
NEW APPROXIMATION OF f-DIVERGENCE MEASURES BY
USING TWO POINTS TAYLOR�S TYPE REPRESENTATIONS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish some new approximations of the f -
divergence measures by the use of two points Taylor�s type representations
with integral remainders. Some inequalities for Kullback-Leibler divergence
are provided as well.

1. Introduction

One of the important issues in many applications of Probability Theory & Sta-
tistics is �nding an appropriate measure of distance (di¤erence or discrimination)
between two probability distributions.
A number of divergence measures have been proposed and extensively studied

by: Je¤reys 1946 [26], Kullback-Leibler 1951 [32], Rényi 1961 [39], Ali and Silvey
1966 [1], Csiszár 1967 [11], Havrda-Charvat 1967 [23], Sharma-Mittal 1977 [41],
Rao 1982 [38], Burbea-Rao 1982 [8], Kapur 1984 [29], Vajda 1989 [48], Lin 1991
[33], Shioya and Da-te [42] and others, see [36]
These measures have been applied in a variety of �elds such as: anthropology [38],

genetics [36], �nance, economics and political science [40], [45], [46], biology [37],
the analysis of contingency tables [22], approximation of probability distributions
[10], [30], signal processing [27], [28] and pattern recognition [7], [9].
Assume that a set 
 and the �-�nite measure � are given. Consider the set of

all probability densities on � to be

P :=
�
pjp : 
! R, p (x) � 0;

Z



p (x) d� (x) = 1

�
:

The Kullback-Leibler divergence [32] is well known among the information diver-
gences. It is de�ned for p; q 2 P as follows:

(1.1) DKL (p; q) :=

Z



p (x) ln

�
p (x)

q (x)

�
d� (x) ;

where ln is to base e.
In Information Theory and Statistics, various divergences are applied in addition

to the Kullback-Leibler divergence. These are de�ned for p; q 2 P as follows

Dv (p; q) :=

Z



jp (x)� q (x)j d� (x) ; variation distance;

DH (p; q) :=

Z



���pp (x)�pq (x)��� d� (x) ; Hellinger distance [24],
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D�2 (p; q) :=

Z



p (x)

"�
q (x)

p (x)

�2
� 1
#
d� (x) ; �2-divergence;

D� (p; q) :=
4

1� �2

�
1�

Z



[p (x)]
1��
2 [q (x)]

1+�
2 d� (x)

�
; �-divergence;

DB (p; q) :=

Z



p
p (x) q (x)d� (x) ; Bhattacharyya distance [6];

DHa (p; q) :=

Z



2p (x) q (x)

p (x) + q (x)
d� (x) ; Harmonic distance;

DJ (p; q) :=

Z



[p (x)� q (x)] ln
�
p (x)

q (x)

�
d� (x) ; Je¤rey�s distance [26],

and

D� (p; q) :=

Z



[p (x)� q (x)]2

p (x) + q (x)
d� (x) ; triangular discrimination [44].

For other divergence measures, see the paper [29] by Kapur or the book on line
[43] by Taneja.
In 1967, I. Csiszár [12] introduced the concept of f-divergence as follows

(1.2) If (p; q) :=

Z



p (x) f

�
q (x)

p (x)

�
d� (x) ;

for p; q 2 P; where f is convex on (0;1) and normalised, i.e. f (1) = 0:
Most of the above distances are particular instances of Csiszár f -divergence.

There are also many others which are not in this class (see for example Taneja�s
book online [43]). For the basic properties of Csiszár f -divergence such as

If (p; q) � 0 for any p; q 2 P,
and

P � P 3 (p; q) 7! If (p; q) is convex,

see [12], [13] and [48].
In the recent papers [14], [15] and [16] we obtained several reverses of Jensen�s

integral inequality. These applied to Csiszár f -divergence produce the following
results:

Theorem 1 (Dragomir 2013, [15]). Let f : (0;1) ! R be a convex function with
the property that f (1) = 0: Assume that p; q 2 P and there exists the constants
0 < r < 1 < R <1 such that

(1.3) r � q (x)

p (x)
� R for �-a.e. x 2 
:

Then we have the inequalities

0 � If (p; q) �
(R� 1) (1� r)

R� r sup
t2(r;R)

	f (t; r;R)(1.4)

� (R� 1) (1� r)
f 0� (R)� f 0+ (r)

R� r

� 1

4
(R� r)

�
f 0� (R)� f 0+ (r)

�
;
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and 	f (�; r;R) : (r;R)! R is de�ned by

	f (t; r;R) =
f (R)� f (t)

R� t � f (t)� f (r)
t� r :

We also have the inequality

0 � If (p; q) �
1

4
(R� r) f (R) (1� r) + f (r) (R� 1)

(R� 1) (1� r)(1.5)

� 1

4
(R� r)

�
f 0� (R)� f 0+ (r)

�
:

and the inequality

0 � If (p; q) � 2max
�
R� 1
R� r ;

1� r
R� r

�
(1.6)

�
�
f (r) + f (R)

2
� f

�
r +R

2

��
� 1

2
max fR� 1; 1� rg

�
f 0� (R)� f 0+ (r)

�
:

Some bounds in terms of the variation distance are as follows:

Theorem 2 (Dragomir 2016, [16]). With the assumptions of Theorem 1 we have

0 � If (p; q) �
1

2

�
f 0� (R)� f 0+ (r)

�
Dv (p; q)(1.7)

� 1

2

�
f 0� (R)� f 0+ (r)

� �
D�2 (p; q)

�1=2
� 1

4
(R� r)

�
f 0� (R)� f 0+ (r)

�
:

and

0 � If (p; q) �
1

2
([1; R; f ]� [r; 1; f ])Dv (p; q)(1.8)

� 1

2
([1; R; f ]� [r; 1; f ])

�
D�2 (p; q)

�1=2
� 1

4
([1; R; f ]� [r; 1; f ]) (R� r) ;

where [a; b; f ] is the divided di¤erence

[a; b; f ] :=
f (b)� f (a)

b� a :

Further bounds in terms of the Lebesgue norms of the derivative are embodied
in the next theorem:

Theorem 3 (Dragomir 2013, [14]). With the assumptions in Theorem 1 we have

(1.9) 0 � If (p; q) � Bf (r;R)

where

(1.10) Bf (r;R) :=
(R� 1)

R 1
r
jf 0 (t)j dt+ (1� r)

R R
1
jf 0 (t)j dt

R� r :
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Moreover, we have the following bounds for Bf (r;R)

Bf (r;R)(1.11)

�

8>>><>>>:
�
1
2 +

j1� r+R
2 j

R�r

� R R
r
jf 0 (t)j dt

1
2

R R
r
jf 0 (t)j dt+ 1

2

���R R1 jf 0 (t)j dt� R 1r jf 0 (t)j dt��� ;
and

Bf (r;R) �
(1� r) (R� 1)

R� r

h
kf 0k[1;R];1 + kf 0k[r;1];1

i
(1.12)

� 1

2
(R� r)

kf 0k[1;R];1 + kf 0k[r;1];1
2

� 1

2
(R� r) kf 0k[r;R];1

and

Bf (r;R) �
1

R� r

h
(1� r) (R� 1)1=q kf 0k[1;R];p(1.13)

+(R� 1) (1� r)1=q kf 0k[r;1];p
i

� 1

R� r kf
0k[r;R];p [(1� r)

q
(R� 1) + (R� 1)q (1� r)]1=q ;

Motivated by the above results, in this paper we establish some new inequalities
for f -divergence measures by employing two points Taylor�s type expansions that
are presented below. Applications for particular instances of interest are provided
as well.

2. Some Preliminary Facts

The following result is well known in the literature as Taylor�s formula or Tay-
lor�s theorem with the integral remainder.

Lemma 1. Let I � R be a closed interval, c 2 I and let n be a positive integer. If
f : I �! C is such that the n-derivative f (n) is absolutely continuous on I, then
for each y 2 I

(2.1) f (y) = Tn (f ; c; y) +Rn (f ; c; y) ;

where Tn (f ; c; y) is Taylor�s polynomial, i.e.,

(2.2) Tn (f ; c; y) :=
nX
k=0

(y � c)k

k!
f (k) (c) :

Note that f (0) := f and 0! := 1 and the remainder is given by

(2.3) Rn (f ; c; y) :=
1

n!

Z y

c

(y � t)n f (n+1) (t) dt:

A simple proof of this lemma can be achieved by mathematical induction using
the integration by parts formula in the Lebesgue integral.
For related results, see [2]-[5], [20]-[21], [28], [33]-[35] and [47].
The following identity can be stated:
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Lemma 2. Let f : I ! C be n-time di¤erentiable function on the interior �I of
the interval I and f (n); with n � 1; be locally absolutely continuous on �I. Then for
each distinct t; a; b 2 �I and for any � 2 Rn f0; 1g we have the representation

f (t) = (1� �) f (a) + �f (b)(2.4)

+
nX
k=1

1

k!

h
(1� �) f (k) (a) (t� a)k + (�1)k �f (k) (b) (b� t)k

i
+ Sn;� (t; a; b) ;

where the remainder Sn;� (t; a; b) is given by

Sn;� (t; a; b)(2.5)

:=
1

n!

�
(1� �) (t� a)n+1

Z 1

0

f (n+1) ((1� s) a+ st) (1� s)n ds

+(�1)n+1 � (b� t)n+1
Z 1

0

f (n+1) ((1� s) t+ sb) snds
�
:

Proof. Using Taylor�s representation with the integral remainder (2.1) we can write
the following two identities

(2.6) f (t) =
nX
k=0

1

k!
f (k) (a) (t� a)k + 1

n!

Z t

a

f (n+1) (�) (t� �)n d�

and

(2.7) f (t) =
nX
k=0

(�1)k

k!
f (k) (b) (b� t)k + (�1)

n+1

n!

Z b

t

f (n+1) (�) (� � t)n d�

for any t; a; b 2 �I:
For any integrable function h on an interval and any distinct numbers c; d in

that interval, we have, by the change of variable � = (1� s) c+ sd; s 2 [0; 1] thatZ d

c

h (�) d� = (d� c)
Z 1

0

h ((1� s) c+ sd) ds:

Therefore, Z t

a

f (n+1) (�) (t� �)n d�

= (t� a)
Z 1

0

f (n+1) ((1� s) a+ st) (t� (1� s) a� st)n ds

= (t� a)n+1
Z 1

0

f (n+1) ((1� s) a+ st) (1� s)n ds

and Z b

t

f (n+1) (�) (� � t)n d�

= (b� t)
Z 1

0

f (n+1) ((1� s) t+ sb) ((1� s) t+ sb� t)n ds

= (b� t)n+1
Z 1

0

f (n+1) ((1� s) t+ sb) snds:
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The identities (2.6) and (2.7) can then be written as

f (t) =
nX
k=0

1

k!
f (k) (a) (t� a)k(2.8)

+
1

n!
(t� a)n+1

Z 1

0

f (n+1) ((1� s) a+ st) (1� s)n ds

and

f (t) =
nX
k=0

(�1)k

k!
f (k) (b) (b� t)k(2.9)

+ (�1)n+1 (b� t)
n+1

n!

Z 1

0

f (n+1) ((1� s) t+ sb) snds:

Now, if we multiply (2.8) with 1 � � and (2.9) with � and add the resulting
equalities, a simple calculation yields the desired identity (2.4). �

Remark 1. If we take in (2.4) t = a+b
2 ; with a; b 2 �I; then we have for any

� 2 Rn f0; 1g that

f

�
a+ b

2

�
= (1� �) f (a) + �f (b)(2.10)

+
nX
k=1

1

2kk!

h
(1� �) f (k) (a) + (�1)k �f (k) (b)

i
(b� a)k

+ ~Sn;� (a; b) ;

where the remainder ~Sn;� (a; b) is given by

~Sn;� (a; b)(2.11)

:=
1

2n+1n!
(b� a)n+1

�
(1� �)

Z 1

0

f (n+1)
�
(1� s) a+ sa+ b

2

�
(1� s)n ds

+(�1)n+1 �
Z 1

0

f (n+1)
�
(1� s) a+ b

2
+ sb

�
snds

�
:

In particular, for � = 1
2 we have

f

�
a+ b

2

�
=
f (a) + f (b)

2
(2.12)

+
nX
k=1

1

2k+1k!

h
f (k) (a) + (�1)k f (k) (b)

i
(b� a)k

+ ~Sn (a; b) ;

where the remainder ~Sn (a; b) is given by

~Sn (a; b)(2.13)

:=
1

2n+2n!
(b� a)n+1

�Z 1

0

f (n+1)
�
(1� s) a+ sa+ b

2

�
(1� s)n ds

+(�1)n+1
Z 1

0

f (n+1)
�
(1� s) a+ b

2
+ sb

�
snds

�
:
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Lemma 3. With the assumptions in Lemma 2 we have for each distinct t; a; b 2 �I

f (t) =
1

b� a [(b� t) f (a) + (t� a) f (b)] +
(b� t) (t� a)

b� a(2.14)

�
nX
k=1

1

k!

n
(t� a)k�1 f (k) (a) + (�1)k (b� t)k�1 f (k) (b)

o
+ Ln (t; a; b) ;

where

Ln (t; a; b) :=
(b� t) (t� a)
n! (b� a)

�
(t� a)n

Z 1

0

f (n+1) ((1� s) a+ st) (1� s)n ds

+(�1)n+1 (b� t)n
Z 1

0

f (n+1) ((1� s) t+ sb) snds
�

and

f (t) =
1

b� a [(t� a) f (a) + (b� t) f (b)](2.15)

+
1

b� a

nX
k=1

1

k!

n
(t� a)k+1 f (k) (a) + (�1)k (b� t)k+1 f (k) (b)

o
+ Pn (t; a; b) ;

where

Pn (t; a; b) :=
1

n! (b� a)

�
(t� a)n+2

Z 1

0

f (n+1) ((1� s) a+ st) (1� s)n ds

+(�1)n+1 (b� t)n+2
Z 1

0

f (n+1) ((1� s) t+ sb) snds
�
;

respectively.

The proof is obvious. Choose � = (t� a) = (b� a) and � = (b� t) = (b� a) ;
respectively, in Lemma 2. The details are omitted.

Corollary 1. With the assumption in Lemma 2 we have for each � 2 [0; 1] and
any distinct a; b 2 �I that

(2.16) f ((1� �) a+ �b) = (1� �) f (a) + �f (b) + � (1� �)

�
nX
k=1

1

k!

h
�k�1f (k) (a) + (�1)k (1� �)k�1 f (k) (b)

i
(b� a)k + Sn;� (a; b) ;

where the remainder Sn;� (a; b) is given by

Sn;� (a; b)(2.17)

:=
1

n!
(1� �)� (b� a)n+1

�
�n
Z 1

0

f (n+1) ((1� s�) a+ s�b) (1� s)n ds

+(�1)n+1 (1� �)n
Z 1

0

f (n+1) ((1� s� �+ s�) a+ (�+ s� s�) b) snds
�
:
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We also have

(2.18) f ((1� �) b+ �a) = (1� �) f (a) + �f (b)

+
nX
k=1

1

k!

h
(1� �)k+1 f (k) (a) + (�1)k �k+1f (k) (b)

i
(b� a)k + Pn;� (a; b) ;

where the remainder Pn;� (a; b) is given by

(2.19) Pn;� (a; b)

:=
1

n!
(b� a)n+1

�
(1� �)n+2

Z 1

0

f (n+1) ((1� s+ �s) a+ (1� �) sb) (1� s)n ds

+(�1)n+1 �n+2
Z 1

0

f (n+1) ((1� s)�a+ (1� �+ �s) b) snds
�
:

Remark 2. The case n = 0; namely when the function f is locally absolutely
continuous on �I with the derivative f 0 existing almost everywhere in �I is important
and produces the following simple identities for each distinct t; a; b 2 �I and � 2
Rn f0; 1g

(2.20) f (t) = (1� �) f (a) + �f (b) + S� (t; a; b) ;

where the remainder S� (t; a; b) is given by

S� (t; a; b) := (1� �) (t� a)
Z 1

0

f 0 ((1� s) a+ st) ds(2.21)

� � (b� t)
Z 1

0

f 0 ((1� s) t+ sb) ds:

We then have for each distinct t; a; b 2 �I

(2.22) f (t) =
1

b� a [(b� t) f (a) + (t� a) f (b)] + L (t; a; b) ;

where

L (t; a; b)(2.23)

:=
(b� t) (t� a)

b� a

�Z 1

0

f 0 ((1� s) a+ st) ds�
Z 1

0

f 0 ((1� s) t+ sb) ds
�

and

(2.24) f (t) =
1

b� a [(t� a) f (a) + (b� t) f (b)] + P (t; a; b) ;

where

(2.25) P (t; a; b)

:=
1

b� a

�
(t� a)2

Z 1

0

f 0 ((1� s) a+ st) ds� (b� t)2
Z 1

0

f 0 ((1� s) t+ sb) ds
�
:
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3. Generalized Reverse Trapezoid Type Estimates

Assume that p; q 2 P and there exists the constants 0 < r < 1 < R < 1 such
that

(3.1) r � q (x)

p (x)
� R for �-a.e. x 2 
:

We consider the following divergence measures

(3.2) D�k;r (p; q) :=

Z

:

(q (x)� rp (x))k

pk�1 (x)
d� (x) � 0 for k 2 N,

and

(3.3) DR;�k (p; q) :=

Z

:

(Rp (x)� q (x))k

pk�1 (x)
d� (x) � 0 for k 2 N.

We have the following approximation of the divergence measure using a reverse
generalized trapezoid rule:

Theorem 4. Let I be an open interval with [r;R] � I as above, f : I ! C be n-time
di¤erentiable function on I and f (n); with n � 1; be locally absolutely continuous on
I. Then for any p; q 2 P satisfying the condition (3.1) we have the representation

If (p; q)(3.4)

=
(1� r) f (r) + (R� 1) f (R)

R� r

+
1

R� r

nX
k=1

1

k!

n
f (k) (r)D�k+1;r (p; q) + (�1)k f (k) (R)DR;�k+1 (p; q)

o
+Qf;n (p; q)

and the reminder Qf;n (p; q) is given by

Qf;n (p; q) =
1

n! (R� r)

"Z



p (x)

�
q (x)

p (x)
� r
�n+2

(3.5)

�
�Z 1

0

f (n+1)
�
(1� s) r + sq (x)

p (x)

�
(1� s)n ds

�
d� (x)

+ (�1)n+1
Z



p (x)

�
R� q (x)

p (x)

�n+2
�
�Z 1

0

f (n+1)
�
(1� s) q (x)

p (x)
+ sR

�
snds

�
d� (x)

�
:
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Proof. From the equality (2.15) we have for t = q(x)
p(x) , a = r and b = R that

f

�
q (x)

p (x)

�
(3.6)

=
1

R� r

��
q (x)

p (x)
� r
�
f (r) +

�
R� q (x)

p (x)

�
f (R)

�
+

1

R� r

�
nX
k=1

1

k!

(�
q (x)

p (x)
� r
�k+1

f (k) (r) + (�1)k
�
R� q (x)

p (x)

�k+1
f (k) (R)

)
(3.7)

+ Pn

�
q (x)

p (x)
; r; R

�
;

where

Pn

�
q (x)

p (x)
; r; R

�
(3.8)

=
1

n! (R� r)

"�
q (x)

p (x)
� r
�n+2 Z 1

0

f (n+1)
�
(1� s) r + sq (x)

p (x)

�
(1� s)n ds

+(�1)n+1
�
R� q (x)

p (x)

�n+2 Z 1

0

f (n+1)
�
(1� s) q (x)

p (x)
+ sR

�
snds

#
;

and x 2 
:
If we multiply (3.6) by p (x) and integrate on 
; then we get

Z



p (x) f

�
q (x)

p (x)

�
d� (x)(3.9)

=
1

R� r

Z



[(q (x)� rp (x)) f (r) + (Rp (x)� q (x)) f (R)] d� (x)

+
1

R� r

nX
k=1

1

k!

(
f (k) (r)

Z



p (x)

�
q (x)

p (x)
� r
�k+1

d� (x)

+ (�1)k f (k) (R)
Z



p (x)

�
R� q (x)

p (x)

�k+1
d� (x)

)
+Qf;n (p; q) ;

=
(1� r) f (r) + (R� 1) f (R)

R� r

+
1

R� r

nX
k=1

1

k!

(
f (k) (r)

Z



p (x)

�
q (x)

p (x)
� r
�k+1

d� (x)

+ (�1)k f (k) (R)
Z



p (x)

�
R� q (x)

p (x)

�k+1
d� (x)

)
+Qf;n (p; q) ;
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where

Qf;n (p; q) =

Z



p (x)Pn

�
q (x)

p (x)
; r; R

�
d� (x)

=
1

n! (R� r)

"Z



p (x)

�
q (x)

p (x)
� r
�n+2

�
�Z 1

0

f (n+1)
�
(1� s) r + sq (x)

p (x)

�
(1� s)n ds

�
d� (x)

+ (�1)n+1
Z



p (x)

�
R� q (x)

p (x)

�n+2
�
�Z 1

0

f (n+1)
�
(1� s) q (x)

p (x)
+ sR

�
snds

�
d� (x)

�
:

�

Corollary 2. With the assumptions of Theorem 4 and if f (n+1) 2 L1 [r;R] ; then
we have the following bounds for the reminder

jQf;n (p; q)j(3.10)

� 1

(n+ 1)! (R� r)

"Z



p (x)

�
q (x)

p (x)
� r
�n+2 


f (n+1)




[ q(x)p(x)
;R];1

d� (x)

+

Z



p (x)

�
R� q (x)

p (x)

�n+2 


f (n+1)



[ q(x)p(x)

;R];1
d� (x)

#

� 1

(n+ 1)! (R� r)




f (n+1)



[r;R];1

�
D�n+2;r (p; q) +DR;�n+2 (p; q)

�
� 2

(n+ 1)!




f (n+1)



[r;R];1

(R� r)n+1

Proof. From (3.5) we have

jQf;n (p; q)j �
1

n! (R� r)

"Z



p (x)

�
q (x)

p (x)
� r
�n+2

(3.11)

�
����Z 1

0

f (n+1)
�
(1� s) r + sq (x)

p (x)

�
(1� s)n ds

���� d� (x)
+

Z



p (x)

�
R� q (x)

p (x)

�n+2
�
����Z 1

0

f (n+1)
�
(1� s) q (x)

p (x)
+ sR

�
snds

���� d� (x)�
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� 1

n! (R� r)

"Z



p (x)

�
q (x)

p (x)
� r
�n+2

�
Z 1

0

����f (n+1)�(1� s) r + sq (x)p (x)

����� (1� s)n dsd� (x)
+

Z



p (x)

�
R� q (x)

p (x)

�n+2
�
Z 1

0

����f (n+1)�(1� s) q (x)p (x)
+ sR

����� sndsd� (x)�
= Ln (p; q) :

We also have

Z 1

0

����f (n+1)�(1� s) r + sq (x)p (x)

����� (1� s)n ds
� essup

s2[0;1]

����f (n+1)�(1� s) r + sq (x)p (x)

����� Z 1

0

(1� s)n ds

=
1

n+ 1




f (n+1)



[r; q(x)p(x) ];1

� 1

n+ 1




f (n+1)



[r;R];1

and

Z 1

0

����f (n+1)�(1� s) q (x)p (x)
+ sR

����� snds
� essup

s2[0;1]

����f (n+1)�(1� s) q (x)p (x)
+ sR

����� Z 1

0

snds

=
1

n+ 1




f (n+1)



[ q(x)p(x)

;R];1
� 1

n+ 1




f (n+1)



[r;R];1

for x 2 
:
Therefore,

Ln (p; q)

� 1

(n+ 1)! (R� r)

"Z



p (x)

�
q (x)

p (x)
� r
�n+2 


f (n+1)




[ q(x)p(x)
;R];1

d� (x)

+

Z



p (x)

�
R� q (x)

p (x)

�n+2 


f (n+1)



[ q(x)p(x)

;R];1
d� (x)

#

� 1

(n+ 1)! (R� r)




f (n+1)



[r;R];1

�
"Z




p (x)

�
q (x)

p (x)
� r
�n+2

d� (x) +

Z



p (x)

�
R� q (x)

p (x)

�n+2
d� (x)

#
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=
1

(n+ 1)! (R� r)




f (n+1)



[r;R];1

�
D�n+1;r (p; q) +DR;�n+2 (p; q)

�
� 2

(n+ 1)! (R� r)




f (n+1)



[r;R];1

(R� r)n+2

=
2

(n+ 1)!




f (n+1)



[r;R];1

(R� r)n+1 :

By making use of (3.11) we get the desired result (3.10). �

We consider the divergence measures

(3.12) D�n+2+1=s;r (p; q) :=
Z

:

(q (x)� rp (x))n+2+1=s

pn+1=s (x)
d� (x) � 0 for n 2 N, s > 1

and

DR;�n+2+1=s (p; q)(3.13)

:=

Z

:

(Rp (x)� q (x))n+2+1=s

pn+1=s (x)
d� (x) � 0 for n 2 N, s > 1:

Corollary 3. With the assumptions of Theorem 4 and if f (n+1) 2 Ls [r;R] ; with
s; q > 1; and 1

s +
1
q = 1; then we have the following bounds for the reminder

jQf;n (p; q)j(3.14)

� 1

(qn+ 1)
1=q
n! (R� r)

�
"Z




p (x)

�
q (x)

p (x)
� r
�n+2+1=s 


f (n+1)




[r; q(x)p(x) ];s
d� (x)

+

Z



p (x)

�
R� q (x)

p (x)

�n+2+1=s 


f (n+1)



[ q(x)p(x)

;R];s
d� (x)

#

� 1

(qn+ 1)
1=q
n! (R� r)




f (n+1)



[r;R];s

�
�
D�n+2+1=s;r (p; q) +DR;�n+2+1=s (p; q)

�
� 2

(qn+ 1)
1=q
n!




f (n+1)



[r;R];s

(R� r)n+1+1=s :

Proof. Using Hölder�s integral inequality for s; q > 1 and 1
s +

1
q = 1; we have
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Z 1

0

����f (n+1)�(1� �) r + � q (x)p (x)

����� (1� �)n d�
�
�Z 1

0

����f (n+1)�(1� �) r + � q (x)p (x)

�����s ds�1=s�Z 1

0

(1� �)qn d�
�1=q

=

 �
q (x)

p (x)
� r
�Z q(x)

p(x)

r

���f (n+1) (u)���s du!1=s� 1

qn+ 1

�1=q
=

1

(qn+ 1)
1=q

�
q (x)

p (x)
� r
�1=s 


f (n+1)




[r; q(x)p(x) ];s

� 1

(qn+ 1)
1=q

�
q (x)

p (x)
� r
�1=s 


f (n+1)




[r;R];s

and, similarly

Z 1

0

����f (n+1)�(1� �) q (x)p (x)
+ �R

����� �nd�
� 1

(qn+ 1)
1=q

�
R� q (x)

p (x)

�1=s 


f (n+1)



[ q(x)p(x)

;R];s

� 1

(qn+ 1)
1=q

�
R� q (x)

p (x)

�1=s 


f (n+1)



[r;R];s

for x 2 
:
Therefore

Ln (p; q) �
1

n! (R� r)

"Z



p (x)

�
q (x)

p (x)
� r
�n+2

� 1

(qn+ 1)
1=q

�
q (x)

p (x)
� r
�1=s 


f (n+1)




[r; q(x)p(x) ];s
d� (x)

+

Z



p (x)

�
R� q (x)

p (x)

�n+2
� 1

(qn+ 1)
1=q

�
R� q (x)

p (x)

�1=s 


f (n+1)



[ q(x)p(x)

;R];s
d� (x)

#

=
1

(qn+ 1)
1=q
n! (R� r)

�
"Z




p (x)

�
q (x)

p (x)
� r
�n+2+1=s 


f (n+1)




[r; q(x)p(x) ];s
d� (x)

+

Z



p (x)

�
R� q (x)

p (x)

�n+2+1=s 


f (n+1)



[ q(x)p(x)

;R];s
d� (x)

#



NEW APPROXIMATION OF f -DIVERGENCE MEASURES 15

� 1

(qn+ 1)
1=q
n! (R� r)




f (n+1)



[r;R];s

�
"Z




p (x)

�
q (x)

p (x)
� r
�n+2+1=s

d� (x) +

Z



p (x)

�
R� q (x)

p (x)

�n+2+1=s
d� (x)

#
;

which proves (3.14). �

4. Generalized Trapezoid Type Estimates

Assume that p; q 2 P and there exists the constants 0 < r < 1 < R < 1 such
that

(4.1) r � q (x)

p (x)
� R for �-a.e. x 2 
:

We consider the following divergence measures

(4.2) D�k;r;R (p; q) :=

Z

:

(Rp (x)� q (x)) (q (x)� rp (x))k

pk (x)
d� (x) � 0 for k 2 N,

and

(4.3) D	k;r;R (p; q) :=

Z

:

(Rp (x)� q (x))k (q (x)� rp (x))
pk (x)

d� (x) � 0 for k 2 N.

We have the following approximation of the divergence measure using a gener-
alized trapezoid rule:

Theorem 5. Let I be an open interval with [r;R] � I as above, f : I ! C be n-time
di¤erentiable function on I and f (n); with n � 1; be locally absolutely continuous on
I. Then for any p; q 2 P satisfying the condition (3.1) we have the representation

If (p; q)(4.4)

=
(R� 1) f (r) + (1� r) f (R)

R� r

+
1

R� r

nX
k=1

1

k!

h
f (k) (r)D�k;r;R (p; q) + (�1)k f (k) (R)D	k;r;R (p; q)

i
+ Tf;n (p; q)

and the reminder Tf;n (p; q) is given by

Tf;n (p; q) =

Z



p (x)Ln

�
q (x)

p (x)
; r; R

�
d� (x)(4.5)

=
1

n! (R� r)

"Z



p (x)

�
R� q (x)

p (x)

��
q (x)

p (x)
� r
�n+1

�
�Z 1

0

f (n+1)
�
(1� s) r + sq (x)

p (x)

�
(1� s)n ds

�
d� (x)

+ (�1)n+1
Z



p (x)

�
R� q (x)

p (x)

�n+1�
q (x)

p (x)
� r
�

�
�Z 1

0

f (n+1)
�
(1� s) q (x)

p (x)
+ sR

�
snds

�
d� (x)

�
:
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Proof. We use the identity 2.14 in Lemma 3 in the following form

f (t) =
1

b� a [(b� t) f (a) + (t� a) f (b)]

+
1

b� a

nX
k=1

1

k!

n
(b� t) (t� a)k f (k) (a) + (�1)k (b� t)k (t� a) f (k) (b)

o
+ Ln (t; a; b) ;

where

Ln (t; a; b) :=
1

n! (b� a)

�
(b� t) (t� a)n+1

Z 1

0

f (n+1) ((1� s) a+ st) (1� s)n ds

+(�1)n+1 (b� t)n+1 (t� a)
Z 1

0

f (n+1) ((1� s) t+ sb) snds
�

If we take in these equalities t = q(x)
p(x) , a = r and b = R, then we get

f

�
q (x)

p (x)

�
=

1

R� r

��
R� q (x)

p (x)

�
f (r) +

�
q (x)

p (x)
� r
�
f (R)

�
+

1

R� r

nX
k=1

1

k!

"�
R� q (x)

p (x)

��
q (x)

p (x)
� r
�k
f (k) (r)

+ (�1)k
�
R� q (x)

p (x)

�k �
q (x)

p (x)
� r
�
f (k) (R)

#
+ Ln

�
q (x)

p (x)
; r; R

�
;

where

Ln

�
q (x)

p (x)
; r; R

�
:=

1

n! (R� r)

"�
R� q (x)

p (x)

��
q (x)

p (x)
� r
�n+1

�
Z 1

0

f (n+1)
�
(1� s) r + sq (x)

p (x)

�
(1� s)n ds

+ (�1)n+1
�
R� q (x)

p (x)

�n+1�
q (x)

p (x)
� r
�

�
Z 1

0

f (n+1)
�
(1� s) q (x)

p (x)
+ sR

�
snds

�

and x 2 
:



NEW APPROXIMATION OF f -DIVERGENCE MEASURES 17

If we multiply (3.6) by p (x) and integrate on 
; then we getZ



p (x) f

�
q (x)

p (x)

�
d� (x)

=
1

R� r

Z



[(Rp (x)� q (x)) f (r) + (q (x)� rp (x)) f (R)] d� (x)

+
1

R� r

nX
k=1

1

k!

"
f (k) (r)

Z



p (x)

�
R� q (x)

p (x)

��
q (x)

p (x)
� r
�k
d� (x)

+ (�1)k f (k) (R)
Z



p (x)

�
R� q (x)

p (x)

�k �
q (x)

p (x)
� r
�
d� (x)

#
+ Tf;n (p; q)

=
(R� 1) f (r) + (1� r) f (R)

R� r

+
1

R� r

nX
k=1

1

k!

h
f (k) (r)D�k;r;R (p; q) + (�1)k f (k) (R)D	k;r;R (p; q)

i
+ Tf;n (p; q)

where

Tf;n (p; q) =

Z



p (x)Ln

�
q (x)

p (x)
; r; R

�
d� (x)

=
1

n! (R� r)

"Z



p (x)

�
R� q (x)

p (x)

��
q (x)

p (x)
� r
�n+1

�
�Z 1

0

f (n+1)
�
(1� s) r + sq (x)

p (x)

�
(1� s)n ds

�
d� (x)

+ (�1)n+1
Z



p (x)

�
R� q (x)

p (x)

�n+1�
q (x)

p (x)
� r
�

�
�Z 1

0

f (n+1)
�
(1� s) q (x)

p (x)
+ sR

�
snds

�
d� (x)

�
;

which proves the theorem. �

Corollary 4. With the assumptions of Theorem 4 and if f (n+1) 2 L1 [r;R] ; then
we have the following bounds for the reminder

jTf;n (p; q)j(4.6)

� 1

(n+ 1)! (R� r)

�
"Z




p (x)

�
R� q (x)

p (x)

��
q (x)

p (x)
� r
�n+1 


f (n+1)




[r; q(x)p(x) ];1

+

Z



p (x)

�
R� q (x)

p (x)

�n+1�
q (x)

p (x)
� r
�


f (n+1)




[ q(x)p(x)
;R];1

#
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� 1

(n+ 1)! (R� r)




f (n+1)



[r;R];1

�
D�n+1;r;R (p; q) +D	n+1;r;R (p; q)

�
� 1

4 (n+ 1)!
(R� r)




f (n+1)



[r;R];1

[D�n;r (p; q) +DR;�n (p; q)]

� 1

2 (n+ 1)!
(R� r)n+1




f (n+1)



[r;R];1

:

Proof. We have

jTf;n (p; q)j

� 1

n! (R� r)

"Z



p (x)

�
R� q (x)

p (x)

��
q (x)

p (x)
� r
�n+1

�
����Z 1

0

f (n+1)
�
(1� s) r + sq (x)

p (x)

�
(1� s)n ds

���� d� (x)
+

Z



p (x)

�
R� q (x)

p (x)

�n+1�
q (x)

p (x)
� r
�

�
����Z 1

0

f (n+1)
�
(1� s) q (x)

p (x)
+ sR

�
snds

���� d� (x)�
� 1

(n+ 1)! (R� r)

�
"Z




p (x)

�
R� q (x)

p (x)

��
q (x)

p (x)
� r
�n+1 


f (n+1)




[r; q(x)p(x) ];1

+

Z



p (x)

�
R� q (x)

p (x)

�n+1�
q (x)

p (x)
� r
�


f (n+1)




[ q(x)p(x)
;R];1

#

� 1

(n+ 1)! (R� r)




f (n+1)



[r;R];1

�
D�n+1;r;R (p; q) +D	n+1;r;R (p; q)

�
:

Further, by using the elementary inequality

�� � 1

4
(� � �)2 ; �; � � 0

we have

D�n+1;r;R (p; q) =

Z

:

p (x)

�
R� q (x)

p (x)

��
q (x)

p (x)
� r
�n+1

d� (x)

=

Z

:

p (x)

�
R� q (x)

p (x)

��
q (x)

p (x)
� r
��

q (x)

p (x)
� r
�n
d� (x)

� 1

4
(R� r)2

Z

:

p (x)

�
q (x)

p (x)
� r
�n
d� (x)

=
1

4
(R� r)2D�n;r (p; q)
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and

D	n+1;r;R (p; q) =

Z

:

p (x)

�
R� q (x)

p (x)

�n+1�
q (x)

p (x)
� r
�
d� (x)

=

Z

:

p (x)

�
R� q (x)

p (x)

��
q (x)

p (x)
� r
��

R� q (x)

p (x)

�n
d� (x)

� 1

4
(R� r)2

Z

:

p (x)

�
R� q (x)

p (x)

�n
d� (x)

=
1

4
(R� r)2DR;�n (p; q) ;

which completes the proof. �

5. Application for Kullback-Leibler Divergence

Consider the logarithmic function f (t) = � ln t; t > 0: Then

If (p; q) = �
Z



p (x) ln

�
q (x)

p (x)

�
d� (x) = DKL (p; q)

for p; q 2 P.
We have

f (k) (t) =
(�1)k (k � 1)!

tk
; k 2 N; k � 1

and for [a; b] � (0;1) ;


f (n+1)



[a;b];1

:= sup
t2[a;b]

���f (n+1) (t)��� = n! sup
t2[a;b]

�
1

tn+1

�
=

n!

an+1
;

and for � � 1




f (n+1)



[a;b];�

:=

 Z b

a

���f (n+1) (t)���� dt! 1
�

= n!

"Z b

a

dt

t(n+1)�

# 1
�

= n!

�
b(n+1)��1 � a(n+1)��1

[(n+ 1)�� 1] b(n+1)��1a(n+1)��1

� 1
�

:

Assume that p; q 2 P and there exists the constants 0 < r < 1 < R < 1 such
that

r � q (x)

p (x)
� R for �-a.e. x 2 
:

Using the identity (3.4) we get

DKL (p; q) = ln
h
r�(1�r)R�(R�1)

i
(5.1)

+
1

R� r

nX
k=1

1

k

(
(�1)k

rk
D�k+1;r (p; q) +

1

Rk
DR;�k+1 (p; q)

)
+Qf;n (p; q)
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and the remainder satis�es the inequality (by (3.10))

jQn (p; q)j �
1

(n+ 1) rn+1 (R� r)
�
D�n+2;r (p; q) +DR;�n+2 (p; q)

�
(5.2)

� 2

(n+ 1)

�
R

r
� 1
�n+1

and, by (3.14), the bound

jQn (p; q)j(5.3)

� 1

(qn+ 1)
1=q
(R� r)

�
R(n+1)s�1 � r(n+1)s�1

[(n+ 1) s� 1]R(n+1)s�1r(n+1)s�1

� 1
s

�
�
D�n+2+1=s;r (p; q) +DR;�n+2+1=s (p; q)

�
� 2

(qn+ 1)
1=q

�
R(n+1)s�1 � r(n+1)s�1

[(n+ 1) s� 1]R(n+1)s�1r(n+1)s�1

� 1
s

(R� r)n+1+1=s ;

where s; q > 1 with 1
s +

1
q = 1:

Using the identity (4.4) we have

DKL (p; q) = ln
h
r�(R�1)R�(1�r)

i
(5.4)

+
1

R� r

nX
k=1

1

k

"
(�1)k

rk
D�k;r;R (p; q) +

1

Rk
D	k;r;R (p; q)

#
+ Tn (p; q)

and the remainder satis�es the inequality (see (4.6))

jTn (p; q)j(5.5)

� 1

(n+ 1) rn+1 (R� r)
�
D�n+1;r;R (p; q) +D	n+1;r;R (p; q)

�
� 1

4 (n+ 1) rn+1
(R� r)




f (n+1)



[r;R];1

[D�n;r (p; q) +DR;�n (p; q)]

� 1

2 (n+ 1)

�
R

r
� 1
�n+1

:
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