NEW APPROXIMATION OF f-DIVERGENCE MEASURES BY USING TWO POINTS TAYLOR'S TYPE REPRESENTATIONS

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

In this paper we establish some new approximations of the f divergence measures by the use of two points Taylor's type representations with integral remainders. Some inequalities for Kullback-Leibler divergence are provided as well.

1. Introduction

One of the important issues in many applications of Probability Theory \& Statistics is finding an appropriate measure of distance (difference or discrimination) between two probability distributions.

A number of divergence measures have been proposed and extensively studied by: Jeffreys 1946 [26], Kullback-Leibler 1951 [32], Rényi 1961 [39], Ali and Silvey 1966 [1], Csiszár 1967 [11], Havrda-Charvat 1967 [23], Sharma-Mittal 1977 [41], Rao 1982 [38], Burbea-Rao 1982 [8], Kapur 1984 [29], Vajda 1989 [48], Lin 1991 [33], Shioya and Da-te [42] and others, see [36]

These measures have been applied in a variety of fields such as: anthropology [38], genetics [36], finance, economics and political science [40], [45], [46], biology [37], the analysis of contingency tables [22], approximation of probability distributions [10], [30], signal processing [27], [28] and pattern recognition [7], [9].

Assume that a set Ω and the σ-finite measure μ are given. Consider the set of all probability densities on μ to be

$$
\mathcal{P}:=\left\{p \mid p: \Omega \rightarrow \mathbb{R}, p(x) \geq 0, \int_{\Omega} p(x) d \mu(x)=1\right\}
$$

The Kullback-Leibler divergence [32] is well known among the information divergences. It is defined for $p, q \in \mathcal{P}$ as follows:

$$
\begin{equation*}
D_{K L}(p, q):=\int_{\Omega} p(x) \ln \left[\frac{p(x)}{q(x)}\right] d \mu(x) \tag{1.1}
\end{equation*}
$$

where \ln is to base e.
In Information Theory and Statistics, various divergences are applied in addition to the Kullback-Leibler divergence. These are defined for $p, q \in \mathcal{P}$ as follows

$$
\begin{gathered}
D_{v}(p, q):=\int_{\Omega}|p(x)-q(x)| d \mu(x), \text { variation distance } \\
D_{H}(p, q):=\int_{\Omega}|\sqrt{p(x)}-\sqrt{q(x)}| d \mu(x), \text { Hellinger distance }[24],
\end{gathered}
$$

[^0]\[

$$
\begin{gathered}
D_{\chi^{2}}(p, q):=\int_{\Omega} p(x)\left[\left(\frac{q(x)}{p(x)}\right)^{2}-1\right] d \mu(x), \chi^{2} \text {-divergence, } \\
D_{\alpha}(p, q):=\frac{4}{1-\alpha^{2}}\left[1-\int_{\Omega}[p(x)]^{\frac{1-\alpha}{2}}[q(x)]^{\frac{1+\alpha}{2}} d \mu(x)\right], \alpha \text {-divergence, } \\
D_{B}(p, q):=\int_{\Omega} \sqrt{p(x) q(x)} d \mu(x), \text { Bhattacharyya distance }[6], \\
D_{H a}(p, q):=\int_{\Omega} \frac{2 p(x) q(x)}{p(x)+q(x)} d \mu(x), \text { Harmonic distance, } \\
D_{J}(p, q):=\int_{\Omega}[p(x)-q(x)] \ln \left[\frac{p(x)}{q(x)}\right] d \mu(x), \text { Jeffrey's distance }[26],
\end{gathered}
$$
\]

and

$$
D_{\Delta}(p, q):=\int_{\Omega} \frac{[p(x)-q(x)]^{2}}{p(x)+q(x)} d \mu(x), \text { triangular discrimination [44]. }
$$

For other divergence measures, see the paper [29] by Kapur or the book on line [43] by Taneja.

In 1967, I. Csiszár [12] introduced the concept of f-divergence as follows

$$
\begin{equation*}
I_{f}(p, q):=\int_{\Omega} p(x) f\left[\frac{q(x)}{p(x)}\right] d \mu(x) \tag{1.2}
\end{equation*}
$$

for $p, q \in \mathcal{P}$, where f is convex on $(0, \infty)$ and normalised, i.e. $f(1)=0$.
Most of the above distances are particular instances of Csiszár f-divergence. There are also many others which are not in this class (see for example Taneja's book online [43]). For the basic properties of Csiszár f-divergence such as

$$
I_{f}(p, q) \geq 0 \text { for any } p, q \in \mathcal{P},
$$

and

$$
\mathcal{P} \times \mathcal{P} \ni(p, q) \mapsto I_{f}(p, q) \text { is convex, }
$$

see [12], [13] and [48].
In the recent papers [14], [15] and [16] we obtained several reverses of Jensen's integral inequality. These applied to Csiszár f-divergence produce the following results:

Theorem 1 (Dragomir 2013, [15]). Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a convex function with the property that $f(1)=0$. Assume that $p, q \in \mathcal{P}$ and there exists the constants $0<r<1<R<\infty$ such that

$$
\begin{equation*}
r \leq \frac{q(x)}{p(x)} \leq R \text { for } \mu \text {-a.e. } x \in \Omega \text {. } \tag{1.3}
\end{equation*}
$$

Then we have the inequalities

$$
\begin{align*}
0 & \leq I_{f}(p, q) \leq \frac{(R-1)(1-r)}{R-r} \sup _{t \in(r, R)} \Psi_{f}(t ; r, R) \tag{1.4}\\
& \leq(R-1)(1-r) \frac{f_{-}^{\prime}(R)-f_{+}^{\prime}(r)}{R-r} \\
& \leq \frac{1}{4}(R-r)\left[f_{-}^{\prime}(R)-f_{+}^{\prime}(r)\right],
\end{align*}
$$

and $\Psi_{f}(\cdot ; r, R):(r, R) \rightarrow \mathbb{R}$ is defined by

$$
\Psi_{f}(t ; r, R)=\frac{f(R)-f(t)}{R-t}-\frac{f(t)-f(r)}{t-r} .
$$

We also have the inequality

$$
\begin{align*}
0 & \leq I_{f}(p, q) \leq \frac{1}{4}(R-r) \frac{f(R)(1-r)+f(r)(R-1)}{(R-1)(1-r)} \tag{1.5}\\
& \leq \frac{1}{4}(R-r)\left[f_{-}^{\prime}(R)-f_{+}^{\prime}(r)\right]
\end{align*}
$$

and the inequality

$$
\begin{align*}
0 & \leq I_{f}(p, q) \leq 2 \max \left\{\frac{R-1}{R-r}, \frac{1-r}{R-r}\right\} \tag{1.6}\\
& \times\left[\frac{f(r)+f(R)}{2}-f\left(\frac{r+R}{2}\right)\right] \\
& \leq \frac{1}{2} \max \{R-1,1-r\}\left[f_{-}^{\prime}(R)-f_{+}^{\prime}(r)\right]
\end{align*}
$$

Some bounds in terms of the variation distance are as follows:
Theorem 2 (Dragomir 2016, [16]). With the assumptions of Theorem 1 we have

$$
\begin{align*}
0 & \leq I_{f}(p, q) \leq \frac{1}{2}\left[f_{-}^{\prime}(R)-f_{+}^{\prime}(r)\right] D_{v}(p, q) \tag{1.7}\\
& \leq \frac{1}{2}\left[f_{-}^{\prime}(R)-f_{+}^{\prime}(r)\right]\left[D_{\chi^{2}}(p, q)\right]^{1 / 2} \\
& \leq \frac{1}{4}(R-r)\left[f_{-}^{\prime}(R)-f_{+}^{\prime}(r)\right] .
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq I_{f}(p, q) \leq \frac{1}{2}([1, R ; f]-[r, 1 ; f]) D_{v}(p, q) \tag{1.8}\\
& \leq \frac{1}{2}([1, R ; f]-[r, 1 ; f])\left[D_{\chi^{2}}(p, q)\right]^{1 / 2} \\
& \leq \frac{1}{4}([1, R ; f]-[r, 1 ; f])(R-r),
\end{align*}
$$

where $[a, b ; f]$ is the divided difference

$$
[a, b ; f]:=\frac{f(b)-f(a)}{b-a}
$$

Further bounds in terms of the Lebesgue norms of the derivative are embodied in the next theorem:

Theorem 3 (Dragomir 2013, [14]). With the assumptions in Theorem 1 we have

$$
\begin{equation*}
0 \leq I_{f}(p, q) \leq B_{f}(r, R) \tag{1.9}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{f}(r, R):=\frac{(R-1) \int_{r}^{1}\left|f^{\prime}(t)\right| d t+(1-r) \int_{1}^{R}\left|f^{\prime}(t)\right| d t}{R-r} \tag{1.10}
\end{equation*}
$$

Moreover, we have the following bounds for $B_{f}(r, R)$

$$
\begin{align*}
& B_{f}(r, R) \tag{1.11}\\
& \leq\left\{\begin{array}{l}
{\left[\frac{1}{2}+\frac{\left|1-\frac{r+R}{2}\right|}{R-r}\right] \int_{r}^{R}\left|f^{\prime}(t)\right| d t} \\
\frac{1}{2} \int_{r}^{R}\left|f^{\prime}(t)\right| d t+\frac{1}{2}\left|\int_{1}^{R}\right| f^{\prime}(t)\left|d t-\int_{r}^{1}\right| f^{\prime}(t)|d t|
\end{array}\right.
\end{align*}
$$

and

$$
\begin{align*}
& B_{f}(r, R) \leq \frac{(1-r)(R-1)}{R-r}\left[\left\|f^{\prime}\right\|_{[1, R], \infty}+\left\|f^{\prime}\right\|_{[r, 1], \infty}\right] \tag{1.12}\\
& \leq \frac{1}{2}(R-r) \frac{\left\|f^{\prime}\right\|_{[1, R], \infty}+\left\|f^{\prime}\right\|_{[r, 1], \infty}}{2} \leq \frac{1}{2}(R-r)\left\|f^{\prime}\right\|_{[r, R], \infty}
\end{align*}
$$

and

$$
\begin{align*}
& B_{f}(r, R) \leq \frac{1}{R-r}\left[(1-r)(R-1)^{1 / q}\left\|f^{\prime}\right\|_{[1, R], p}\right. \tag{1.13}\\
& \left.+(R-1)(1-r)^{1 / q}\left\|f^{\prime}\right\|_{[r, 1], p}\right] \\
& \leq \frac{1}{R-r}\left\|f^{\prime}\right\|_{[r, R], p}\left[(1-r)^{q}(R-1)+(R-1)^{q}(1-r)\right]^{1 / q}
\end{align*}
$$

Motivated by the above results, in this paper we establish some new inequalities for f-divergence measures by employing two points Taylor's type expansions that are presented below. Applications for particular instances of interest are provided as well.

2. Some Preliminary Facts

The following result is well known in the literature as Taylor's formula or Taylor's theorem with the integral remainder.

Lemma 1. Let $I \subset \mathbb{R}$ be a closed interval, $c \in I$ and let n be a positive integer. If $f: I \longrightarrow \mathbb{C}$ is such that the n-derivative $f^{(n)}$ is absolutely continuous on I, then for each $y \in I$

$$
\begin{equation*}
f(y)=T_{n}(f ; c, y)+R_{n}(f ; c, y), \tag{2.1}
\end{equation*}
$$

where $T_{n}(f ; c, y)$ is Taylor's polynomial, i.e.,

$$
\begin{equation*}
T_{n}(f ; c, y):=\sum_{k=0}^{n} \frac{(y-c)^{k}}{k!} f^{(k)}(c) \tag{2.2}
\end{equation*}
$$

Note that $f^{(0)}:=f$ and $0!:=1$ and the remainder is given by

$$
\begin{equation*}
R_{n}(f ; c, y):=\frac{1}{n!} \int_{c}^{y}(y-t)^{n} f^{(n+1)}(t) d t \tag{2.3}
\end{equation*}
$$

A simple proof of this lemma can be achieved by mathematical induction using the integration by parts formula in the Lebesgue integral.

For related results, see [2]-[5], [20]-[21], [28], [33]-[35] and [47].
The following identity can be stated:

Lemma 2. Let $f: I \rightarrow \mathbb{C}$ be n-time differentiable function on the interior $I \stackrel{\circ}{I}$ of the interval I and $f^{(n)}$, with $n \geq 1$, be locally absolutely continuous on \dot{I}. Then for each distinct $t, a, b \in \stackrel{\circ}{I}$ and for any $\lambda \in \mathbb{R} \backslash\{0,1\}$ we have the representation

$$
\begin{align*}
f(t) & =(1-\lambda) f(a)+\lambda f(b) \tag{2.4}\\
& +\sum_{k=1}^{n} \frac{1}{k!}\left[(1-\lambda) f^{(k)}(a)(t-a)^{k}+(-1)^{k} \lambda f^{(k)}(b)(b-t)^{k}\right] \\
& +S_{n, \lambda}(t, a, b)
\end{align*}
$$

where the remainder $S_{n, \lambda}(t, a, b)$ is given by

$$
\begin{align*}
& S_{n, \lambda}(t, a, b) \tag{2.5}\\
& :=\frac{1}{n!}\left[(1-\lambda)(t-a)^{n+1} \int_{0}^{1} f^{(n+1)}((1-s) a+s t)(1-s)^{n} d s\right. \\
& \left.+(-1)^{n+1} \lambda(b-t)^{n+1} \int_{0}^{1} f^{(n+1)}((1-s) t+s b) s^{n} d s\right] .
\end{align*}
$$

Proof. Using Taylor's representation with the integral remainder (2.1) we can write the following two identities

$$
\begin{equation*}
f(t)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a)(t-a)^{k}+\frac{1}{n!} \int_{a}^{t} f^{(n+1)}(\tau)(t-\tau)^{n} d \tau \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
f(t)=\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} f^{(k)}(b)(b-t)^{k}+\frac{(-1)^{n+1}}{n!} \int_{t}^{b} f^{(n+1)}(\tau)(\tau-t)^{n} d \tau \tag{2.7}
\end{equation*}
$$

for any $t, a, b \in \stackrel{\circ}{I}$.
For any integrable function h on an interval and any distinct numbers c, d in that interval, we have, by the change of variable $\tau=(1-s) c+s d, s \in[0,1]$ that

$$
\int_{c}^{d} h(\tau) d \tau=(d-c) \int_{0}^{1} h((1-s) c+s d) d s
$$

Therefore,

$$
\begin{aligned}
& \int_{a}^{t} f^{(n+1)}(\tau)(t-\tau)^{n} d \tau \\
& =(t-a) \int_{0}^{1} f^{(n+1)}((1-s) a+s t)(t-(1-s) a-s t)^{n} d s \\
& =(t-a)^{n+1} \int_{0}^{1} f^{(n+1)}((1-s) a+s t)(1-s)^{n} d s
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{t}^{b} f^{(n+1)}(\tau)(\tau-t)^{n} d \tau \\
& =(b-t) \int_{0}^{1} f^{(n+1)}((1-s) t+s b)((1-s) t+s b-t)^{n} d s \\
& =(b-t)^{n+1} \int_{0}^{1} f^{(n+1)}((1-s) t+s b) s^{n} d s
\end{aligned}
$$

The identities (2.6) and (2.7) can then be written as

$$
\begin{align*}
f(t) & =\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a)(t-a)^{k} \tag{2.8}\\
& +\frac{1}{n!}(t-a)^{n+1} \int_{0}^{1} f^{(n+1)}((1-s) a+s t)(1-s)^{n} d s
\end{align*}
$$

and

$$
\begin{align*}
f(t) & =\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} f^{(k)}(b)(b-t)^{k} \tag{2.9}\\
& +(-1)^{n+1} \frac{(b-t)^{n+1}}{n!} \int_{0}^{1} f^{(n+1)}((1-s) t+s b) s^{n} d s
\end{align*}
$$

Now, if we multiply (2.8) with $1-\lambda$ and (2.9) with λ and add the resulting equalities, a simple calculation yields the desired identity (2.4).

Remark 1. If we take in (2.4) $t=\frac{a+b}{2}$, with $a, b \in \stackrel{\circ}{I}$, then we have for any $\lambda \in \mathbb{R} \backslash\{0,1\}$ that

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) & =(1-\lambda) f(a)+\lambda f(b) \tag{2.10}\\
& +\sum_{k=1}^{n} \frac{1}{2^{k} k!}\left[(1-\lambda) f^{(k)}(a)+(-1)^{k} \lambda f^{(k)}(b)\right](b-a)^{k} \\
& +\tilde{S}_{n, \lambda}(a, b)
\end{align*}
$$

where the remainder $\tilde{S}_{n, \lambda}(a, b)$ is given by

$$
\begin{align*}
& \tilde{S}_{n, \lambda}(a, b) \tag{2.11}\\
& :=\frac{1}{2^{n+1} n!}(b-a)^{n+1}\left[(1-\lambda) \int_{0}^{1} f^{(n+1)}\left((1-s) a+s \frac{a+b}{2}\right)(1-s)^{n} d s\right. \\
& \left.+(-1)^{n+1} \lambda \int_{0}^{1} f^{(n+1)}\left((1-s) \frac{a+b}{2}+s b\right) s^{n} d s\right]
\end{align*}
$$

In particular, for $\lambda=\frac{1}{2}$ we have

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) & =\frac{f(a)+f(b)}{2} \tag{2.12}\\
& +\sum_{k=1}^{n} \frac{1}{2^{k+1} k!}\left[f^{(k)}(a)+(-1)^{k} f^{(k)}(b)\right](b-a)^{k} \\
& +\tilde{S}_{n}(a, b)
\end{align*}
$$

where the remainder $\tilde{S}_{n}(a, b)$ is given by

$$
\begin{align*}
& \tilde{S}_{n}(a, b) \tag{2.13}\\
& :=\frac{1}{2^{n+2} n!}(b-a)^{n+1}\left[\int_{0}^{1} f^{(n+1)}\left((1-s) a+s \frac{a+b}{2}\right)(1-s)^{n} d s\right. \\
& \left.+(-1)^{n+1} \int_{0}^{1} f^{(n+1)}\left((1-s) \frac{a+b}{2}+s b\right) s^{n} d s\right] .
\end{align*}
$$

Lemma 3. With the assumptions in Lemma 2 we have for each distinct t, $a, b \in \stackrel{\circ}{I}$

$$
\begin{align*}
f(t) & =\frac{1}{b-a}[(b-t) f(a)+(t-a) f(b)]+\frac{(b-t)(t-a)}{b-a} \tag{2.14}\\
& \times \sum_{k=1}^{n} \frac{1}{k!}\left\{(t-a)^{k-1} f^{(k)}(a)+(-1)^{k}(b-t)^{k-1} f^{(k)}(b)\right\} \\
& +L_{n}(t, a, b)
\end{align*}
$$

where

$$
\begin{aligned}
L_{n}(t, a, b) & :=\frac{(b-t)(t-a)}{n!(b-a)}\left[(t-a)^{n} \int_{0}^{1} f^{(n+1)}((1-s) a+s t)(1-s)^{n} d s\right. \\
& \left.+(-1)^{n+1}(b-t)^{n} \int_{0}^{1} f^{(n+1)}((1-s) t+s b) s^{n} d s\right]
\end{aligned}
$$

and

$$
\begin{align*}
f(t) & =\frac{1}{b-a}[(t-a) f(a)+(b-t) f(b)] \tag{2.15}\\
& +\frac{1}{b-a} \sum_{k=1}^{n} \frac{1}{k!}\left\{(t-a)^{k+1} f^{(k)}(a)+(-1)^{k}(b-t)^{k+1} f^{(k)}(b)\right\} \\
& +P_{n}(t, a, b)
\end{align*}
$$

where

$$
\begin{aligned}
P_{n}(t, a, b) & :=\frac{1}{n!(b-a)}\left[(t-a)^{n+2} \int_{0}^{1} f^{(n+1)}((1-s) a+s t)(1-s)^{n} d s\right. \\
& \left.+(-1)^{n+1}(b-t)^{n+2} \int_{0}^{1} f^{(n+1)}((1-s) t+s b) s^{n} d s\right]
\end{aligned}
$$

respectively.
The proof is obvious. Choose $\lambda=(t-a) /(b-a)$ and $\lambda=(b-t) /(b-a)$, respectively, in Lemma 2. The details are omitted.

Corollary 1. With the assumption in Lemma 2 we have for each $\lambda \in[0,1]$ and any distinct $a, b \in I$ that

$$
\begin{align*}
& f((1-\lambda) a+\lambda b)=(1-\lambda) f(a)+\lambda f(b)+\lambda(1-\lambda) \tag{2.16}\\
& \times \sum_{k=1}^{n} \frac{1}{k!}\left[\lambda^{k-1} f^{(k)}(a)+(-1)^{k}(1-\lambda)^{k-1} f^{(k)}(b)\right](b-a)^{k}+S_{n, \lambda}(a, b),
\end{align*}
$$

where the remainder $S_{n, \lambda}(a, b)$ is given by
(2.17) $S_{n, \lambda}(a, b)$

$$
\begin{aligned}
& :=\frac{1}{n!}(1-\lambda) \lambda(b-a)^{n+1}\left[\lambda^{n} \int_{0}^{1} f^{(n+1)}((1-s \lambda) a+s \lambda b)(1-s)^{n} d s\right. \\
& \left.+(-1)^{n+1}(1-\lambda)^{n} \int_{0}^{1} f^{(n+1)}((1-s-\lambda+s \lambda) a+(\lambda+s-s \lambda) b) s^{n} d s\right]
\end{aligned}
$$

We also have

$$
\begin{align*}
& f((1-\lambda) b+\lambda a)=(1-\lambda) f(a)+\lambda f(b) \tag{2.18}\\
& +\sum_{k=1}^{n} \frac{1}{k!}\left[(1-\lambda)^{k+1} f^{(k)}(a)+(-1)^{k} \lambda^{k+1} f^{(k)}(b)\right](b-a)^{k}+P_{n, \lambda}(a, b),
\end{align*}
$$

where the remainder $P_{n, \lambda}(a, b)$ is given by
(2.19) $P_{n, \lambda}(a, b)$

$$
\begin{aligned}
:=\frac{1}{n!}(b-a)^{n+1} & {\left[(1-\lambda)^{n+2} \int_{0}^{1} f^{(n+1)}((1-s+\lambda s) a+(1-\lambda) s b)(1-s)^{n} d s\right.} \\
& \left.+(-1)^{n+1} \lambda^{n+2} \int_{0}^{1} f^{(n+1)}((1-s) \lambda a+(1-\lambda+\lambda s) b) s^{n} d s\right] .
\end{aligned}
$$

Remark 2. The case $n=0$, namely when the function f is locally absolutely continuous on $\stackrel{\circ}{I}$ with the derivative f^{\prime} existing almost everywhere in \dot{I} is important and produces the following simple identities for each distinct $t, a, b \in I$ and $\lambda \in$ $\mathbb{R} \backslash\{0,1\}$

$$
\begin{equation*}
f(t)=(1-\lambda) f(a)+\lambda f(b)+S_{\lambda}(t, a, b), \tag{2.20}
\end{equation*}
$$

where the remainder $S_{\lambda}(t, a, b)$ is given by

$$
\begin{align*}
S_{\lambda}(t, a, b) & :=(1-\lambda)(t-a) \int_{0}^{1} f^{\prime}((1-s) a+s t) d s \tag{2.21}\\
& -\lambda(b-t) \int_{0}^{1} f^{\prime}((1-s) t+s b) d s
\end{align*}
$$

We then have for each distinct $t, a, b \in \stackrel{\circ}{I}$

$$
\begin{equation*}
f(t)=\frac{1}{b-a}[(b-t) f(a)+(t-a) f(b)]+L(t, a, b) \tag{2.22}
\end{equation*}
$$

where

$$
\begin{align*}
& L(t, a, b) \tag{2.23}\\
& :=\frac{(b-t)(t-a)}{b-a}\left[\int_{0}^{1} f^{\prime}((1-s) a+s t) d s-\int_{0}^{1} f^{\prime}((1-s) t+s b) d s\right]
\end{align*}
$$

and

$$
\begin{equation*}
f(t)=\frac{1}{b-a}[(t-a) f(a)+(b-t) f(b)]+P(t, a, b) \tag{2.24}
\end{equation*}
$$

where
(2.25) $P(t, a, b)$

$$
:=\frac{1}{b-a}\left[(t-a)^{2} \int_{0}^{1} f^{\prime}((1-s) a+s t) d s-(b-t)^{2} \int_{0}^{1} f^{\prime}((1-s) t+s b) d s\right]
$$

3. Generalized Reverse Trapezoid Type Estimates

Assume that $p, q \in \mathcal{P}$ and there exists the constants $0<r<1<R<\infty$ such that

$$
\begin{equation*}
r \leq \frac{q(x)}{p(x)} \leq R \text { for } \mu \text {-a.e. } x \in \Omega \tag{3.1}
\end{equation*}
$$

We consider the following divergence measures

$$
\begin{equation*}
D_{\chi^{k}, r}(p, q):=\int_{\Omega} \frac{(q(x)-r p(x))^{k}}{p^{k-1}(x)} d \mu(x) \geq 0 \text { for } k \in \mathbb{N} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{R, \chi^{k}}(p, q):=\int_{\Omega .} \frac{(R p(x)-q(x))^{k}}{p^{k-1}(x)} d \mu(x) \geq 0 \text { for } k \in \mathbb{N} . \tag{3.3}
\end{equation*}
$$

We have the following approximation of the divergence measure using a reverse generalized trapezoid rule:

Theorem 4. Let I be an open interval with $[r, R] \subset I$ as above, $f: I \rightarrow \mathbb{C}$ be n-time differentiable function on I and $f^{(n)}$, with $n \geq 1$, be locally absolutely continuous on I. Then for any $p, q \in \mathcal{P}$ satisfying the condition (3.1) we have the representation

$$
\begin{align*}
& I_{f}(p, q) \tag{3.4}\\
& =\frac{(1-r) f(r)+(R-1) f(R)}{R-r} \\
& +\frac{1}{R-r} \sum_{k=1}^{n} \frac{1}{k!}\left\{f^{(k)}(r) D_{\chi^{k+1}, r}(p, q)+(-1)^{k} f^{(k)}(R) D_{R, \chi^{k+1}}(p, q)\right\} \\
& +Q_{f, n}(p, q)
\end{align*}
$$

and the reminder $Q_{f, n}(p, q)$ is given by

$$
\begin{align*}
Q_{f, n}(p, q) & =\frac{1}{n!(R-r)}\left[\int_{\Omega} p(x)\left(\frac{q(x)}{p(x)}-r\right)^{n+2}\right. \tag{3.5}\\
& \times\left(\int_{0}^{1} f^{(n+1)}\left((1-s) r+s \frac{q(x)}{p(x)}\right)(1-s)^{n} d s\right) d \mu(x) \\
& +(-1)^{n+1} \int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{n+2} \\
& \left.\times\left(\int_{0}^{1} f^{(n+1)}\left((1-s) \frac{q(x)}{p(x)}+s R\right) s^{n} d s\right) d \mu(x)\right]
\end{align*}
$$

Proof. From the equality (2.15) we have for $t=\frac{q(x)}{p(x)}, a=r$ and $b=R$ that

$$
\begin{align*}
& f\left(\frac{q(x)}{p(x)}\right) \tag{3.6}\\
& =\frac{1}{R-r}\left[\left(\frac{q(x)}{p(x)}-r\right) f(r)+\left(R-\frac{q(x)}{p(x)}\right) f(R)\right] \\
& +\frac{1}{R-r} \\
& \times \sum_{k=1}^{n} \frac{1}{k!}\left\{\left(\frac{q(x)}{p(x)}-r\right)^{k+1} f^{(k)}(r)+(-1)^{k}\left(R-\frac{q(x)}{p(x)}\right)^{k+1} f^{(k)}(R)\right\} \\
& +P_{n}\left(\frac{q(x)}{p(x)}, r, R\right)
\end{align*}
$$

where
(3.8) $P_{n}\left(\frac{q(x)}{p(x)}, r, R\right)$

$$
\begin{aligned}
& =\frac{1}{n!(R-r)}\left[\left(\frac{q(x)}{p(x)}-r\right)^{n+2} \int_{0}^{1} f^{(n+1)}\left((1-s) r+s \frac{q(x)}{p(x)}\right)(1-s)^{n} d s\right. \\
& \left.+(-1)^{n+1}\left(R-\frac{q(x)}{p(x)}\right)^{n+2} \int_{0}^{1} f^{(n+1)}\left((1-s) \frac{q(x)}{p(x)}+s R\right) s^{n} d s\right]
\end{aligned}
$$

and $x \in \Omega$.
If we multiply (3.6) by $p(x)$ and integrate on Ω, then we get

$$
\begin{align*}
& \int_{\Omega} p(x) f\left(\frac{q(x)}{p(x)}\right) d \mu(x) \tag{3.9}\\
& =\frac{1}{R-r} \int_{\Omega}[(q(x)-r p(x)) f(r)+(R p(x)-q(x)) f(R)] d \mu(x) \\
& +\frac{1}{R-r} \sum_{k=1}^{n} \frac{1}{k!}\left\{f^{(k)}(r) \int_{\Omega} p(x)\left(\frac{q(x)}{p(x)}-r\right)^{k+1} d \mu(x)\right. \\
& \left.+(-1)^{k} f^{(k)}(R) \int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{k+1} d \mu(x)\right\}+Q_{f, n}(p, q) \\
& =\frac{(1-r) f(r)+(R-1) f(R)}{R-r} \\
& +\frac{1}{R-r} \sum_{k=1}^{n} \frac{1}{k!}\left\{f^{(k)}(r) \int_{\Omega} p(x)\left(\frac{q(x)}{p(x)}-r\right)^{k+1} d \mu(x)\right. \\
& \left.+(-1)^{k} f^{(k)}(R) \int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{k+1} d \mu(x)\right\}+Q_{f, n}(p, q)
\end{align*}
$$

where

$$
\begin{aligned}
Q_{f, n}(p, q) & =\int_{\Omega} p(x) P_{n}\left(\frac{q(x)}{p(x)}, r, R\right) d \mu(x) \\
& =\frac{1}{n!(R-r)}\left[\int_{\Omega} p(x)\left(\frac{q(x)}{p(x)}-r\right)^{n+2}\right. \\
& \times\left(\int_{0}^{1} f^{(n+1)}\left((1-s) r+s \frac{q(x)}{p(x)}\right)(1-s)^{n} d s\right) d \mu(x) \\
& +(-1)^{n+1} \int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{n+2} \\
& \left.\times\left(\int_{0}^{1} f^{(n+1)}\left((1-s) \frac{q(x)}{p(x)}+s R\right) s^{n} d s\right) d \mu(x)\right]
\end{aligned}
$$

Corollary 2. With the assumptions of Theorem 4 and if $f^{(n+1)} \in L_{\infty}[r, R]$, then we have the following bounds for the reminder

$$
\begin{align*}
& \left|Q_{f, n}(p, q)\right| \tag{3.10}\\
& \leq \frac{1}{(n+1)!(R-r)}\left[\int_{\Omega} p(x)\left(\frac{q(x)}{p(x)}-r\right)^{n+2}\left\|f^{(n+1)}\right\|_{\left[\frac{q(x)}{p(x)}, R\right], \infty} d \mu(x)\right. \\
& \left.+\int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{n+2}\left\|f^{(n+1)}\right\|_{\left[\frac{q(x)}{p(x)}, R\right], \infty} d \mu(x)\right] \\
& \leq \frac{1}{(n+1)!(R-r)}\left\|f^{(n+1)}\right\|_{[r, R], \infty}\left[D_{\chi^{n+2}, r}(p, q)+D_{R, \chi^{n+2}}(p, q)\right] \\
& \leq \frac{2}{(n+1)!}\left\|f^{(n+1)}\right\|_{[r, R], \infty}(R-r)^{n+1}
\end{align*}
$$

Proof. From (3.5) we have

$$
\begin{align*}
\left|Q_{f, n}(p, q)\right| & \leq \frac{1}{n!(R-r)}\left[\int_{\Omega} p(x)\left(\frac{q(x)}{p(x)}-r\right)^{n+2}\right. \tag{3.11}\\
& \times\left|\int_{0}^{1} f^{(n+1)}\left((1-s) r+s \frac{q(x)}{p(x)}\right)(1-s)^{n} d s\right| d \mu(x) \\
& +\int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{n+2} \\
& \left.\times\left|\int_{0}^{1} f^{(n+1)}\left((1-s) \frac{q(x)}{p(x)}+s R\right) s^{n} d s\right| d \mu(x)\right]
\end{align*}
$$

$$
\begin{aligned}
& \leq \frac{1}{n!(R-r)}\left[\int_{\Omega} p(x)\left(\frac{q(x)}{p(x)}-r\right)^{n+2}\right. \\
& \times \int_{0}^{1}\left|f^{(n+1)}\left((1-s) r+s \frac{q(x)}{p(x)}\right)\right|(1-s)^{n} d s d \mu(x) \\
& +\int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{n+2} \\
& \left.\times \int_{0}^{1}\left|f^{(n+1)}\left((1-s) \frac{q(x)}{p(x)}+s R\right)\right| s^{n} d s d \mu(x)\right] \\
& =L_{n}(p, q)
\end{aligned}
$$

We also have

$$
\begin{aligned}
& \int_{0}^{1}\left|f^{(n+1)}\left((1-s) r+s \frac{q(x)}{p(x)}\right)\right|(1-s)^{n} d s \\
& \leq \operatorname{essup}_{s \in[0,1]} \mid f^{(n+1)} \left.\left((1-s) r+s \frac{q(x)}{p(x)}\right) \right\rvert\, \int_{0}^{1}(1-s)^{n} d s \\
&=\frac{1}{n+1}\left\|f^{(n+1)}\right\|_{\left[r, \frac{q(x)}{p(x)}\right], \infty} \leq \frac{1}{n+1}\left\|f^{(n+1)}\right\|_{[r, R], \infty}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{1} \left\lvert\, f^{(n+1)}\left((1-s) \frac{q(x)}{p(x)}\right.\right. & +s R) \mid s^{n} d s \\
\leq \operatorname{essup}_{s \in[0,1]}\left|f^{(n+1)}\left((1-s) \frac{q(x)}{p(x)}+s R\right)\right| & \int_{0}^{1} s^{n} d s \\
& =\frac{1}{n+1}\left\|f^{(n+1)}\right\|_{\left[\frac{q(x)}{p(x)}, R\right], \infty} \leq \frac{1}{n+1}\left\|f^{(n+1)}\right\|_{[r, R], \infty}
\end{aligned}
$$

for $x \in \Omega$.
Therefore,

$$
\begin{aligned}
& L_{n}(p, q) \\
& \leq \frac{1}{(n+1)!(R-r)}\left[\int_{\Omega} p(x)\left(\frac{q(x)}{p(x)}-r\right)^{n+2}\left\|f^{(n+1)}\right\|_{\left[\frac{q(x)}{p(x)}, R\right], \infty} d \mu(x)\right. \\
& \left.+\int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{n+2}\left\|f^{(n+1)}\right\|_{\left[\frac{q(x)}{p(x)}, R\right], \infty} d \mu(x)\right] \\
& \leq \frac{1}{(n+1)!(R-r)}\left\|f^{(n+1)}\right\|_{[r, R], \infty} \\
& \times\left[\int_{\Omega} p(x)\left(\frac{q(x)}{p(x)}-r\right)^{n+2} d \mu(x)+\int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{n+2} d \mu(x)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{(n+1)!(R-r)}\left\|f^{(n+1)}\right\|_{[r, R], \infty}\left[D_{\chi^{n+1}, r}(p, q)+D_{R, \chi^{n+2}}(p, q)\right] \\
& \leq \frac{2}{(n+1)!(R-r)}\left\|f^{(n+1)}\right\|_{[r, R], \infty}(R-r)^{n+2} \\
& =\frac{2}{(n+1)!}\left\|f^{(n+1)}\right\|_{[r, R], \infty}(R-r)^{n+1} .
\end{aligned}
$$

By making use of (3.11) we get the desired result (3.10).

We consider the divergence measures

$$
\begin{equation*}
D_{\chi^{n+2+1 / s}, r}(p, q):=\int_{\Omega} \frac{(q(x)-r p(x))^{n+2+1 / s}}{p^{n+1 / s}(x)} d \mu(x) \geq 0 \text { for } n \in \mathbb{N}, s>1 \tag{3.12}
\end{equation*}
$$

and

$$
\begin{align*}
& D_{R, \chi^{n+2+1 / s}}(p, q) \tag{3.13}\\
& :=\int_{\Omega} \frac{(R p(x)-q(x))^{n+2+1 / s}}{p^{n+1 / s}(x)} d \mu(x) \geq 0 \text { for } n \in \mathbb{N}, s>1
\end{align*}
$$

Corollary 3. With the assumptions of Theorem 4 and if $f^{(n+1)} \in L_{s}[r, R]$, with $s, q>1$, and $\frac{1}{s}+\frac{1}{q}=1$, then we have the following bounds for the reminder

$$
\begin{align*}
& \left|Q_{f, n}(p, q)\right| \tag{3.14}\\
& \leq \frac{1}{(q n+1)^{1 / q} n!(R-r)} \\
& \times\left[\int_{\Omega} p(x)\left(\frac{q(x)}{p(x)}-r\right)^{n+2+1 / s}\left\|f^{(n+1)}\right\|_{\left[r, \frac{q(x)}{p(x)}\right], s} d \mu(x)\right. \\
& \left.+\int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{n+2+1 / s}\left\|f^{(n+1)}\right\|_{\left[\frac{q(x)}{p(x)}, R\right], s} d \mu(x)\right] \\
& \leq \frac{1}{(q n+1)^{1 / q} n!(R-r)}\left\|f^{(n+1)}\right\|_{[r, R], s} \\
& \times\left[D_{\chi^{n+2+1 / s}, r}(p, q)+D_{R, \chi^{n+2+1 / s}}(p, q)\right] \\
& \leq \frac{2}{(q n+1)^{1 / q} n!}\left\|f^{(n+1)}\right\|_{[r, R], s}(R-r)^{n+1+1 / s} .
\end{align*}
$$

Proof. Using Hölder's integral inequality for $s, q>1$ and $\frac{1}{s}+\frac{1}{q}=1$, we have

$$
\begin{aligned}
& \int_{0}^{1}\left|f^{(n+1)}\left((1-\tau) r+\tau \frac{q(x)}{p(x)}\right)\right|(1-\tau)^{n} d \tau \\
& \leq\left(\int_{0}^{1}\left|f^{(n+1)}\left((1-\tau) r+\tau \frac{q(x)}{p(x)}\right)\right|^{s} d s\right)^{1 / s}\left(\int_{0}^{1}(1-\tau)^{q n} d \tau\right)^{1 / q} \\
& =\left(\left(\frac{q(x)}{p(x)}-r\right) \int_{r}^{\frac{q(x)}{p(x)}}\left|f^{(n+1)}(u)\right|^{s} d u\right)^{1 / s}\left(\frac{1}{q n+1}\right)^{1 / q} \\
& =\frac{1}{(q n+1)^{1 / q}}\left(\frac{q(x)}{p(x)}-r\right)^{1 / s}\left\|f^{(n+1)}\right\|_{\left[r, \frac{q(x)}{p(x)}\right], s} \\
& \leq \frac{1}{(q n+1)^{1 / q}}\left(\frac{q(x)}{p(x)}-r\right)^{1 / s}\left\|f^{(n+1)}\right\|_{[r, R], s}
\end{aligned}
$$

and, similarly

$$
\begin{aligned}
\int_{0}^{1} \left\lvert\, f^{(n+1)}\left((1-\tau) \frac{q(x)}{p(x)}+\tau R\right)\right. & \mid \tau^{n} d \tau \\
\leq \frac{1}{(q n+1)^{1 / q}}(R & \left.-\frac{q(x)}{p(x)}\right)^{1 / s}\left\|f^{(n+1)}\right\|_{\left[\frac{q(x)}{p(x)}, R\right], s} \\
& \leq \frac{1}{(q n+1)^{1 / q}}\left(R-\frac{q(x)}{p(x)}\right)^{1 / s}\left\|f^{(n+1)}\right\|_{[r, R], s}
\end{aligned}
$$

for $x \in \Omega$.
Therefore

$$
\begin{aligned}
L_{n}(p, q) & \leq \frac{1}{n!(R-r)}\left[\int_{\Omega} p(x)\left(\frac{q(x)}{p(x)}-r\right)^{n+2}\right. \\
& \times \frac{1}{(q n+1)^{1 / q}}\left(\frac{q(x)}{p(x)}-r\right)^{1 / s}\left\|f^{(n+1)}\right\|_{\left[r, \frac{q(x)}{p(x)}\right], s} d \mu(x) \\
& +\int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{n+2} \\
& \left.\times \frac{1}{(q n+1)^{1 / q}}\left(R-\frac{q(x)}{p(x)}\right)^{1 / s}\left\|f^{(n+1)}\right\|_{\left[\frac{q(x)}{p(x)}, R\right], s} d \mu(x)\right] \\
& =\frac{1}{(q n+1)^{1 / q} n!(R-r)} \\
& \times\left[\int_{\Omega} p(x)\left(\frac{q(x)}{p(x)}-r\right)^{n+2+1 / s}\left\|f^{(n+1)}\right\|_{\left[r, \frac{q(x)}{p(x)}\right], s} d \mu(x)\right. \\
& \left.+\int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{n+2+1 / s}\left\|f^{(n+1)}\right\|_{\left[\frac{q(x)}{p(x)}, R\right], s} d \mu(x)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{(q n+1)^{1 / q} n!(R-r)}\left\|f^{(n+1)}\right\|_{[r, R], s} \\
& \times\left[\int_{\Omega} p(x)\left(\frac{q(x)}{p(x)}-r\right)^{n+2+1 / s} d \mu(x)+\int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{n+2+1 / s} d \mu(x)\right]
\end{aligned}
$$

which proves (3.14).

4. Generalized Trapezoid Type Estimates

Assume that $p, q \in \mathcal{P}$ and there exists the constants $0<r<1<R<\infty$ such that

$$
\begin{equation*}
r \leq \frac{q(x)}{p(x)} \leq R \text { for } \mu \text {-a.e. } x \in \Omega \text {. } \tag{4.1}
\end{equation*}
$$

We consider the following divergence measures

$$
\begin{equation*}
D_{\Phi^{k}, r, R}(p, q):=\int_{\Omega .} \frac{(R p(x)-q(x))(q(x)-r p(x))^{k}}{p^{k}(x)} d \mu(x) \geq 0 \text { for } k \in \mathbb{N} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{\Psi^{k}, r, R}(p, q):=\int_{\Omega} \frac{(R p(x)-q(x))^{k}(q(x)-r p(x))}{p^{k}(x)} d \mu(x) \geq 0 \text { for } k \in \mathbb{N} \tag{4.3}
\end{equation*}
$$

We have the following approximation of the divergence measure using a generalized trapezoid rule:

Theorem 5. Let I be an open interval with $[r, R] \subset I$ as above, $f: I \rightarrow \mathbb{C}$ be n-time differentiable function on I and $f^{(n)}$, with $n \geq 1$, be locally absolutely continuous on I. Then for any $p, q \in \mathcal{P}$ satisfying the condition (3.1) we have the representation

$$
\begin{align*}
& I_{f}(p, q) \tag{4.4}\\
& =\frac{(R-1) f(r)+(1-r) f(R)}{R-r} \\
& +\frac{1}{R-r} \sum_{k=1}^{n} \frac{1}{k!}\left[f^{(k)}(r) D_{\Phi^{k}, r, R}(p, q)+(-1)^{k} f^{(k)}(R) D_{\Psi^{k}, r, R}(p, q)\right] \\
& +T_{f, n}(p, q)
\end{align*}
$$

and the reminder $T_{f, n}(p, q)$ is given by

$$
\begin{align*}
T_{f, n}(p, q) & =\int_{\Omega} p(x) L_{n}\left(\frac{q(x)}{p(x)}, r, R\right) d \mu(x) \tag{4.5}\\
& =\frac{1}{n!(R-r)}\left[\int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)\left(\frac{q(x)}{p(x)}-r\right)^{n+1}\right. \\
& \times\left(\int_{0}^{1} f^{(n+1)}\left((1-s) r+s \frac{q(x)}{p(x)}\right)(1-s)^{n} d s\right) d \mu(x) \\
& +(-1)^{n+1} \int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{n+1}\left(\frac{q(x)}{p(x)}-r\right) \\
& \left.\times\left(\int_{0}^{1} f^{(n+1)}\left((1-s) \frac{q(x)}{p(x)}+s R\right) s^{n} d s\right) d \mu(x)\right]
\end{align*}
$$

Proof. We use the identity 2.14 in Lemma 3 in the following form

$$
\begin{aligned}
f(t) & =\frac{1}{b-a}[(b-t) f(a)+(t-a) f(b)] \\
& +\frac{1}{b-a} \sum_{k=1}^{n} \frac{1}{k!}\left\{(b-t)(t-a)^{k} f^{(k)}(a)+(-1)^{k}(b-t)^{k}(t-a) f^{(k)}(b)\right\} \\
& +L_{n}(t, a, b)
\end{aligned}
$$

where

$$
\begin{aligned}
L_{n}(t, a, b) & :=\frac{1}{n!(b-a)}\left[(b-t)(t-a)^{n+1} \int_{0}^{1} f^{(n+1)}((1-s) a+s t)(1-s)^{n} d s\right. \\
& \left.+(-1)^{n+1}(b-t)^{n+1}(t-a) \int_{0}^{1} f^{(n+1)}((1-s) t+s b) s^{n} d s\right]
\end{aligned}
$$

If we take in these equalities $t=\frac{q(x)}{p(x)}, a=r$ and $b=R$, then we get

$$
\begin{aligned}
& f\left(\frac{q(x)}{p(x)}\right) \\
& =\frac{1}{R-r}\left[\left(R-\frac{q(x)}{p(x)}\right) f(r)+\left(\frac{q(x)}{p(x)}-r\right) f(R)\right] \\
& +\frac{1}{R-r} \sum_{k=1}^{n} \frac{1}{k!}\left[\left(R-\frac{q(x)}{p(x)}\right)\left(\frac{q(x)}{p(x)}-r\right)^{k} f^{(k)}(r)\right. \\
& \left.+(-1)^{k}\left(R-\frac{q(x)}{p(x)}\right)^{k}\left(\frac{q(x)}{p(x)}-r\right) f^{(k)}(R)\right]+L_{n}\left(\frac{q(x)}{p(x)}, r, R\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& L_{n}\left(\frac{q(x)}{p(x)}, r, R\right) \\
& :=\frac{1}{n!(R-r)}\left[\left(R-\frac{q(x)}{p(x)}\right)\left(\frac{q(x)}{p(x)}-r\right)^{n+1}\right. \\
& \times \int_{0}^{1} f^{(n+1)}\left((1-s) r+s \frac{q(x)}{p(x)}\right)(1-s)^{n} d s \\
& +(-1)^{n+1}\left(R-\frac{q(x)}{p(x)}\right)^{n+1}\left(\frac{q(x)}{p(x)}-r\right) \\
& \left.\times \int_{0}^{1} f^{(n+1)}\left((1-s) \frac{q(x)}{p(x)}+s R\right) s^{n} d s\right]
\end{aligned}
$$

and $x \in \Omega$.

If we multiply (3.6) by $p(x)$ and integrate on Ω, then we get

$$
\begin{aligned}
& \int_{\Omega} p(x) f\left(\frac{q(x)}{p(x)}\right) d \mu(x) \\
& =\frac{1}{R-r} \int_{\Omega}[(R p(x)-q(x)) f(r)+(q(x)-r p(x)) f(R)] d \mu(x) \\
& +\frac{1}{R-r} \sum_{k=1}^{n} \frac{1}{k!}\left[f^{(k)}(r) \int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)\left(\frac{q(x)}{p(x)}-r\right)^{k} d \mu(x)\right. \\
& \left.+(-1)^{k} f^{(k)}(R) \int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{k}\left(\frac{q(x)}{p(x)}-r\right) d \mu(x)\right] \\
& +T_{f, n}(p, q) \\
& =\frac{(R-1) f(r)+(1-r) f(R)}{R-r} \\
& +\frac{1}{R-r} \sum_{k=1}^{n} \frac{1}{k!}\left[f^{(k)}(r) D_{\Phi^{k}, r, R}(p, q)+(-1)^{k} f^{(k)}(R) D_{\Psi^{k}, r, R}(p, q)\right] \\
& +T_{f, n}(p, q)
\end{aligned}
$$

where

$$
\begin{aligned}
T_{f, n}(p, q) & =\int_{\Omega} p(x) L_{n}\left(\frac{q(x)}{p(x)}, r, R\right) d \mu(x) \\
& =\frac{1}{n!(R-r)}\left[\int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)\left(\frac{q(x)}{p(x)}-r\right)^{n+1}\right. \\
& \times\left(\int_{0}^{1} f^{(n+1)}\left((1-s) r+s \frac{q(x)}{p(x)}\right)(1-s)^{n} d s\right) d \mu(x) \\
& +(-1)^{n+1} \int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{n+1}\left(\frac{q(x)}{p(x)}-r\right) \\
& \left.\times\left(\int_{0}^{1} f^{(n+1)}\left((1-s) \frac{q(x)}{p(x)}+s R\right) s^{n} d s\right) d \mu(x)\right]
\end{aligned}
$$

which proves the theorem.
Corollary 4. With the assumptions of Theorem 4 and if $f^{(n+1)} \in L_{\infty}[r, R]$, then we have the following bounds for the reminder

$$
\begin{align*}
& \left|T_{f, n}(p, q)\right| \tag{4.6}\\
& \leq \frac{1}{(n+1)!(R-r)} \\
& \times\left[\int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)\left(\frac{q(x)}{p(x)}-r\right)^{n+1}\left\|f^{(n+1)}\right\|_{\left[r, \frac{q(x)}{p(x)}\right], \infty}\right. \\
& \left.+\int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{n+1}\left(\frac{q(x)}{p(x)}-r\right)\left\|f^{(n+1)}\right\|_{\left[\frac{q(x)}{p(x)}, R\right], \infty}\right]
\end{align*}
$$

$$
\begin{aligned}
& \leq \frac{1}{(n+1)!(R-r)}\left\|f^{(n+1)}\right\|_{[r, R], \infty}\left[D_{\Phi^{n+1}, r, R}(p, q)+D_{\Psi^{n+1}, r, R}(p, q)\right] \\
& \leq \frac{1}{4(n+1)!}(R-r)\left\|f^{(n+1)}\right\|_{[r, R], \infty}\left[D_{\chi^{n}, r}(p, q)+D_{R, \chi^{n}}(p, q)\right] \\
& \leq \frac{1}{2(n+1)!}(R-r)^{n+1}\left\|f^{(n+1)}\right\|_{[r, R], \infty}
\end{aligned}
$$

Proof. We have

$$
\begin{aligned}
& \left|T_{f, n}(p, q)\right| \\
& \leq \frac{1}{n!(R-r)}\left[\int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)\left(\frac{q(x)}{p(x)}-r\right)^{n+1}\right. \\
& \times\left|\int_{0}^{1} f^{(n+1)}\left((1-s) r+s \frac{q(x)}{p(x)}\right)(1-s)^{n} d s\right| d \mu(x) \\
& +\int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{n+1}\left(\frac{q(x)}{p(x)}-r\right) \\
& \left.\times\left|\int_{0}^{1} f^{(n+1)}\left((1-s) \frac{q(x)}{p(x)}+s R\right) s^{n} d s\right| d \mu(x)\right] \\
& \leq \frac{1}{(n+1)!(R-r)} \\
& \times\left[\int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)\left(\frac{q(x)}{p(x)}-r\right)^{n+1}\left\|f^{(n+1)}\right\|_{\left[r, \frac{q(x)}{p(x)}\right], \infty}\right. \\
& \left.+\int_{\Omega} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{n+1}\left(\frac{q(x)}{p(x)}-r\right)\left\|f^{(n+1)}\right\|_{\left[\frac{q(x)}{p(x)}, R\right], \infty}\right] \\
& \leq \frac{1}{(n+1)!(R-r)}\left\|f^{(n+1)}\right\|_{[r, R], \infty}\left[D_{\Phi^{n+1}, r, R}(p, q)+D_{\Psi^{n+1}, r, R}(p, q)\right]
\end{aligned}
$$

Further, by using the elementary inequality

$$
\alpha \beta \leq \frac{1}{4}(\beta-\alpha)^{2}, \alpha, \beta \geq 0
$$

we have

$$
\begin{aligned}
D_{\Phi^{n+1}, r, R}(p, q) & =\int_{\Omega .} p(x)\left(R-\frac{q(x)}{p(x)}\right)\left(\frac{q(x)}{p(x)}-r\right)^{n+1} d \mu(x) \\
& =\int_{\Omega .} p(x)\left(R-\frac{q(x)}{p(x)}\right)\left(\frac{q(x)}{p(x)}-r\right)\left(\frac{q(x)}{p(x)}-r\right)^{n} d \mu(x) \\
& \leq \frac{1}{4}(R-r)^{2} \int_{\Omega .} p(x)\left(\frac{q(x)}{p(x)}-r\right)^{n} d \mu(x) \\
& =\frac{1}{4}(R-r)^{2} D_{\chi^{n}, r}(p, q)
\end{aligned}
$$

and

$$
\begin{aligned}
D_{\Psi^{n+1}, r, R}(p, q) & =\int_{\Omega .} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{n+1}\left(\frac{q(x)}{p(x)}-r\right) d \mu(x) \\
& =\int_{\Omega .} p(x)\left(R-\frac{q(x)}{p(x)}\right)\left(\frac{q(x)}{p(x)}-r\right)\left(R-\frac{q(x)}{p(x)}\right)^{n} d \mu(x) \\
& \leq \frac{1}{4}(R-r)^{2} \int_{\Omega .} p(x)\left(R-\frac{q(x)}{p(x)}\right)^{n} d \mu(x) \\
& =\frac{1}{4}(R-r)^{2} D_{R, \chi^{n}}(p, q)
\end{aligned}
$$

which completes the proof.

5. Application for Kullback-Leibler Divergence

Consider the logarithmic function $f(t)=-\ln t, t>0$. Then

$$
I_{f}(p, q)=-\int_{\Omega} p(x) \ln \left[\frac{q(x)}{p(x)}\right] d \mu(x)=D_{K L}(p, q)
$$

for $p, q \in \mathcal{P}$.
We have

$$
f^{(k)}(t)=\frac{(-1)^{k}(k-1)!}{t^{k}}, \quad k \in \mathbb{N}, k \geq 1
$$

and for $[a, b] \subset(0, \infty)$,

$$
\left\|f^{(n+1)}\right\|_{[a, b], \infty}:=\sup _{t \in[a, b]}\left|f^{(n+1)}(t)\right|=n!\sup _{t \in[a, b]}\left\{\frac{1}{t^{n+1}}\right\}=\frac{n!}{a^{n+1}}
$$

and for $\alpha \geq 1$

$$
\begin{aligned}
\left\|f^{(n+1)}\right\|_{[a, b], \alpha} & :=\left(\int_{a}^{b}\left|f^{(n+1)}(t)\right|^{\alpha} d t\right)^{\frac{1}{\alpha}}=n!\left[\int_{a}^{b} \frac{d t}{t^{(n+1) \alpha}}\right]^{\frac{1}{\alpha}} \\
& =n!\left[\frac{b^{(n+1) \alpha-1}-a^{(n+1) \alpha-1}}{[(n+1) \alpha-1] b^{(n+1) \alpha-1} a^{(n+1) \alpha-1}}\right]^{\frac{1}{\alpha}}
\end{aligned}
$$

Assume that $p, q \in \mathcal{P}$ and there exists the constants $0<r<1<R<\infty$ such that

$$
r \leq \frac{q(x)}{p(x)} \leq R \text { for } \mu \text {-a.e. } x \in \Omega
$$

Using the identity (3.4) we get

$$
\begin{align*}
D_{K L}(p, q) & =\ln \left[r^{-(1-r)} R^{-(R-1)}\right] \tag{5.1}\\
& +\frac{1}{R-r} \sum_{k=1}^{n} \frac{1}{k}\left\{\frac{(-1)^{k}}{r^{k}} D_{\chi^{k+1}, r}(p, q)+\frac{1}{R^{k}} D_{R, \chi^{k+1}}(p, q)\right\} \\
& +Q_{f, n}(p, q)
\end{align*}
$$

and the remainder satisfies the inequality (by (3.10))

$$
\begin{align*}
\left|Q_{n}(p, q)\right| & \leq \frac{1}{(n+1) r^{n+1}(R-r)}\left[D_{\chi^{n+2}, r}(p, q)+D_{R, \chi^{n+2}}(p, q)\right] \tag{5.2}\\
& \leq \frac{2}{(n+1)}\left(\frac{R}{r}-1\right)^{n+1}
\end{align*}
$$

and, by (3.14), the bound

$$
\begin{align*}
& \left|Q_{n}(p, q)\right| \tag{5.3}\\
& \leq \frac{1}{(q n+1)^{1 / q}(R-r)}\left[\frac{R^{(n+1) s-1}-r^{(n+1) s-1}}{[(n+1) s-1] R^{(n+1) s-1} r^{(n+1) s-1}}\right]^{\frac{1}{s}} \\
& \times\left[D_{\chi^{n+2+1 / s}, r}(p, q)+D_{R, \chi^{n+2+1 / s}}(p, q)\right] \\
& \leq \frac{2}{(q n+1)^{1 / q}}\left[\frac{R^{(n+1) s-1}-r^{(n+1) s-1}}{[(n+1) s-1] R^{(n+1) s-1} r^{(n+1) s-1}}\right]^{\frac{1}{s}}(R-r)^{n+1+1 / s},
\end{align*}
$$

where $s, q>1$ with $\frac{1}{s}+\frac{1}{q}=1$.
Using the identity (4.4) we have

$$
\begin{align*}
D_{K L}(p, q) & =\ln \left[r^{-(R-1)} R^{-(1-r)}\right] \tag{5.4}\\
& +\frac{1}{R-r} \sum_{k=1}^{n} \frac{1}{k}\left[\frac{(-1)^{k}}{r^{k}} D_{\Phi^{k}, r, R}(p, q)+\frac{1}{R^{k}} D_{\Psi^{k}, r, R}(p, q)\right] \\
& +T_{n}(p, q)
\end{align*}
$$

and the remainder satisfies the inequality (see (4.6))

$$
\begin{align*}
& \left|T_{n}(p, q)\right| \tag{5.5}\\
& \leq \frac{1}{(n+1) r^{n+1}(R-r)}\left[D_{\Phi^{n+1}, r, R}(p, q)+D_{\Psi^{n+1}, r, R}(p, q)\right] \\
& \leq \frac{1}{4(n+1) r^{n+1}}(R-r)\left\|f^{(n+1)}\right\|_{[r, R], \infty}\left[D_{\chi^{n}, r}(p, q)+D_{R, \chi^{n}}(p, q)\right] \\
& \leq \frac{1}{2(n+1)}\left(\frac{R}{r}-1\right)^{n+1} .
\end{align*}
$$

References

[1] S. M. Ali and S. D. Silvey, A general class of coefficients of divergence of one distribution from another, J. Roy. Statist. Soc. Sec B, 28 (1966), 131-142.
[2] M. Akkouchi, Improvements of some integral inequalities of H. Gauchman involving Taylor's remainder. Divulg. Mat. 11 (2003), no. 2, 115-120.
[3] G. A. Anastassiou, Taylor-Widder representation formulae and Ostrowski, Grüss, integral means and Csiszár type inequalities. Comput. Math. Appl. 54 (2007), no. 1, 9-23.
[4] G. A. Anastassiou, Ostrowski type inequalities over balls and shells via a Taylor-Widder formula. J. Inequal. Pure Appl. Math. 8 (2007), no. 4, Article 106, 13 pp.
[5] N. S. Barnett, P. Cerone, S. S. Dragomir and A. Sofo, Approximating Csiszár f-divergence by the use of Taylor's formula with integral remainder, Math. Ineq. \&s Appl., 5(3) (2002), 417-434.
[6] A. Bhattacharyya, On a measure of divergence between two statistical populations defined by their probability distributions, Bull. Calcutta Math. Soc., 35 (1943), 99-109.
[7] M. Beth Bassat, f-entropies, probability of error and feature selection, Inform. Control, 39 (1978), 227-242.
[8] I. Burbea and C. R. Rao, On the convexity of some divergence measures based on entropy function, IEEE Trans. Inf. Th., 28 (3) (1982), 489-495.
[9] C. H. Chen, Statistical Pattern Recognition, Rocelle Park, New York, Hoyderc Book Co., 1973.
[10] C. K. Chow and C. N. Lin, Approximating discrete probability distributions with dependence trees, IEEE Trans. Inf. Th., 14 (3) (1968), 462-467.
[11] I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Studia Math. Hungarica, 2 (1967), 299-318.
[12] I. Csiszár, On topological properties of f-divergences, Studia Math. Hungarica, 2 (1967), 329-339.
[13] I. Csiszár and J. Körner, Information Theory: Coding Theorem for Discrete Memoryless Systems, Academic Press, New York, 1981.
[14] S. S. Dragomir, Reverses of the Jensen inequality in terms of the first derivative and applications, Acta Math. Vietnam. 38 (2013), no. 3, 429-446. Preprint, RGMIA Res. Rep. Coll. 14 (2011), Art. 71, Online: http://rgmia.org/v14.php.
[15] S. S. Dragomir, Some reverses of the Jensen inequality with applications, Bull. Aust. Math. Soc. 87 (2013), no. 2, 177-194. Preprint, RGMIA Res. Rep. Coll. 14 (2011), Art. 72, Online: http://rgmia.org/v14.php.
[16] S. S. Dragomir, A refinement and a divided difference reverse of Jensen's inequality with applications, Rev. Colombiana Mat. 50 (2016), no. 1, 17-39. Preprint, RGMIA Res. Rep. Coll. 14 (2011), Art. 74, Online: http://rgmia.org/v14.php.
[17] S. S. Dragomir, New estimation of the remainder in Taylor's formula using Grüss' type inequalities and applications. Math. Inequal. Appl. 2 (1999), no. 2, 183-193.
[18] S. S. Dragomir and H. B. Thompson, A two points Taylor's formula for the generalised Riemann integral. Demonstratio Math. 43 (2010), no. 4, 827-840.
[19] S. S. Dragomir and N. M. Ionescu, Some converse of Jensen's inequality and applications. Rev. Anal. Numér. Théor. Approx. 23 (1994), no. 1, 71-78.
[20] H. Gauchman, Some integral inequalities involving Taylor's remainder. I. J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 26, 9 pp. (electronic).
[21] H. Gauchman, Some integral inequalities involving Taylor's remainder. II. J. Inequal. Pure Appl. Math. 4 (2003), no. 1, Article 1, 5 pp. (electronic).
[22] D. V. Gokhale and S. Kullback, Information in Contingency Tables, New York, Marcel Decker, 1978.
[23] J. H. Havrda and F. Charvat, Quantification method classification process: concept of structural α-entropy, Kybernetika, 3 (1967), 30-35.
[24] E. Hellinger, Neue Bergrüirdung du Theorie quadratisher Formerus von uneudlichvieleu Veränderlicher, J. für reine and Augeur. Math., 36 (1909), 210-271.
[25] D.-Y. Hwang, Improvements of some integral inequalities involving Taylor's remainder. J. Appl. Math. Comput. 16 (2004), no. 1-2, 151-163.
[26] H. Jeffreys, An invariant form for the prior probability in estimating problems, Proc. Roy. Soc. London, 186 A (1946), 453-461.
[27] T. T. Kadota and L. A. Shepp, On the best finite set of linear observables for discriminating two Gaussian signals, IEEE Trans. Inf. Th., 13 (1967), 288-294.
[28] T. Kailath, The divergence and Bhattacharyya distance measures in signal selection, IEEE Trans. Comm. Technology., Vol COM-15 (1967), 52-60.
[29] J. N. Kapur, A comparative assessment of various measures of directed divergence, Advances in Management Studies, 3 (1984), 1-16.
[30] D. Kazakos and T. Cotsidas, A decision theory approach to the approximation of discrete probability densities, IEEE Trans. Perform. Anal. Machine Intell., 1 (1980), 61-67.
[31] A. I. Kechriniotis and N. D. Assimakis, Generalizations of the trapezoid inequalities based on a new mean value theorem for the remainder in Taylor's formula. J. Inequal. Pure Appl. Math. 7 (2006), no. 3, Article 90, 13 pp. (electronic).
[32] S. Kullback and R. A. Leibler, On information and sufficiency, Annals Math. Statist., 22 (1951), 79-86.
[33] J. Lin, Divergence measures based on the Shannon entropy, IEEE Trans. Inf. Th., $\mathbf{3 7}$ (1) (1991), 145-151.
[34] Z. Liu, Note on inequalities involving integral Taylor's remainder. J. Inequal. Pure Appl. Math. 6 (2005), no. 3, Article 72, 6 pp. (electronic).
[35] W. Liu and Q. Zhang, Some new error inequalities for a Taylor-like formula. J. Comput. Anal. Appl. 15 (2013), no. 6, 1158-1164.
[36] M. Mei, The theory of genetic distance and evaluation of human races, Japan J. Human Genetics, 23 (1978), 341-369.
[37] E. C. Pielou, Ecological Diversity, Wiley, New York, 1975.
[38] C. R. Rao, Diversity and dissimilarity coefficients: a unified approach, Theoretic Population Biology, 21 (1982), 24-43.
[39] A. Rényi, On measures of entropy and information, Proc. Fourth Berkeley Symp. Math. Stat. and Prob., University of California Press, 1 (1961), 547-561.
[40] A. Sen, On Economic Inequality, Oxford University Press, London 1973.
[41] B. D. Sharma and D. P. Mittal, New non-additive measures of relative information, Journ. Comb. Inf. Sys. Sci., 2 (4)(1977), 122-132.
[42] H. Shioya and T. Da-Te, A generalisation of Lin divergence and the derivative of a new information divergence, Elec. and Comm. in Japan, 78 (7) (1995), 37-40.
[43] I. J. Taneja, Generalised Information Measures and their Applications (http://www.mtm.ufsc.br/~taneja/bhtml/bhtml.html).
[44] F. Topsoe, Some inequalities for information divergence and related measures of discrimination, Res. Rep. Coll., RGMIA, 2 (1) (1999), 85-98.
[45] H. Theil, Economics and Information Theory, North-Holland, Amsterdam, 1967.
[46] H. Theil, Statistical Decomposition Analysis, North-Holland, Amsterdam, 1972.
[47] N. Ujević, Error inequalities for a Taylor-like formula. Cubo 10 (2008), no. 1, 11-18.
[48] I. Vajda, Theory of Statistical Inference and Information, Dordrecht-Boston, Kluwer Academic Publishers, 1989.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428 , Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15; 26D10.
 Key words and phrases. Taylor's formula, Power series, Logarithmic function, f-divergence measures, Kullback-Leibler divergence, Hellinger discrimination, χ^{2}-divergence, Jeffrey's distance.

