
GENERALIZED FINITE HILBERT TRANSFORM AND SOME
BASIC INEQUALITIES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we consider a generalized �nite Hilbert transform
of complex valued functions and establish some basic inequalities for several
particular classes of interest. Applications for some particular instances of
�nite Hilbert transforms are given as well.

1. Introduction

Finite Hilbert transform on the open interval (a; b) is de�ned by

(1.1) (Tf) (a; b; t) :=
1

�
PV

Z b

a

f (�)

� � td� := lim
"!0+

"Z t�"

a

+

Z b

t+"

#
f (�)

� (� � t)d�

for t 2 (a; b) and for various classes of functions f for which the above Cauchy
Principal Value integral exists, see [13, Section 3.2] or [17, Lemma II.1.1].
We say that the function f : [a; b]! R is �-H-Hölder continuous on (a; b), if

jf (t)� f (s)j � H jt� sj� for all t; s 2 (a; b) ;

where � 2 (0; 1]; H > 0:
The following theorem holds.

Theorem 1 (Dragomir et al., 2001 [1]). If f : [a; b]! R is �-H-Hölder continuous
on (a; b) ; then we have the estimate����(Tf) (a; b; t)� f (t)� ln

�
b� t
t� a

����� � H

��
[(t� a)� + (b� t)�]

for all t 2 (a; b).

The following two corollaries are natural.

Corollary 1. Let f : [a; b] ! R be an L-Lipschitzian mapping on [a; b], i.e. f
satis�es the condition

jf (t)� f (s)j � L jt� sj for all t; s 2 [a; b] ; (L > 0) :

Then we have the inequality����(Tf) (a; b; t)� f (t)� ln

�
b� t
t� a

����� � L (b� a)
�

for all t 2 (a; b).
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2 S. S. DRAGOMIR

Corollary 2. Let f : [a; b] ! R be an absolutely continuous mapping on [a; b]. If
f 0 2 L1 [a; b], then, for all t 2 (a; b), we have����(Tf) (a; b; t)� f (t)� ln

�
b� t
t� a

����� � kf 0k1 (b� a)
�

;

where kf 0k1 = essupt2(a;b) jf 0 (t)j <1.

We also have:

Theorem 2 (Dragomir et al., 2001 [1]). Let f : [a; b] ! R be a monotonic
nondecreasing (nonincreasing) function on [a; b]. If the �nite Hilbert transform
(Tf) (a; b; �) exists in every t 2 (a; b), then

(Tf) (a; b; t) � (�) 1
�
f (t) ln

�
b� t
t� a

�
for all t 2 (a; b).

The following result can be useful in practice.

Corollary 3. Let f : [a; b]! R and ` : [a; b]! R, ` (t) = t such that f�m`,M`�f
are monotonic nondecreasing, where m; M are given real numbers. If (Tf) (a; b; �)
exists in every point t 2 (a; b), then we have the inequality

(1.2)
(b� a)m

�
� (Tf) (a; b; t)� 1

�
f (t) ln

�
b� t
t� a

�
� (b� a)M

�

for all t 2 (a; b).

Remark 1. If the mapping is di¤erentiable on (a; b) the condition that f � m`,
M`�f are monotonic nondecreasing is equivalent with the following more practical
condition

m � f 0 (t) �M for all t 2 (a; b) :
From (1.2) we may deduce the following approximation result����(Tf) (a; b; t)� 1

�
f (t) ln

�
b� t
t� a

�
� M +m

2�
(b� a)

���� � M �m
2�

(b� a) :

for all t 2 (a; b).

For several recent papers devoted to inequalities for the �nite Hilbert transform
(Tf), see [2]-[10], [14]-[16] and [18]-[19].
We can naturally generalize the concept of Hilbert transform as follows.
For a continuous strictly increasing function g : [a; b] ! [g (a) ; g (b)] that is

di¤erentiable on (a; b) we de�ne the following generalization of the �nite Hilbert
transform of a function f : (a; b)! C by

(Tgf) (a; b; t) :=
1

�
PV

Z b

a

f (�) g0 (�)

g (�)� g (t)d�(1.3)

:= lim
"!0+

"Z t�"

a

+

Z b

t+"

#
f (�) g0 (�)

� [g (�)� g (t)]d�

:=
1

�
lim
"!0+

"Z t�"

a

f (�) g0 (�)

g (�)� g (t)d� +
Z b

t+"

f (�) g0 (�)

g (�)� g (t)d�
#

for t 2 (a; b) ; provided the above PV exists.
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For [a; b] � (0;1) and g (t) = ln t; t 2 [a; b] we have

(1.4) (Tlnf) (a; b; t) :=
1

�
lim
"!0+

"Z t�"

a

f (�)

� ln
�
�
t

�d� + Z b

t+"

f (�)

� ln
�
�
t

�d�#
where t 2 (a; b) :
For g (t) = exp (�t) ; t 2 [a; b] � R with � > 0 we have�

Texp(�)f
�
(a; b; t)(1.5)

:=
1

�
lim
"!0+

"Z t�"

a

f (�) exp (��)

exp (��)� exp (�t)d� +
Z b

t+"

f (�) exp (��)

exp (��)� exp (�t)d�
#

where t 2 (a; b) :
For [a; b] � (0;1) and g (t) = tr; t 2 [a; b] ; r > 0; we have

(1.6) (Trf) (a; b; t) :=
r

�
lim
"!0+

"Z t�"

a

f (�) � r�1

� r � tr d� +

Z b

t+"

f (�) � r�1

� r � tr d�

#
;

where t 2 (a; b) :
Similarly, we can consider the function g (t) = �t�p; t 2 [a; b] � (0;1) ; p > 0;

and then we have

(T�pf) (a; b; t) :=
p

�
lim
"!0+

"Z t�"

a

f (�) ��p�1

t�p � ��p d� +
Z b

t+"

f (�) ��p�1

t�p � ��p d�
#

(1.7)

=
ptp

�
lim
"!0+

"Z t�"

a

f (�)

� (�p � tp)d� +
Z b

t+"

f (�)

� (�p � tp)d�
#
;

where t 2 (a; b) :
For [a; b] �

h
� �
2� ;

�
2�

i
and g (t) = sin (�t) ; t 2 [a; b] where � > 0; we have�

Tsin(�)f
�
(a; b; t)(1.8)

:=
�

�
lim
"!0+

"Z t�"

a

f (�) cos (��)

sin (��)� sin (�t)d� +
Z b

t+"

f (�) cos (��)

sin (��)� sin (�t)d�
#

where t 2 (a; b) :
For g (t) = sinh (�t) ; t 2 [a; b] � R with � > 0 we have�

Tsinh(�)f
�
(a; b; t)(1.9)

:=
�

�
lim
"!0+

"Z t�"

a

f (�) cosh (��)

sinh (��)� sinh (�t)d� +
Z b

t+"

f (�) cosh (��)

sinh (��)� sinh (�t)d�
#

where t 2 (a; b) :
Similar transforms can be associated to the following functions as well:

g (t) = tan (�t) ; t 2 [a; b] �
�
� �
2�
;
�

2�

�
where � > 0;

and
g (t) = tanh (�t) ; t 2 [a; b] � R with � > 0:

Motivated by the above facts, in this paper we consider the generalized �nite
Hilbert transform (Tgf) (a; b; t) of complex valued functions f and establish some
basic inequalities for several particular classes of interest. Applications for some
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particular instances of �nite Hilbert transforms as the one presented in (1.4)-(1.9)
are given as well.

2. Main Results

Consider the function 1 (t) = 1; t 2 (a; b). We can state the following basic
result:

Lemma 1. For a continuous strictly increasing function g : [a; b] ! [g (a) ; g (b)]
that is di¤erentiable on (a; b) we have

(2.1) (Tg1) (a; b; t) =
1

�
ln

�
g (b)� g (t)
g (t)� g (a)

�
; t 2 (a; b) :

We also have for f : (a; b)! C that

(2.2) (Tgf) (a; b; t) =
1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
+
1

�
PV

Z b

a

f (�)� f (t)
g (�)� g (t) g

0 (�) d�

for t 2 (a; b) ; provided that the PV from the right hand side of the equality (2.2)
exists.

Proof. We have

(Tg1) (a; b; t) =
1

�
lim
"!0+

"Z t�"

a

g0 (�)

g (�)� g (t)d� +
Z b

t+"

g0 (�)

g (�)� g (t)d�
#

(2.3)

=
1

�
lim
"!0+

h
ln jg (�)� g (t)jjt�"a + ln (g (�)� g (t))jbt+"

i
=
1

�
lim
"!0+

[ln (g (t)� g (t� "))� ln (g (t)� g (a))

+ ln (g (b)� g (t))� ln (g (t+ ")� g (t))]

=
1

�
ln

�
g (b)� g (t)
g (t)� g (a)

�
+
1

�
lim
"!0+

ln

�
g (t)� g (t� ")
g (t+ ")� g (t)

�
for t 2 (a; b) :
Since g is di¤erentiable, we have

lim
"!0+

g (t)� g (t� ")
g (t+ ")� g (t) = lim

"!0+

g(t)�g(t�")
"

g(t+")�g(t)
"

=
g0 (t)

g0 (t)
= 1

for t 2 (a; b) ; and by (2.3) we get (2.1).
From the de�nition (1.3) we have

(Tgf) (a; b; t) :=
1

�
PV

Z b

a

(f (�)� f (t) + f (t)) g0 (�)
g (�)� g (t) d�

=
1

�
PV

Z b

a

(f (�)� f (t)) g0 (�) d�
g (�)� g (t) +

1

�
PV

Z b

a

f (t) g0 (�) d�

g (�)� g (t)

=
1

�
PV

Z b

a

(f (�)� f (t)) g0 (�) d�
g (�)� g (t) +

1

�
f (t)PV

Z b

a

g0 (�) d�

g (�)� g (t)

=
1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
+
1

�
PV

Z b

a

(f (�)� f (t)) g0 (�) d�
g (�)� g (t)

for t 2 (a; b) ; which proves the identity (2.2). �
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The following result holds:

Theorem 3. Assume that g is as in Lemma 1 and f : [a; b]! R is continuous on
[a; b] and di¤erentiable on (a; b) : Iff 0g0


(a;b);1

:= sup
s2(a;b)

����f 0 (s)g0 (s)

���� <1;
then (Tgf) (a; b; t) exists for all t 2 (a; b) and

(2.4)

����(Tgf) (a; b; t)� 1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

����� � 1

�

f 0g0

(a;b);1

[g (b)� g (a)]

for all t 2 (a; b) :

Proof. By Cauchy�s mean value theorem, for any t; � 2 (a; b) with t 6= � there exists
an s between t and � such that

f (�)� f (t)
g (�)� g (t) =

f 0 (s)

g0 (s)
;

therefore for any t; � 2 (a; b) with t 6= � we have����f (�)� f (t)g (�)� g (t)

���� � f 0g0

(a;b);1

:

This implies thatZ t�"

a

����f (�)� f (t)g (�)� g (t)

���� g0 (�) d� � f 0g0

(a;b);1

[g (t� ")� g (a)]

and Z b

t+"

����f (�)� f (t)g (�)� g (t)

���� g0 (�) d� � f 0g0

(a;b);1

[g (b)� g (t+ ")]

for t 2 (a; b) and min ft� a; b� tg > " > 0:
By the triangle inequality for the modulus and the fact that g0 (�) > 0 for

t 2 (a; b) ; we have�����
Z t�"

a

f (�)� f (t)
g (�)� g (t) g

0 (�) d� +

Z b

t+"

f (�)� f (t)
g (�)� g (t) g

0 (�) d�

�����(2.5)

�
Z t�"

a

����f (�)� f (t)g (�)� g (t)

���� g0 (�) d� + Z b

t+"

����f (�)� f (t)g (�)� g (t)

���� g0 (�) d�
�
f 0g0


(a;b);1

[g (b)� g (t+ ") + g (t� ")� g (a)]

for t 2 (a; b) and min ft� a; b� tg > " > 0:
By taking the limit over "! 0+ in (2.5) we get

(2.6)

�����PV
Z b

a

f (�)� f (t)
g (�)� g (t) g

0 (�) d�

����� �
f 0g0


(a;b);1

[g (b)� g (a)]

for t 2 (a; b).
By utilising the equality (2.2) we obtain from (2.6) the desired result (2.4). �
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If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can de�ne the g-mean of two numbers
a; b 2 I as

Mg (a; b) := g
�1
�
g (a) + g (b)

2

�
:

If I = R and g (t) = t is the identity function, then Mg (a; b) = A (a; b) :=
a+b
2 ;

the arithmetic mean. If I = (0;1) and g (t) = ln t; thenMg (a; b) = G (a; b) :=
p
ab,

the geometric mean. If I = (0;1) and g (t) = 1
t ; then Mg (a; b) = H (a; b) :=

2ab
a+b ; the harmonic mean. If I = (0;1) and g (t) = tp; p 6= 0; then Mg (a; b) =

Mp (a; b) :=
�
ap+bp

2

�1=p
; the power mean with exponent p. Finally, if I = R and

g (t) = exp t; then

Mg (a; b) = LME (a; b) := ln

�
exp a+ exp b

2

�
;

the LogMeanExp function.

Corollary 4. With the assumptions of Theorem 3, we have

(2.7) j(Tgf) (a; b;Mg (a; b))j �
1

�

f 0g0

(a;b);1

[g (b)� g (a)] :

We also have:

Theorem 4. Let g : [a; b] ! [g (a) ; g (b)] be a strictly increasing function that is
di¤erentiable on (a; b) and f : (a; b) ! C such that f � g�1 is of H-r-Hölder type
on (g (a) ; g (b)), where H > 0; r 2 (0; 1]; then����(Tgf) (a; b; t)� 1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

�����(2.8)

� H

�r
[(g (b)� g (t))r + (g (t)� g (a))r]

for t 2 (a; b) :
In particular, in the Lipschitz case, we have for H = L that

(2.9)

����(Tgf) (a; b; t)� 1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

����� � L

�r
[g (b)� g (a)]

for t 2 (a; b) :

Proof. For t 2 (a; b) and min ft� a; b� tg > " > 0 we haveZ t�"

a

����f (�)� f (t)g (�)� g (t)

���� g0 (�) d� = Z t�"

a

����f � g�1 (g (�))� f � g�1 (g (t))g (�)� g (t)

���� g0 (�) d�
� H

Z t�"

a

jg (�)� g (t)jr

jg (�)� g (t)j g
0 (�) d�

= H

Z t�"

a

jg (�)� g (t)jr�1 g0 (�) d�

= H

Z t�"

a

(g (t)� g (�))r�1 g0 (�) d�

=
H

r
[(g (t)� g (a))r � (g (t)� g (t� "))r]
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andZ b

t+"

����f (�)� f (t)g (�)� g (t)

���� g0 (�) d� = Z b

t+"

����f � g�1 (g (�))� f � g�1 (g (t))g (�)� g (t)

���� g0 (�) d�
� H

Z b

t+"

jg (�)� g (t)jr

jg (�)� g (t)j g
0 (�) d�

= H

Z b

t+"

jg (�)� g (t)jr�1 g0 (�) d�

= H

Z b

t+"

(g (�)� g (t))r�1 g0 (�) d�

=
H

r
[(g (b)� g (t))r � (g (t+ ")� g (t))r] :

By adding these two inequalities, we getZ t�"

a

����f (�)� f (t)g (�)� g (t)

���� g0 (�) d� + Z b

t+"

����f (�)� f (t)g (�)� g (t)

���� g0 (�) d�(2.10)

� H

r
[(g (b)� g (t))r + (g (t)� g (a))r

� (g (t+ ")� g (t))r � (g (t)� g (t� "))r]

for t 2 (a; b) and min ft� a; b� tg > " > 0.
By using the triangle inequality and taking the limit over "! 0+; we get�����PV

Z b

a

f (�)� f (t)
g (�)� g (t) g

0 (�) d�

����� � H

r
[(g (b)� g (t))r + (g (t)� g (a))r]

for t 2 (a; b).
Finally, by making use of the equality (2.2) we deduce the desired result (2.8). �

Corollary 5. With the assumptions of Theorem 4, we have

(2.11) j(Tgf) (a; b;Mg (a; b))j �
H

2r�1�r
(g (b)� g (a))r :

In particular, for r = 1; we get

(2.12) j(Tgf) (a; b;Mg (a; b))j �
L

�
(g (b)� g (a)) :

For a function f : (a; b) ! C and an injective function g : (a; b) ! C we de�ne
the divided di¤erence

[f; g; t; s] :=
f (t)� f (s)
g (t)� g (s) for t; s 2 (a; b) ; t 6= s:

Now, for ; � 2 C,  6= �; an injective function g : (a; b)! C and (a; b) a �nite
interval of real numbers, de�ne the sets of complex-valued functions (see also [11]
for a similar de�nition):
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(2.13) �U(a;b);g;d (;�)

:=
n
f : (a; b)! C jRe

h
(�� [f; g; t; s])

�
[f; g; t; s]� 

�i
� 0;

for all t; s 2 (a; b) ; t 6= s
o

and

(2.14) ��(a;b);g;d (;�) :=

�
f : (a; b)! Cj

����[f; g; t; s]�  + �2
���� � 1

2
j�� j

for all t; s 2 (a; b) ; t 6= s
o
:

The following representation result may be stated.

Proposition 1. For any ; � 2 C,  6= �; we have that �U(a;b);g;d (;�) and
��(a;b);g;d (;�) are nonempty, convex and closed sets and

(2.15) �U(a;b);d (;�) = ��(a;b);d (;�) :

Proof. We observe that for any z 2 C we have the equivalence����z �  + �2
���� � 1

2
j�� j

if and only if
Re [(�� z) (�z � �)] � 0:

This follows by the equality

1

4
j�� j2 �

����z �  + �2
����2 = Re [(�� z) (�z � �)]

that holds for any z 2 C.
The equality (2.15) is thus a simple consequence of this fact. �

On making use of the complex numbers �eld properties we can also state that:

Corollary 6. For any ; � 2 C,  6= �; we have that
�U(a;b);g;d (;�) = ff : (a; b)! C j (Re�� Re [f; g; t; s]) (Re [f; g; t; s]� Re )

+ (Im�� Im [f; g; t; s]) (Im [f; g; t; s]� Im ) � 0 for all t; s 2 (a; b) ; t 6= sg :

Now, if we assume that Re (�) � Re () and Im (�) � Im () ; then we can de�ne
the following set of functions as well:

(2.16) �S(a;b);g;d (;�) := ff : (a; b)! C j Re (�) � Re [f; g; t; s] � Re ()

and Im (�) � Im [f; g; t; s] � Im () for all t; s 2 (a; b) ; t 6= sg :

One can easily observe that �S(a;b)g;d (;�) is closed, convex and

(2.17) ; 6= �S(a;b);g;d (;�) � �U(a;b);g;d (;�) :

We have:
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Theorem 5. Let g : [a; b] ! [g (a) ; g (b)] be a strictly increasing function that is
di¤erentiable on (a; b) and f : (a; b)! C such that f 2 ��(a;b);g;d (;�) for some ;
� 2 C,  6= �: Then we have����(Tgf) (a; b; t)� 1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
�  + �

2�
(g (b)� g (a))

����(2.18)

� 1

2�
j�� j (g (b)� g (a))

for all t 2 (a; b) :

Proof. Since f 2 ��(a;b);d (;�) it follows that����f (t)� f (s)�  + �2 (g (t)� g (s))
���� � 1

2
j�� j jg (t)� g (s)j

for any t; s 2 (a; b) :
By the continuity of the modulus property, we have

jf (t)� f (s)j �
���� + �2

���� jg (t)� g (s)j � ����f (t)� f (s)�  + �2 (g (t)� g (s))
����

� 1

2
j�� j jg (t)� g (s)j ;

for any t; s 2 (a; b) ; which implies that

jf (t)� f (s)j � 1

2
(j + �j+ j�� j) jg (t)� g (s)j

for any t; s 2 (a; b) : This can be written as��f � g�1 (g (t))� f � g�1 (g (s))�� � 1

2
(j + �j+ j�� j) jg (t)� g (s)j

for any t; s 2 (a; b), namely f�g�1 is Lipschitzian with the constant 12 (j + �j+ j�� j)
on (g (a) ; g (b)) :
Therefore the Cauchy Principal value

PV

Z b

a

f (�)� f (t)
g (�)� g (t) g

0 (�) d�

exists (see [13, Section 3.2] or [17, Lemma II.1.1]) and we have

1

�
PV

Z b

a

�
f (�)� f (t)
g (�)� g (t) �

 + �

2

�
g0 (�) d�(2.19)

=
1

�
PV

Z b

a

f (�)� f (t)
g (�)� g (t) g

0 (�) d� �  + �
2�

(g (b)� g (a))

= (Tgf) (a; b; t)�
1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
�  + �

2�
(g (b)� g (a))

for any t 2 (a; b) :
The following property of the Cauchy-Principal Value follows by the properties

of integral, modulus and limit,

(2.20)

�����PV
Z b

a

A (t; s) ds

����� � PV
Z b

a

jA (t; s)j ds;

assuming that the PV s involved exist for all t 2 (a; b).
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Using the equality (2.19) and the property (2.20) we get����(Tgf) (a; b; t)� 1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
�  + �

2�
(g (b)� g (a))

����
� 1

�
PV

Z b

a

����f (�)� f (t)g (�)� g (t) �
 + �

2

���� g0 (�) d� � 1

2�
j�� j

Z b

a

g0 (�) d�

=
1

2�
j�� j (g (b)� g (a))

for all t 2 (a; b) and the inequality (2.18) is obtained. �

Corollary 7. With the assumptions of Theorem 5 we have

(2.21)

����(Tgf) (a; b;Mg (a; b))�
 + �

2�
(g (b)� g (a))

���� � 1

2�
j�� j (g (b)� g (a)) :

The case of monotonic functions f : (a; b) ! R provides the following simple
result:

Proposition 2. Let g : [a; b]! [g (a) ; g (b)] be a strictly increasing function that is
di¤erentiable on (a; b) and f : (a; b) ! R a monotonic nondecreasing (nonincreas-
ing) function so that the generalized �nite Hilbert transform (Tgf) (a; b; t) exists,
then

(2.22) (Tgf) (a; b; t) � (�)
1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
for any t 2 (a; b) :

Proof. The proof follows by the representation (2.2) on observing that if f : (a; b)!
R is a monotonic nondecreasing (nonincreasing) function on (a; b) ; then for any t;
� 2 (a; b) we have

f (�)� f (t)
g (�)� g (t) � (�) 0;

which implies that

PV

Z b

a

f (�)� f (t)
g (�)� g (t) g

0 (�) d� � (�) 0

for any t 2 (a; b) : �

Corollary 8. Let g : [a; b] ! [g (a) ; g (b)] be a strictly increasing function that is
di¤erentiable on (a; b) and f : (a; b)! R a function such that for some real numbers
m < M we have that f �mg and Mg � f are monotonic nondecreasing on (a; b) :
If the generalized �nite Hilbert transform (Tgf) (a; b; t) exists, then we have

m

�
(g (b)� g (a)) � (Tgf) (a; b; t)�

1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
(2.23)

� M

�
(g (b)� g (a))

for any t 2 (a; b) :
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This can be also written as����(Tgf) (a; b; t)� 1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
� 1

2�
(M +m) (g (b)� g (a))

����(2.24)

� 1

2�
(M �m) (g (b)� g (a))

for any t 2 (a; b) :

Proof. Applying proposition (2.22) for the monotonic nondecreasing function f�mg
we have

(Tg (f �mg)) (a; b; t)(2.25)

� 1

�
(f (t)�mg (t)) ln

�
g (b)� g (t)
g (t)� g (a)

�
=
1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
�m 1

�
g (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
for all t 2 (a; b) :
By the linearity of the generalized Hilbert transform we also have

(Tg (f �mg)) (a; b; t) = (Tgf) (a; b; t)�m (Tgg) (a; b; t)

and by the identity (2.2) for f = g we get

(Tgg) (a; b; t) =
1

�
g (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
+
1

�
PV

Z b

a

g (�)� g (t)
g (�)� g (t)g

0 (�) d�

=
1

�
g (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
+
1

�
(g (b)� g (a)) ;

which gives that

(Tg (f �mg)) (a; b; t)(2.26)

= (Tgf) (a; b; t)�
m

�
g (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
� m
�
(g (b)� g (a))

for all t 2 (a; b) :
On making use of (2.25) and (2.26) we get

(Tgf) (a; b; t)�
m

�
g (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
� m
�
(g (b)� g (a))

� 1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
� m
�
g (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
for all t 2 (a; b) ; which proves the �rst inequality in (2.23).
The second part follows in a similar way by considering the monotonic nonde-

creasing function Mg � f: �

Remark 2. From (2.23) we get for t = a+b
2 that

(2.27)
m

�
(g (b)� g (a)) � (Tgf)

�
a; b;

a+ b

2

�
� M

�
(g (b)� g (a)) ;

where f and g are as in Corollary 8.
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Remark 3. If f and g are as in Corollary 8, then we observe that

m � [f; g; t; s] = f (t)� f (s)
g (t)� g (s) �M

for all t; s 2 (a; b) with t 6= s; then by (2.18) for � = M and  = m we recapture
the inequality (2.24) as well.

Remark 4. We also observe that if f : (a; b)! R is di¤erentiable on (a; b) and

mg0 (t) � f 0 (t) �Mg0 (t) for all t 2 (a; b) ;
then the inequality (2.23) holds.

3. Related Results

The following identity is of interest as well:

Lemma 2. Let g : [a; b] ! [g (a) ; g (b)] be a strictly increasing function that is
di¤erentiable on (a; b) and f : (a; b) ! R a locally absolutely continuous function
on (a; b) ; then

(3.1) (Tgf) (a; b; t) =
1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
+
1

�
PV

Z b

a

 Z 1

0

�
f 0 � g�1

�
((1� s) g (�) + sg (t))

(g0 � g�1) ((1� s) g (�) + sg (t)) ds
!
g0 (�) d�

for any t 2 (a; b) :

Proof. For an absolutely continuous function h : [c; d] ! C and for x; y 2 [c; d]
with x 6= y we have

h (y)� h (x)
y � x =

R y
x
h0 (u) du

y � x :

If we use the change of variable u = (1� s)x+sy; s 2 [0; 1] we have du = (y � x) ds
and thenR y

x
h0 (u) du

y � x =
(y � x)

R 1
0
h0 ((1� s)x+ sy) ds
y � x =

Z 1

0

h0 ((1� s)x+ sy) ds:

For t; � 2 (a; b) with t 6= � we then have
f (�)� f (t)
g (�)� g (t) =

f � g�1 (g (�))� f � g�1 (g (t))
g (�)� g (t)

=

Z 1

0

�
f � g�1

�0
((1� s) g (�) + sg (t)) ds:

For z 2 (g (a) ; g (b)) we have�
f � g�1

�0
(z) =

�
f 0 � g�1

�
(z)
�
g�1

�0
(z) =

�
f 0 � g�1

�
(z)

(g0 � g�1) (z)
and thereforeZ 1

0

�
f � g�1

�0
((1� s) g (�) + sg (t)) ds =

Z 1

0

�
f 0 � g�1

�
((1� s) g (�) + sg (t))

(g0 � g�1) ((1� s) g (�) + sg (t)) ds

for t; � 2 (a; b) with t 6= � :
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This implies that

PV

Z b

a

f (�)� f (t)
g (�)� g (t) g

0 (�) d�

= PV

Z b

a

 Z 1

0

�
f 0 � g�1

�
((1� s) g (�) + sg (t))

(g0 � g�1) ((1� s) g (�) + sg (t)) ds
!
g0 (�) d�

for t 2 (a; b) and by the equality (2.2) we deduce (3.1). �

Now, for '; � 2 C and [a; b] an interval of real numbers, de�ne the sets of
complex-valued functions

�U[a;b] (';�) :=
n
g : [a; b]! CjRe

h
(�� g (t))

�
g (t)� '

�i
� 0 for a.e. t 2 [a; b]

o
and

��[a;b] (';�) :=

�
g : [a; b]! Cj

����g (t)� '+�2
���� � 1

2
j�� 'j for a.e. t 2 [a; b]

�
:

The following representation result may be stated.

Proposition 3. For any '; � 2 C, ' 6= �; we have that �U[a;b] (';�) and ��[a;b] (';�)
are nonempty, convex and closed sets and

(3.2) �U[a;b] (';�) = ��[a;b] (';�) :

The proof is as in Proposition 1.

Corollary 9. For any '; � 2 C, ' 6= �;we have that
�U[a;b] (';�) = fg : [a; b]! C j (Re�� Re g (t)) (Re g (t)� Re')(3.3)

+(Im�� Im g (t)) (Im g (t)� Im') � 0 for a.e. t 2 [a; b]g :

Now, if we assume that Re (�) � Re (') and Im (�) � Im (') ; then we can
de�ne the following set of functions as well:

�S[a;b] (';�) := fg : [a; b]! C j Re (�) � Re g (t) � Re (')(3.4)

and Im (�) � Im g (t) � Im (') for a.e. t 2 [a; b]g :

One can easily observe that �S[a;b] (';�) is closed, convex and

(3.5) ; 6= �S[a;b] (';�) � �U[a;b] (';�) :

Theorem 6. Let g : [a; b] ! [g (a) ; g (b)] be a strictly increasing function that is
di¤erentiable on (a; b) and f : (a; b) ! R a locally absolutely continuous function
on (a; b) : Assume that there exists '; � 2 C, ' 6= �; such that f

0

g0 2 ��[a;b] (';�) ;

then we have����(Tgf) (a; b; t)� 1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
� '+�

2�
(g (b)� g (a))

����(3.6)

� 1

2�
j�� 'j (g (b)� g (a))

for all t 2 (a; b) :
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Proof. Let t; � 2 (a; b) with t 6= � . Since f 0

g0 2 ��[a;b] (';�), hence�����
�
f 0 � g�1

�
((1� s) g (�) + sg (t))

(g0 � g�1) ((1� s) g (�) + sg (t)) �
'+�

2

����� � 1

2
j�� 'j

for a.e. s 2 [0; 1] :
Taking the integral over s in this inequality, we get�����

Z 1

0

�
f 0 � g�1

�
((1� s) g (�) + sg (t))

(g0 � g�1) ((1� s) g (�) + sg (t)) ds�
'+�

2

�����
�
Z 1

0

�����
�
f 0 � g�1

�
((1� s) g (�) + sg (t))

(g0 � g�1) ((1� s) g (�) + sg (t)) �
'+�

2

����� ds � 1

2
j�� 'j

for t; � 2 (a; b) with t 6= � :
Using the property (2.20) we get�����PV

Z b

a

 Z 1

0

�
f 0 � g�1

�
((1� s) g (�) + sg (t))

(g0 � g�1) ((1� s) g (�) + sg (t)) ds
!
g0 (�) d�

�'+�
2

(g (b)� g (a))
����

� PV
Z b

a

�����
Z 1

0

�
f 0 � g�1

�
((1� s) g (�) + sg (t))

(g0 � g�1) ((1� s) g (�) + sg (t)) ds�
'+�

2

����� g0 (�) d�
� 1

2
j�� 'j (g (b)� g (a))

for t 2 (a; b) ; and by the equality (3.1) we deduce the desired result (3.6). �

4. Examples

Consider the following logarithmic �nite Hilbert transform

(4.1) (Tlnf) (a; b; t) :=
1

�
lim
"!0+

"Z t�"

a

f (�)

� ln
�
�
t

�d� + Z b

t+"

f (�)

� ln
�
�
t

�d�#
where t 2 (a; b) � (0;1) :
If we assume that if f : (a; b)! R is di¤erentiable on (a; b) and

(4.2)
m

t
� f 0 (t) � M

t
for all t 2 (a; b) ;

then by Remark 4 we have

(4.3)
m

�
ln

�
b

a

�
� (Tlnf) (a; b; t)�

1

�
f (t) ln

 
ln
�
b
t

�
ln
�
t
a

�! � M

�
ln

�
b

a

�
for all t 2 (a; b) :
In particular, we have

(4.4)
m

�
ln

�
b

a

�
� (Tlnf) (a; b;G (a; b)) �

M

�
ln

�
b

a

�
;

where G (a; b) :=
p
ab is the geometric mean of a; b > 0:
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This inequality can be extended for complex functions as follows: if f : (a; b)! C
is locally absolutely continuous on (a; b) and there exists the complex numbers ';
� 2 C, ' 6= � such that

(4.5)

����tf 0 (t)� '+�2
���� � 1

2
j�� 'j for a.e. t 2 [a; b] ;

then �����(Tlnf) (a; b; t)� 1

�
f (t) ln

 
ln
�
b
t

�
ln
�
t
a

�!� '+�
2�

ln

�
b

a

������(4.6)

� 1

2�
j�� 'j ln

�
b

a

�
for all t 2 (a; b) :
In particular, we have

(4.7)

����(Tlnf) (a; b;G (a; b))� '+�2�
ln

�
b

a

����� � 1

2�
j�� 'j ln

�
b

a

�
:

Now, observe that the fact that f �exp is of H-r-Hölder type on (ln a; ln b), where
H > 0; r 2 (0; 1] and (a; b) � (0;1) ; is equivalent to the inequality

jf (t)� f (s)j � H jln t� ln sjr for all t; s 2 (a; b) ;

then by (2.8) we get

(4.8)

�����(Tlnf) (a; b; t)� 1

�
f (t) ln

 
ln
�
b
t

�
ln
�
t
a

�!����� � H

�r

��
ln

�
b

t

��r
+

�
ln

�
t

a

��r�
for all t 2 (a; b) :
In particular, we have

(4.9) j(Tgf) (a; b;G (a; b))j �
H

2r�1�r

�
ln

�
b

a

��r
:

Consider the exponential �nite Hilbert transform�
Texp(�)f

�
(a; b; t)(4.10)

:=
1

�
lim
"!0+

"Z t�"

a

f (�) exp (��)

exp (��)� exp (�t)d� +
Z b

t+"

f (�) exp (��)

exp (��)� exp (�t)d�
#

=
1

�
exp (��t)

� lim
"!0+

"Z t�"

a

f (�) exp (� (� � t))
exp (� (� � t))� 1 d� +

Z b

t+"

f (�) exp (� (� � t))
exp (� (� � t))� 1 d�

#

where t 2 (a; b) � R:
If we assume that if f : (a; b)! R is di¤erentiable on (a; b) and

n exp (�t) � f 0 (t) � N exp (�t) for all t 2 (a; b) ;
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then by applying Remark 4 for m = n
� ; M = N

� we have
n

��
(exp (�b)� exp (�a))(4.11)

�
�
Texp(�)f

�
(a; b; t)� 1

�
f (t) ln

�
exp (�b)� exp (�t)
exp (�t)� exp (�a)

�
� N

��
(exp (�b)� exp (�a))

for any t 2 (a; b) :
If we take in (4.11)

t = LME� (a; b) := ln

�
exp (�a) + exp (�b)

2

�1=�
;

then we get
n

��
(exp (�b)� exp (�a)) �

�
Texp(�)f

�
(a; b;LME� (a; b))(4.12)

� N

��
(exp (�b)� exp (�a)) :

This inequality can be extended for complex functions as follows: if f : (a; b)! C
is locally absolutely continuous on (a; b) and there exists the complex numbers ';
� 2 C, ' 6= � such that���� f 0 (t)exp (�t)

� '+�
2

���� � 1

2
j�� 'j for a.e. t 2 [a; b] ;

then

(4.13)

�����Texp(�)f� (a; b; t)� 1

�
f (t) ln

�
exp (�b)� exp (�t)
exp (�t)� exp (�a)

�
�'+�
2��

(exp (�b)� exp (�a))
����

� 1

2��
j�� 'j (exp (�b)� exp (�a))

for any t 2 (a; b) :
In particular, we get�����Texp(�)f� (a; b;LME� (a; b))� '+�2��

(exp (�b)� exp (�a))
����(4.14)

� 1

2��
j�� 'j (exp (�b)� exp (�a)) :

Now, observe that the fact that f�
�
1
� ln

�
is ofH-r-Hölder type on (exp (�a) ; exp (�b)),

where H > 0; r 2 (0; 1] and (a; b) � R; is equivalent to the inequality
(4.15) jf (t)� f (s)j � H jexp (�t)� exp (�s)jr for all t; s 2 (a; b) ;
then by the inequality (2.8) we get�����Texp(�)f� (a; b; t)� 1

�
f (t) ln

�
exp (�b)� exp (�t)
exp (�t)� exp (�a)

�����(4.16)

� H

�r
[(exp (�b)� exp (�t))r + (exp (�t)� exp (�a))r]

for any t 2 (a; b) :
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In particular, we have

(4.17)
���Texp(�)f� (a; b;LME� (a; b))�� � H

2r�1�r
(exp (�b)� exp (�a))r :

For [a; b] � (0;1) and g (t) = tr; t 2 [a; b] ; r > 0; we consider the positive
r-power Hilbert transform

(4.18) (Trf) (a; b; t) :=
r

�
lim
"!0+

"Z t�"

a

f (�) � r�1

� r � tr d� +

Z b

t+"

f (�) � r�1

� r � tr d�

#
;

where t 2 (a; b) :
If f : (a; b)! R is di¤erentiable on (a; b) and

(4.19) mtr�1 � f 0 (t) �Mtr�1 for all t 2 (a; b) ;
then by 2.23

(4.20)
m

�r
(br � ar) � (Trf) (a; b; t)�

1

�
f (t) ln

�
br � tr
tr � ar

�
� M

�r
(br � ar)

for all t 2 (a; b) � (0;1) :
In particular, we have

(4.21)
m

�r
(br � ar) � (Trf) (a; b;Mr (a; b)) �

M

�r
(br � ar)

where Mr (a; b) :=
�
ar+br

2

�1=r
Also, if f : (a; b) ! C is locally absolutely continuous on (a; b) and there exists

the complex numbers '; � 2 C, ' 6= � such that

(4.22)

����f 0 (t)tr�1
� '+�

2

���� � 1

2
j�� 'j for a.e. t 2 [a; b] ;

then ����(Trf) (a; b; t)� 1

�
f (t) ln

�
br � tr
tr � ar

�
� '+�

2�r
(br � ar)

����(4.23)

� 1

2�r
j�� 'j (br � ar)

for all t 2 (a; b) � (0;1) :
In particular, we have

(4.24)

����(Trf) (a; b;Mr (a; b))�
'+�

2�r
(br � ar)

���� � 1

2�r
j�� 'j (br � ar) :

The function f � (�)1=r is of H-s-Hölder type on (ar; br), where H > 0; s 2 (0; 1];
is equivalent to

jf (t)� f (u)j � H jtr � urjs for all t; u 2 (a; b) ;
then by (2.8) we have

(4.25)

����(Trf) (a; b; t)� 1

�
f (t) ln

�
br � tr
tr � ar

����� � H

�s
[(br � tr)s + (tr � ar)s]

for all t 2 (a; b) � (0;1) :
In particular,

(4.26) j(Trf) (a; b;Mr (a; b))j �
H

2s�1�s
(br � ar)s :
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The case r = 1 provides the corresponding results for the regular Hilbert trans-
form, see [1].
Similarly, we can consider the negative p-power Hilbert transform

(4.27) (T�pf) (a; b; t) :=
ptp

�
lim
"!0+

"Z t�"

a

f (�)

� (�p � tp)d� +
Z b

t+"

f (�)

� (�p � tp)d�
#
;

for [a; b] � (0;1) and p > 0:
If f : (a; b)! R is di¤erentiable on (a; b) and

(4.28) m � tp+1f 0 (t) �M for all t 2 (a; b) ;

then by (2.23) we have

m

�p

�
bp � ap
apbp

�
� (T�pf) (a; b; t)�

1

�
f (t) ln

�
(bp � tp) ap
bp (tp � ap)

�
(4.29)

� M

�p

�
bp � ap
apbp

�
for all t 2 (a; b) :
In particular,

m

�p

�
bp � ap
apbp

�
� (T�pf) (a; b;M�p (a; b))�

1

�
f (t) ln

�
(bp � tp) ap
bp (tp � ap)

�
(4.30)

� M

�p

�
bp � ap
apbp

�
where M�p (a; b) :=

�
a�p+b�p

2

��1=p
:

The case p = 1 is of interest, since in this case

(4.31) (T�1f) (a; b; t) :=
t

�
lim
"!0+

"Z t�"

a

f (�)

� (� � t)d� +
Z b

t+"

f (�)

� (� � t)d�
#
;

and if

(4.32) m � t2f 0 (t) �M for all t 2 (a; b) ;

then

(4.33)
m

�

�
b� a
ab

�
� (T�1f) (a; b; t)�

1

�
f (t) ln

�
(b� t) a
b (t� a)

�
� M

�

�
b� a
ab

�
for all t 2 (a; b) :
In particular, we have

(4.34)
m

�

�
b� a
ab

�
� (T�1f) (a; b;H (a; b)) �

M

�

�
b� a
ab

�
where H (a; b) := 2ab

a+b is the harmonic mean of a; b > 0:
Also, if f : (a; b) ! C is locally absolutely continuous on (a; b) and there exists

the complex numbers '; � 2 C, ' 6= � such that

(4.35)

����t2f 0 (t)� '+�2
���� � 1

2
j�� 'j for a.e. t 2 [a; b] ;
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then ����(T�1f) (a; b; t)� 1

�
f (t) ln

�
(b� t) a
b (t� a)

�
�  + �

2�

�
b� a
ab

�����(4.36)

� 1

2�
j�� j

�
b� a
ab

�
for all t 2 (a; b) :
In particular, we have

(4.37)

����(T�1f) (a; b;H (a; b))�  + �2�

�
b� a
ab

����� � 1

2�
j�� j

�
b� a
ab

�
:

The fact that f �
h
� (�)�1

i
is of H-s-Hölder type on

�
� 1
a ;�

1
b

�
, where K > 0; s 2

(0; 1]; is equivalent to

jf (t)� f (u)j � K
���� t� utu

����s for all t; u 2 (a; b) ;
then by (2.8) we have

(4.38)

����(T�1f) (a; b; t)� 1

�
f (t) ln

�
(b� t) a
b (t� a)

����� � K

�s

��
b� t
bt

�s
+

�
t� a
ta

�s�
for all t 2 (a; b) :
In particular, we have

(4.39) j(T�1f) (a; b;H (a; b))j �
K

2s�1�s

�
b� a
ba

�s
:
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