (-0 - [ v~ a) /f dt”/ s= 0 Fls)ds
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or, equivalently

1 1

(2.10) iﬁuo@—af—§ﬂ4ww—xf

for x € (a,b).
The inequality (2.10) can also be written as

S @) @ =) = L) (- 2)?

7% lxa /if )dt + (b— x) /“f d4
Sf(x)(ba)/abf(S)ds

for « € (a,b), which proves the desired inequality (2.1).

Corollary 1. With the assumptions of Theorem 4 we have

(2.11) Ogl( a)’ [f+<a+b> fl<a;b>]

atb b

b 2
< [ rwa- g [/ (t—a)zf(t)dH/M(b—t)zf(t)dt]

2
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Remark 1. From the first inequality in (2.11) we have the following midpoint
inequality

(2.12) f (a ; b) (b—a)
it ,

/f dt—fp [/ ’ (t—a)2f(t)dt+/u+b(b—t)zf(t)dtl.

3. TRAPEZOID TYPE INEQUALITIES

‘We have:

Theorem 5. Assume that the function f : I — R is hyperbolic p-convex on I.
Then for any a, b € I with a <b and x € (a,b) we have

(31) Sf4 @) 02~ L f (@) (@~ a)

(z - a) /f dt + (b — ) (/f dt)]

<(z—a)f(a)+(b-2a)f /f )dt + p/(m—s)zf(s)ds

_’_7

In particular, if f is differentiable in x, then we have

32 F@e-o (5 o)

T b
(x—a)2/ f(t)dt+(b—x)2</ f(t)dt)]

<@-a)f(a)+0b-2)f /f )i+ 2p / (z— 5)* £ (s) ds
< SO0 L ()~ 37 (@) (@ —a)*.

]‘2
+§p

Proof. We use the following identity that holds for the absolutely continuous func-
tion g : [a,0] — C

b
(33) @-ag@+0-29@)- [ g
b b T
:/ (s—x)g (s)dt = /(s—x) ()ds—/ (x—s)g' (s)ds

for any = € [a,b]. This can can be proved by integrating by parts in the second
term.
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Using the inequality (2.4) we get

Fi(a) (@ —s) < f(3) (@ —s) - x—s/f
<f @) (@—s) - x—s/f

for a.e. s € [a,x].
Integrating on [a, 2|, we have

S (@) (2 o)

/f ) (z — 5)ds p/:(x—s)</:f(t)dt)ds

<@ -0 - -0 [ fod

which is equivalent to

(3.4) —p2/j(x—s)</sftdt)ds—lf’(:c)(x—a)Q
e [ ra
/f x—sds<—p/a T—s (/f dt> ff+()(a:—a)2

for any x € (a,b).
From (2.6) we have

f#(w)(s—x)—pz(s—x)/mf(t)dté(s—x)f’(S)—pz(s—x)/sf(t)dt
b
s<s—x>f’_<b>—p2<s—x>/ £ (t)dt

for a.e. s € [x,0].
Integrating on [z, b] we get

RIS R I

</:(s—w)f()ds » / o ([ rwar)as

b
b= (0) = 55 b2 [ fa

<

N |
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which is equivalent to

(35) 574 (@) (b—a)°

—;p2(b—x)2/;f(t)dt+p2/:(s—x) ([ rwat)as

g/:@_z)f/(s)ds

g;(bz)Qf’_(b);pQ(bx)2/abf(t)dt+p2/:(sx) </:f(t)dt)ds,

for any x € (a,b) .
Adding (3.4) and (3.5) and using the identity (3.3) we get

2 [(e-a ([ 10@)as- 1 @0+ o [ 10w
3 @o-a? - oo [r@aer oo ([ 10a)a
<(m—a)f(a)+(b—x)f(b)—/abf(s)dt
< [(@-a ([ r0a)a- g1 @@
+;<b—x>2f'<b>—;ﬁ<b—x>2/:f<t>dt+p2/:<s—x> ([ rwa)a

that is equivalent to

36 304 @ 0= =3 @ -0+ 3 a0 [

—;pz(b—x)z’/amf(t)dt—p?/:(x—s) ([ rwat)as
<(x—a)f(a) /bf

(b I () ~ 3£} (a) lre-a /f

—p/ T — s(/f dt)ds.
Integrating by parts, we have

/abx s) (/f dt)ds-—/ (/f dt)
:—[m s) (/f dt) —/a x — szf(s)dS]
:;/;(w 5) ds—fb— (/f dt)

<

DO =
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and by (3.6) we get

@ b= = 31 @) -0 + P - o) [ [y

2 .
x b b
_%pQ(b—x)g/ f(t)dt—;pQ/(x—s)Qf(s)ds—l—;(b—x)ZpQ( f(t)dt)
b
<(@-a)f(a)+(b-—2)f)— [ f(s)dt
b
<G b= FL )~ L @) (o —af — 0 oo [ F()ar
b b
57 [ @ F s+ 0 >2p2< f(t)dt>,
namely
1

which proves the desired result (3.1). O

Corollary 2. With the assumptions of Theorem 5, we have

(37) 0< %(bfa)2 [fi <a;b> -1 (a;bﬂ

b b
<0-o X0 a3 0= G-

b
<Gl [0 -1 @) - g b-a? [ F(s) s

Remark 2. From the first inequality in (5.7) we get the following trapezoid type
inequality

b b
68 [ 1t [ 0-96-asis<o-o L0
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