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GENERALIZED FINITE HILBERT TRANSFORM AND SOME
BASIC INEQUALITIES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we consider a generalized finite Hilbert transform
of complex valued functions and establish some basic inequalities for several
particular classes of interest. Applications for some particular instances of
finite Hilbert transforms are given as well.

1. INTRODUCTION

Finite Hilbert transform on the open interval (a,b) is defined by

b
(1.1) (Tf)(a,b;t) := %PV "1) dT = lim [/ /t+

a T— e—0+

m (T —1)

for t € (a,b) and for various classes of functions f for which the above Cauchy
Principal Value integral exists, see [13, Section 3.2] or [17, Lemma II.1.1].
We say that the function f : [a,b] — R is a-H-Hoélder continuous on (a,b), if
lf (&)= f(s)| < H|t—s|" forallt, s € (a,b),
where a € (0,1], H > 0.
The following theorem holds.

Theorem 1 (Dragomir et al., 2001 [1]). If f : [a,b] — R is a-H-Hélder continuous
n (a,b), then we have the estimate

@) -0 (20) < L je-ar s 0- 0

t—a am

for allt € (a,b).
The following two corollaries are natural.

Corollary 1. Let f : [a,b] — R be an L-Lipschitzian mapping on |a,b], i.e. f
satisfies the condition

lf@&)—f)|<Llt—s| forallt, s€]la,b], (L>0).

Then we have the inequality

(Tf) (a,b;t) — fff) 1n<b—t>’ _Lb-a)

t—a T
for allt € (a,b).

1991 Mathematics Subject Classification. 26D15; 26D 10.
Key words and phrases. Finite Hilbert transform, Integral inequalities.

1

RGMIA Res. Rep. Coll. 21 (2018), Art. 36, 20 pp.


e5011831
Typewritten Text
Received 11/04/18

e5011831
Typewritten Text
RGMIA Res. Rep. Coll. 21 (2018), Art. 36, 20 pp.
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Corollary 2. Let f : [a,b] — R be an absolutely continuous mapping on [a,b]. If
' € Loo [a,b], then, for all t € (a,b), we have

(Tf) (a,b;t) — f7(rt) " (b )

t—a

< e (b= a)

)
71'

where || f'|| o, = essup;e (o) |f (t)] < 00.
We also have:

Theorem 2 (Dragomir et al., 2001 [1]). Let f : [a,b] — R be a monotonic
nondecreasing (nonincreasing) function on [a,b]. If the finite Hilbert transform
(Tf)(a,b,-) exists in every t € (a,b), then

T @) = () 17 0 (1= )

t—a
for allt € (a,b).
The following result can be useful in practice.
Corollary 3. Let f : [a,b] = R and ¢ : [a,b] — R, £(t) =t such that f—ml, M{—f

are monotonic nondecreasing, where m, M are given real numbers. If (T f) (a,b, )
exists in every point t € (a,b), then we have the inequality

an P capann - Lo (7o) < 0N

™

—a
for allt € (a,b).
Remark 1. If the mapping is differentiable on (a,b) the condition that f — ml,
M/{— f are monotonic nondecreasing is equivalent with the following more practical
condition

m < f'(t) <M forallte (a,b).

From (1.2) we may deduce the following approximation result
1 b—t M+m M —m
(T Gatst) ~ 2 (1) -

— <
t—a 2m (b—a)
for allt € (a,b).

- 27

For several recent papers devoted to inequalities for the finite Hilbert transform
(Tf), see [2]-[10], [14]-[16] and [18]-[19].

We can naturally generalize the concept of Hilbert transform as follows.

For a continuous strictly increasing function g : [a,b] — [g(a),g (b)] that is
differentiable on (a,b) we define the following generalization of the finite Hilbert
transform of a function f : (a,b) — C by

(13) (@) (@ bit) = _PV / feleil

T f()d ()

A V / J e —g@1"
t

1 e (g (r CFDd ),
[ soseme +€g<T)_g<t)d]

— 1
T e—0+
for t € (a,b), provided the above PV exists.
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For [a,b] C (0,00) and ¢ (t) = Int, t € [a,b] we have

Tt f() G
/ ﬂn(;)d”/wln(z)“]
where t € (a,b).

For g (t) = exp (at), t € [a,b] C R with o > 0 we have
(15) (Texp(a)f) (CL, ba t)
1 lj/ts I (7)exp (a7) dT_%J/b I (7)exp (a7) dT]

= — i
o exp (at) — exp (at) Le exp (aT) —exp (at)

(1L4)  (Tf) (abit) = ~ lim

T e—0+

T e—0+

where ¢ € (a,b).
For [a,b] C (0,00) and ¢ (¢) =1t", t € [a,b], r > 0, we have

(1.6) (T-f) (a, b;t) :== T [/t—f MdT + b f(T)TT_ldT] )

7—7’ — t’F tte 7—7" — tT‘

where t € (a,b).
Similarly, we can consider the function g (t) = —t?, t € [a,b] C (0,00), p > 0,
and then we have

(7)) (T_pf)(abit) =2 lim Vt %dw

T e—0+ tye P —T7P

_ptP ) b fm)
_752%1+ [/a T(Tp—tp)dTJr/HET(Tp—tp)dT]’
where t € (a,b).

For [a,b] C [—L 1} and g (t) =sin(pt), t € [a, b] where p > 0, we have

' f<T>TpldT]

2p7 2p

(18) (Tsin(p) f) (a, b; t)
. l /” f@)cos(pr) /b £ (7) cos (o) dT]

sin (p7) — sin (pt) 1 sin (p7) — sin (pt)

where t € (a,b).
For g (t) = sinh (ot) , ¢ € [a,b] C R with ¢ > 0 we have

(19) (Tsinh(a)f) (a, b; t)
— % im [/ts f (1) cosh (a1) d7'+/b f () cosh (oT)

T e—0+ sinh (o7) — sinh (ot) 1. sinh (o7) — sinh (o) T]

where t € (a,b).
Similar transforms can be associated to the following functions as well:
(t) = tan (pt), t € [a,b] C |———, | where p >0
= tan a ——, — | where
g p ) ) 2p) 2p p )
and
g (t) = tanh (ot), t € [a,b] C R with ¢ > 0.
Motivated by the above facts, in this paper we consider the generalized finite
Hilbert transform (T} f) (a,b;t) of complex valued functions f and establish some
basic inequalities for several particular classes of interest. Applications for some
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particular instances of finite Hilbert transforms as the one presented in (1.4)-(1.9)
are given as well.
2. MAIN RESULTS

Consider the function 1(¢t) = 1, ¢ € (a,b). We can state the following basic
result:

Lemma 1. For a continuous strictly increasing function g : [a,b] — [g(a),g (b)]
that is differentiable on (a,b) we have

(2.1) (T,1) (a,b;t) = L (M) , t € (a,b).

™

We also have for f : (a,b) — C that

(2.2) (T,f) (a,b;t) = %f(t) In <M> + %PV/ Mg/ (1) dr

for t € (a,b), provided that the PV from the right hand side of the equality (2.2)
exists.

Proof. We have

t—e / T b ! T

T e—0+ T)—g(t) e 9(7) —
=~ lim [Inlg () =g Ol + (g () g DI,
= L lim (g ()~ g(t—2) ~Tn(g () g (@)
+In(g(b) — g (£) —In (g (t+2) — g (£))]

™ \g(t) - (t+e)—g(t)
for t € (a,b).
Since g is differentiable, we have
9 —glt—c) L g
=0+ g(t+e)—g(t) 0+ Q(H‘E;—g(t) gt
for ¢t € (a,b), and by (2.3) we get (2.1).
From the definition (1.3) we have
Loy D F OO,
(T,f) (. bit) = PV / S d
1 (D) - fW) g (r)dr 1 IOVAG
- [ e [ e
_ 1 ") - @)y (dr 1 b g (r)dr
v 90 f”PVAgv>gw
_leom g(t) b(f(T)—f(t))g’(T)dT
o (Sg=g@) 2 [
for t € (a,b), which proves the 1dent1 ty (2.2). O
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The following result holds:

Theorem 3. Assume that g is as in Lemma 1 and f : [a,b] — R is continuous on
[a,b] and differentiable on (a,b). If

!/
‘f/ = sup
9 1l(a,b),00 s€(a,b)
then (Tyf) (a,b;t) exists for allt € (a,b) and

moEno) BE

f'(s)
g’ (s)

< 00,

f/

(2.4) ;

[9 (b) — g (a)]

(a,b),c0

(T, f) (a, b ) — % £(®)n (

for allt € (a,b).

Proof. By Cauchy’s mean value theorem, for any t, 7 € (a,b) with t # 7 there exists
an s between ¢t and 7 such that

fO) =@ _ ()

g(r)=g(t) g'(s)
therefore for any t, 7 € (a,b) with ¢ # 7 we have

fO-rol |
‘gm—g(w‘g’gf e
This implies that
TG ] I o
[ @ms|L] | we-a-go)
and ,
f(T)_f(t) / ) dr Ji _
L5 o= |5 iy T O

for ¢t € (a,b) and min {¢t — a,b—t} > > 0.
By the triangle inequality for the modulus and the fact that ¢’ (7) > 0 for
t € (a,b), we have

/”f(T)f(t)
a 9(1)—9g()

t—e
= /
a

f/
g

GRS IOM
(2.5) FeEO!

t+e 9(7')_
FE-F0] b
OETIOIK (T)d”/m

. [g(b) —g(t+e)+g(t—e)—g(a)

g (t)dr +

]

for ¢ € (a,b) and min {¢t — a,b—t} > > 0.
By taking the limit over € — 0+ in (2.5) we get

S IGEIION f
PV/a 7() ( g (r)dr p

(26) g(1)—g(t)

9 (b) = g(a)]

(a,b),c0

S ‘

for ¢t € (a,b).
By utilising the equality (2.2) we obtain from (2.6) the desired result (2.4). O
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If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can define the g-mean of two numbers

a,bel as ( @ (b))
M, (a,b) == g~* % .

If I =R and ¢ (t) =t is the identity function, then M, (a,b) = A(a,b) == a7+b’
the arithmetic mean. If I = (0,00) and g (t) = Int, then M, (a,b) = G (a,b) := Vab,
the geometric mean. If I = (0,00) and g(t) = 1, then M (a,b) = H (a,b) =

%, the harmonic mean. If I = (0,00) and g (t) = t?, p # 0, then M, (a,b) =

M, (a,b) := (#)l/p, the power mean with exponent p. Finally, if I = R and
g (t) = expt, then

M, (a,b) = LME (a,b) :=In (expa+epr) ’

2
the LogMeanFExp function.

Corollary 4. With the assumptions of Theorem 3, we have

! 9(5) — g(a)].

(2.7) (T f) (ab; My (a,b))] <~ || .

™

g/
We also have:

Theorem 4. Let g : [a,b] — [g(a),g(b)] be a strictly increasing function that is
differentiable on (a,b) and f : (a,b) — C such that f o g~' is of H-r-Hélder type
on (g (a),g (b)), where H > 0, r € (0,1], then

(28) (1,0 (@0 - 21 O (LR =10
< Lo ®) g 0) + (9() ~ g (@)
fort € (a,b).
In particular, in the Lipschitz case, we have for H = L that
29 |mn@so-tron (49220 < Lpo )

fort e (a,b).
Proof. For t € (a,b) and min {t —a,b—t} > e > 0 we have

SO FO] [T e )~ Fog (a0)
/a o g7 (M4 */a GErI0
F

g (1) dr
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and
' o -rol ., _ PN fog (g(n) = fog ()] ,
Lo lse=smle ow= ] 9™~ g0 g
" lg(m) —g @)

<H

b

By adding these two inequalities, we get

QO] gy [ OO
ew) [ EEE s [ LT )

< Tl =g ) + (60 - g (@)

—(gt+e)—g®) —(9(t) —g(t—¢))]

for ¢t € (a,b) and min {¢t —a,b—t} > & > 0.
By using the triangle inequality and taking the limit over ¢ — 0+, we get

S IGER IO
PV/a 79( g (r)dr

s < 1) -9 + 0 0) - g(@)]

r

for t € (a,b).
Finally, by making use of the equality (2.2) we deduce the desired result (2.8). O

Corollary 5. With the assumptions of Theorem /4, we have
H

(211) (T ) (0,5 M,y (@,0)] < 52— (9 () — g ()"
In particular, for r =1, we get
(2.12) |(Tg.f) (a,b; Mg (a,b))| < %(g (b) —g(a)).

For a function f : (a,b) — C and an injective function g : (a,b) — C we define
the divided difference

f@)—f(s)
g(t)—g(s)
Now, for v, ' € C, v # T, an injective function g : (a,b) — C and (a, b) a finite

interval of real numbers, define the sets of complex-valued functions (see also [11]
for a similar definition):

[f,g:t, 8] := for ¢, s € (a,b), t # s.
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(2.13) Uap),g.a (7,1)
={f: (@) > CIRe|[(T = [f,g:t.5) (it~ 7) | 2 0,
for all £, s € (a,b), t;és}
and
y+T
2

210) Aanpa (D)= {1 @) =€) [[ngitsl - 5| < Jir -

for all ¢, s € (a,b), t#s}
The following representation result may be stated.

Proposition 1. For any v, I' € C, v # T, we have that Uggp)g.a(7,T) and

Aap),g.d (v,T) are nonempty, convex and closed sets and

(2.15) Ulapy,d (1:T) = Dapy,a (1:T) -
Proof. We observe that for any z € C we have the equivalence
y+T 1
T <« r=
== 5=l

if and only if
Re[(T'—z2)(z—7)] > 0.
This follows by the equality

1 v+T 2 _
ST =7 =]z = 5—| =Re[(T—2)(z—7)
4 2
that holds for any z € C.
The equality (2.15) is thus a simple consequence of this fact. [

On making use of the complex numbers field properties we can also state that:

Corollary 6. For any~, ' € C, v # T', we have that

U(a,b),g,d (77F) = {f : (a7b) —C | (RQF — Re [f,g,t,S]) (Re [fag;tHS] - R'e’)/)

+ (ImT — Im [f, g;¢,8]) Im[f,g;t, 8] —Im~) >0 for allt, s € (a,b), t #s}.

Now, if we assume that Re (I') > Re (y) and Im (I") > Im (7y) , then we can define
the following set of functions as well:

(2.16)  S(ap).g.a (1:T) :=={f : (a,b) = C | Re(T) = Re[f, g, 5] > Re(7)

and Im (T") > Im [f, g;¢t,s] > Im (y) for all ¢, s € (a,b), ¢t # s}.
One can easily observe that S(a,b)g,d (7,T') is closed, convex and

(217) (Z) 7é g(a,b),g,d (77 F) c U(a,b),g,d (’Ya F) .
We have:
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Theorem 5. Let g : [a,b] — [g(a),g(b)] be a strictly increasing function that is
differentiable on (a,b) and f : (a,b) — C such that f € A p).g.a (7, 1) for some v,
I'eC, v#T. Then we have

219 |mp@nn - Lom(

(9(b) —g(a))

g(b)—g(t)> 74T
2T

< T =l (g () - 9 (@)
for allt € (a,b).

Proof. Since f € A(a)b)’d (7,T) it follows that

v+T
) -7 -1
for any ¢, s € (a,b).

By the continuity of the modulus property, we have

70— F ) - |

@0 -] < 510 =21la )~ 0)

)= < |10 - 76~ 3T 60 - (6)

IA

ST =llg ()~ g (5).
for any ¢, s € (a,b), which implies that
1
If@) = f) <5 (v +TI+ =99 () —g(s)l
for any ¢, s € (a,b). This can be written as
[fog™ (g() = Fog™ (g ()] < %(|’Y+F| + =019 () =g (s)]

for any t, s € (a,b), namely fog~! is Lipschitzian with the constant % (] + I'| + [I' — 7])

on (g(a),g(b)).
Therefore the Cauchy Principal value

rE - ()
rv | g —gm? M

exists (see [13, Section 3.2] or [17, Lemma II.1.1]) and we have

Loy [ (O =10 Ty
e v [ (G-t ) e
b ) —
——pv [(LB20 i - T g0 - ()
— (@) (a.b:0) - 2 O (L) - 6 0) - g (0)

for any ¢ € (a,b).
The following property of the Cauchy-Principal Value follows by the properties

of integral, modulus and limit,

(2.20)

b b
PV/ Alt,s)ds SPV/ |A (t,s)|ds,

assuming that the PV's involved exist for all ¢ € (a, b).
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Using the equality (2.19) and the property (2.20) we get

- Ly (30200 e

b _ b
S%PV/G ];E:;_Z((f)) 77;11 g’(T)dTS%IF*’YI/a g (r)dr

= L0 =g () — 9 (a))

T
for all ¢ € (a,b) and the inequality (2.18) is obtained. O

(g(b) —g(a))

Corollary 7. With the assumptions of Theorem 5 we have

v+T

(221) |(T,) (0,55 My (0,5)) ~ L5 (9 (8) — g (@)| < 5= T =21 (9 8) — g (a).

The case of monotonic functions f : (a,b) — R provides the following simple
result:

Proposition 2. Let g : [a,b] — [g(a),g (b)] be a strictly increasing function that is
differentiable on (a,b) and f : (a,b) — R a monotonic nondecreasing (nonincreas-
ing) function so that the generalized finite Hilbert transform (Tgf) (a,b;t) exists,
then

1 g () —g(t) )
2.22 T, f) (a,b;t) > (<) =f (#)In | Z2—L
(2:22) (B0 (00 2 () L @m (25220
for any t € (a,b).
Proof. The proof follows by the representation (2.2) on observing that if f : (a,b) —

R is a monotonic nondecreasing (nonincreasing) function on (a,b), then for any ¢,
T € (a,b) we have

which implies that

for any t € (a,D). O

Corollary 8. Let g : [a,b] — [g(a),g (b)] be a strictly increasing function that is
differentiable on (a,b) and f : (a,b) — R a function such that for some real numbers
m < M we have that f —mg and Mg — f are monotonic nondecreasing on (a,b) .
If the generalized finite Hilbert transform (Tyf) (a,b;t) exists, then we have

(2.23) % (g (b) = g(a)) < (Tyf) (a,bt) — %f () In (M)
<2 (90)-g()

for any t € (a,b).
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This can be also written as

20 |@ N @n0- 2ron(L8Z10) - L arm 6o - g)
< oo (M —m) (g (8) — g (a)

for any t € (a,b).

Proof. Applying proposition (2.22) for the monotonic nondecreasing function f—mg
we have

(2.25) (Ty (f —mg)) (a,b;1)

> 20 -mo e (£ =20
_ 1 (9 —g@®) _ 1 (90 =9 @)
=/ 0! <g<t>—g<a>> 791 (gu)—g(a))

for all ¢t € (a,b).
By the linearity of the generalized Hilbert transform we also have

(Ty (f = mg)) (a,b;) = (T f) (a, b;t) —m (Tyg) (a, b;1)
and by the identity (2.2) for f = g we get

_ b T) —
ot o () v S0
Lo (2822 4 L - g ).
which gives that
(2.26) (Ty (f —mg)) (a,b; 1)
= @) (atst) - Zo o (L1 ) - T g 0) - g (a)

for all ¢t € (a,b).
On making use of (2.25) and (2.26) we get

(80 8@ m ) o)
201 <g<t>—g<a>> g (01 <g<t>—g )

for all ¢ € (a,b), which proves the first inequality in (2.23).
The second part follows in a similar way by considering the monotonic nonde-
creasing function Mg — f. O

Remark 2. From (2.28) we get for t = a7+b that

m

(2.27) ™ (g (5) — g (@) < (T,f) ( b *b) <M G- g(a),

T 2 T

where f and g are as in Corollary 8.
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Remark 3. If f and g are as in Corollary 8, then we observe that

FO-16)

g(t)—g(s)

for all t, s € (a,b) with t # s, then by (2.18) for T = M and v = m we recapture
the inequality (2.24) as well.

Remark 4. We also observe that if f : (a,b) — R is differentiable on (a,b) and
mg' (t) < f'(t) < Mg’ (t) for allt € (a,b),
then the inequality (2.23) holds.

m < [f,g;t,s] =

3. RELATED RESULTS
The following identity is of interest as well:

Lemma 2. Let g : [a,b] — [g(a),g ()] be a strictly increasing function that is
differentiable on (a,b) and f : (a,b) — R a locally absolutely continuous function
on (a,b), then

31 (@00 = 2 om (&
1o (P (feg ) ((A=s)g(r)+s9(t) |
+ WPV/(L </0 (7 og D) 5o (0) ds) g (r)dr

for any t € (a,b).

Proof. For an absolutely continuous function A : [¢,d] — C and for z, y € [c,d]
with  # y we have
h(y)—h(z) fly K (u)du
y—z  y-—x
If we use the change of variable u = (1 — s) x+sy, s € [0, 1] we have du = (y — z) ds
and then

[ W (wdu _ (y—a)fo b ((1=s)z+sy)ds :/Olh/<<1—s)x+sy)ds~

y—z y—z
For ¢, T € (a,b) with ¢ # 7 we then have

f()—f@®) _fogt(g(r)—fog ' (g(®)

g(1)—g(t) g(r)—g(t)
1
- / (Fog ™) ((1—s)g(r)+ s (t)) ds.

For z € (g (a), g (b)) we have

oo ()= (#oa1)(2) (=1 (2 _(flogil)(z)
(Fog™) ()= (o) () o) ) = e &

and therefore

/O (fog‘l)'((l—S)g(T)+sg(t))d8=/0

for t, 7 € (a,b) with t # 7.
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This implies that
b
—f(t
P [LOI0
o 9(1)—g(t)

t

o [ e ) (A=) g +sg ()
—PV/a (/0( dS)g(T)dT

g'og ) (1 =s)g(r)+s9 (1))

for ¢ € (a,b) and by the equality (2.2) we deduce (3.1). O

Now, for ¢, ® € C and [a,b] an interval of real numbers, define the sets of
complex-valued functions

Ulap) (0, ®) = {g : [a, 0] — C|Re {((IJ —g(t) (m- E)] >0 for ae. t€ [a,b]}
and

Apay) (o, @) = {g: [a,b] — C| ‘g(t) _pte

2

1
‘< §\<I>—<p| for ae. t € [a,b]}.

The following representation result may be stated.

Proposition 3. For any o, ® € C, ¢ # ®, we have that U[a)b] (¢, ®) and A[a’b] (p,®)
are nonempty, convex and closed sets and

(3.2) Ula,) (¢, @) = Do) (0, ®).
The proof is as in Proposition 1.
Corollary 9. For any ¢, ® € C, ¢ # ®,we have that
(3:3) Ulap) (9, @) ={g:[a,b] = C| (Re®—Reg(t)) (Reg (t) — Reyp)
+(Im®—Img(¢)) Img () — Ime) >0 for a.e. t € [a,b]}.

Now, if we assume that Re(®) > Re(p) and Im (®) > Im(p), then we can
define the following set of functions as well:

(3.4) S[a,b] (o, @) :={g:[a,b] = C| Re(®) >Reg(t) > Re(p)
and Im (@) > Img (¢) > Im (¢) for a.e. t € [a,b]}.

One can easily observe that S[a,b] (p, ®) is closed, convex and

(3.5) 0 # Sjap) (9, @) C Upgp (¢, D).

Theorem 6. Let g : [a,b] — [g(a),g(b)] be a strictly increasing function that is
differentiable on (a,b) and f : (a,b) — R a locally absolutely continuous function
on (a,b). Assume that there exists ¢, ® € C, p # ®, such that g—: € A[,Lb] (p,®),
then we have

39 |@Henn-2ron(LE=20) - SR 60 - w)
< 10—l (g (6) ~ 9 (@)

for allt € (a,b).
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Proof. Let t, T € (a,b) with ¢t # 7. Slnce € Ajqp) (¢, ®), hence

(flog™h) (1 —S)Q(T)Jrsg(t)) Cet@ 1.
oD (1-9g(M+sg) 2 |~21°7¥
for a.e. s €10,1].
Taking the integral over s in this inequality, we get
/1 (fog ) (1=9)g()+s9(), o+
o (9097 ) ((1=9)g(r)+sg(t)) 2
Heg (1 =9)g(M +s9(®)  p+a| _1
<) [T rem |3

for t, 7 € (a,b) with t # 7.
Using the property (2.20) we get

1) (1—5)g(r)+sg(t) /
PV/ (/0 (g'og™ 1)((15)9(T)+Sg(t))d8>g (r)dr

22240~ 90)

b
<rv [

<512 — ¢l (g (8) g (@)

for t € (a,b), and by the equality (3.1) we deduce the desired result (3.6).

4. EXAMPLES

Consider the following logarithmic finite Hilbert transform

= fr) b f(n)
/ Tln<z>d”/t+srln<z)“]
where ¢ € (a,b) C (0,00).

If we assume that if f : (a,b) — R is differentiable on (a,b) and

(1) (Twf)(abit) == = lim

(12) Rermst

Tfor all t € (a,b),

then by Remark 4 we have

n (b
(4.3) :m(z)<(T1nf)(a,b;t)—71rf(t)1n<1 )

for all ¢ € (a,b) .
In particular, we have
m

(4.4 1n(2) S(ﬂmﬂ(aJuG(mefiﬂlhl<b>,

™

where G (a,b) := Vab is the geometric mean of a, b > 0.
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This inequality can be extended for complex functions as follows: if f : (a,b) — C
is locally absolutely continuous on (a,b) and there exists the complex numbers ¢,
® € C, ¢ # @ such that

_<p+<I>
2

(4.5) ‘tf’ (t) ‘ < % |® — | for a.e. t € [a,b],

then

(4.6)

1 b
(Tinf) (a,b;t) — ;f (t) In <1 (2

1
<=2 —¢|ln (b>
2w a

for all ¢ € (a,b).
In particular, we have

(17) ‘GhﬁW@GMﬁD—¢+¢m<bN§é;@—ﬂm(s)

2T a

Now, observe that the fact that foexp is of H-r-Hélder type on (Ina,Inb), where
H >0, re(0,1] and (a,b) C (0,00), is equivalent to the inequality

|f (t) — f(s)] < H|lnt —Ins|" for all t, s € (a,b),
)< [ () (o (1))
i (0 ()

Consider the exponential finite Hilbert transform

(4.10) (Tcxp(a)f) (CL7 b; t)
:1hmtff f (7) exp () m+/b ﬂﬂmﬂm)dﬂ

then by (2.8) we get

ln(
ln(

SIS

)
)

(4.8)

(ﬂJﬂm&ﬂ—iﬂﬂm<

Q|+

for all t € (a,b).
In particular, we have

(4.9) [(Ty f) (a,b; G (a,b))] <

T e—0+ exp (a1) — exp (at) 1 exp (aT) —exp (at)
1
= —exp (—at)
: T f () exp (a(T — 1)) P f(r)exp(a(r — 1))
><El_1)r51+[/a exp(oz(T—t))—ldTJr tre exp(oz(T—t))—ldT]

where t € (a,b) C R.
If we assume that if f : (a,b) — R is differentiable on (a,b) and

nexp (at) < f'(t) < Nexp (at) for all t € (a,b),
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then by applying Remark 4 for m = 2, M = % we have

(4.11) % (exp (ab) — exp (aa))

< Tupio) (0:0) = L7 0 (22100 —exb )

< 2 (exp (a) — exp (aa)

for any t € (a,b).
If we take in (4.11)

1/«
{ = LME, (a.b) = In (exp (va) + exp (ab)) ,

2

then we get

(4.12) % (exp (ab) — exp (aa))

IN

(Texp(a)f) ((L, b; LME, (a7 b))

< 2 (exp (ab) — exp (aa).

This inequality can be extended for complex functions as follows: if f : (a,b) — C
is locally absolutely continuous on (a,b) and there exists the complex numbers ¢,
® € C, ¢ # ® such that

') pt+@
exp (at) 2

1
' §|<I) p| for a.e. t € [a,b],

then

1 ) exp (ab) — exp (at)
(4.13) ‘(Texpm)f) (a,b5t) — —f (t)1 <exp (at) — exp (aa)>

+ &
— <p27r05 (exp (ab) — exp (aa))
< % |® — ¢ (exp (ab) — exp (aa))
for any ¢ € (a,b).
In particular, we get
+¢
(4.14) (Texp(a) f) (a,b; LM Eq (a, b)) — Ld - (exp (ab) — exp (cva))

5= |2 — ¢l (exp (ab) — exp (aa)).

Now, observe that the fact that fo(L ln) is of H-r-Hélder type on (exp («a) , exp (abd)),
where H > 0, r € (0,1] and (a,b) C R, is equivalent to the inequality

(4.15) |f (t) — f(s)| < H|exp (at) — exp (as)|” for all ¢, s € (a,b),
then by the inequality (2.8) we get

1 xp (ab) — exp (at
(416) (Texp(a)f) (a7 b7 t) - ;f (t) In (EeBXII)) Ezt)) 7 (jXII))((Oéaa))> ’

< % [(exp (ab) — exp (at))" + (exp (at) — exp (aa))"]

for any t € (a,b).
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In particular, we have

(4.17) |(Texp(a)f) (a,b; LM E, (a, b))‘ < (exp (ab) — exp (aa))" .

H
2r=lmr

For [a,b] C (0,00) and g (t) = t", t € [a,b], r > 0, we consider the positive
r-power Hilbert transform

, e L 1

41 T, f) (a,b: 1) = = i I\IT T\T g,
(@19 (L) (bt) = i [/ L
where t € (a,b).

If f:(a,b) — R is differentiable on (a,b) and
(4.19) mt"™t < f(t) < Mt" for all t € (a,b),
then by 2.23

m 1 br —t" M

4.2 — (" =a") < . _ 1 < (b —q"
420 - S @ b0 - 1 0 (o) £ 50 )
for all t € (a,b) C (0,00).

In particular, we have

m M

421 b —amy < (Tof) (a,b; M, (a,b)) < — (" —a”
(1:21) ™ (b~ a) < (T f) (o b My (0,0) € 0 (7 — )

where M, (a,b) := (#)l/r
Also, if f: (a,b) — C is locally absolutely continuous on (a,b) and there exists
the complex numbers ¢, ® € C, ¢ # ® such that

i) e+@ 1
. - < —-|P - .e.
(4.22) pross 5| = 2|<I> o| for a.e. t € [a,b],
then
1 ot gt ®
4.2 i) — — 1 — " —a”
4z @ - Lo (fon) - Gt e -0
1
< P — r_ T
<ol a)
for all t € (a,b) C (0,00).
In particular, we have
<p+¢ T I 1 T ”
4.24 T s M — — < — [P — — .
(@21) (@) (0 My 0, 0) = EE2 0 ) < el (7 )

The function f o (~)1/T is of H-s-Hdolder type on (a”,b"), where H > 0, s € (0,1],
is equivalent to

If ()= fuw)| < Ht"—u"]® forall t, u € (a,b),
then by (2.8) we have

(TTf) (CLb;t) - %f (t)ln <br —t"))‘ S E [(br _tr)s +(tT _ar)s}

tr —a’ T8

(4.25)

for all t € (a,b) C (0,00).

In particular,

H
25—lrs

(4.26) (T f) (a,b; M, (a,b))| < (" —a")’.
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The case r = 1 provides the corresponding results for the regular Hilbert trans-
form, see [1].
Similarly, we can consider the negative p-power Hilbert transform

T I L 1o N LR s B
(4.27)  (T_pf) (a,bit) == 2 1 V - d+/t )d],

TP — {P) Le T (TP —tP

for [a,b] C (0,00) and p > 0.

If f:(a,b) — R is differentiable on (a,b) and
(4.28) m < P (t) < M for all t € (a,b),
then by (2.23) we have

az) 2 (ES) <@ @ho - L om(

m (bP —tP) aP
™ apPbp
M (bp - ap>
< —
7 aPbp

bp (tp — ap)

for all t € (a,b).
In particular,

< % (bl’a;b:p>

1/p

where M_,, (a,b) := (% -

The case p =1 is of interest, since in this case

431)  (T1f)(abit) = > lim [/H Tf(T)dTJr/b f<7)d717

T e—0+ (r—1) LeT(T—1)
and if
(4.32) m < t2f (t) < M for all t € (a,b),
then
sy () @ - Lrom (So08) < (o)

for all t € (a,b).
In particular, we have

m(b—a M /b—a
. — < (71T_ ; < —
(434 “ (20 < @by < 2 (120
where H (a,b) := jﬂ is the harmonic mean of a, b > 0.

Also, if f : (a,b) — C is locally absolutely continuous on (a,b) and there exists
the complex numbers ¢, ® € C, ¢ # ® such that
_p+?®
2

(4.35) 2 (1)

1
'§2|<I>gp for a.e. t € [a,b],
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then

(.

for

(4.

(0,

36) ‘(T_lf) (a,b;t) — if(t)ln((b_t)a> 94T <b—a)‘

b(t—a) 27 ab
1 b—a
< —|r—
_27r| 7'( ab )

all t € (a,b).
In particular, we have

L e IR =0 §

37) 2T ab

The fact that fo {— (-)71} is of H-s-Holder type on (—%, —%), where K > 0, s €
1], is equivalent to

t—
tu

Y1 for all t, u € (a,b),

.ﬂw—fm><K]

then by (2.8) we have

(4.

for

38) ‘(T1f) (a,b;t) — %f(t) In (M)’ = g Kbb_tt> * (tt_aa)}

all t € (a,b).
In particular, we have

K b—a\’
(1.39) (o h) b @) < 5t ()
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