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INEQUALITIES FOR A GENERALIZED FINITE HILBERT
TRANSFORM OF CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we obtain some new inequalities for a generalized
finite Hilbert transform of convex functions. Applications for particular in-
stances of finite Hilbert transforms are given as well.

1. INTRODUCTION

Finite Hilbert transform on the open interval (a,b) is defined by

1 e tov [ 1y [ ]

for t € (a,b) and for various classes of functions f for which the above Cauchy
Principal Value integral exists, see [14, Section 3.2] or [18, Lemma II.1.1].

Suppose that [ is an interval of real numbers with interior I and f:I—Ris
a convex function on I. Then f is continuous on I and has finite left and right
derivatives at each point of I. Moreover, if z, y € I and z < y, then f’ (z) <
fi(x) < fL(y) < fi (y) which shows that both f’ and f! are nondecreasing
function on 1. It is also known that a convex function must be differentiable except
for at most countably many points.

For a convex function f : I — R, the subdifferential of f denoted by Of is the

set of all functions ¢ : I — [—00, 00] such that ¢ (I) C R and

T—t

(1.2) f(x)> f(a)+ (x—a)p(a) for any z, a € I.

It is also well known that if f is convex on I, then Jf is nonempty, f’, fi € 0f
and if p € Jf, then

fL(x) <@(x) < fL(x) for any z € 1.

In particular, ¢ is a nondecreasing function. If f is differentiable and convex on I ,

then 0f = {f'}.

The following result holds for the finite Hilbert transform of convex functions.
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Theorem 1 (Dragomir et al., 2001 [2]). Let f : (a,b) — R be a convex function on
(a,b). Then we have

sy Lrom () r0-r@+ £ o0-1)

< (Tf)(a,b;t)

Hrom(ED) v ro-s0+ 2 0e-a],

IA

t

for allt € (a,b).
In particular, we have

b ) s (552) (5)

<(Tf) <a,b; (Z;Ll))

o= () e (57) (7))

For several recent papers devoted to inequalities for the finite Hilbert transform
(Tf), see [3]-[11], [15]-[17] and [19]-[20].

We can naturally generalize the concept of Hilbert transform as follows.

For a continuous strictly increasing function g : [a,b] — [g(a),g (b)] that is
differentiable on (a,b) we define the following generalization of the finite Hilbert
transform of a function f : (a,b) — C by

IN

15) @ =Ltev [ TOL0,

sli%il/at /] el

l9(7)
/”f() @ g [ f(T)f/(T)dT]
a )

1

T e—0+

9(1) —g(t) t4e 9(1) =9 (1)

for t € (a,b), provided the above PV exists.
For [a,b] C (0,00) and g (t) = Int, t € [a, b] we have the logarithmic finite Hilbert

transform defined by
t—e b
/ f(TZ dT+/ f(TZ dr
a Tln (?) t+e Tln (?)
where t € (a,b).

For g (t) = exp (at), t € [a,b] C R with o > 0 we have exponential finite Hilbert
transform defined by

(L.7) (Texp(a) f) (a,b5)
::l . l/ut—e f (1) exp (ar) d7+/b f(7)exp (ar) t)dT]

exp (a1) — exp (at) t1e exp (1) — exp («

(16)  (Twf)(abit) == = lim

T e—0+

where ¢ € (a,b).
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For [a,b] C (0,00) and g (t) =t", t € [a,b], r > 0, we have the positive r-power
finite Hilbert transform defined by

(18) () (a,bit) == = lim Vt SACa KR R s L TMdT] ,

7—7' . tT' tte 7—7' . t”'

where ¢ € (a,b) .
Similarly, we can consider the function g (t) = —t™?, ¢t € [a,b] C (0,00), p > 0,
and then we have the negative p-power finite Hilbert transform

19) (T (abt):="2 lm l [Ho, L Md]

T e—0+ t™P —77P tye TP —T7P
tp t—e b
=2 im / A (7) dr + / S (7) dr|,
T oe—0+ [ J,  T(TP—1P) the T (TP —1P)
where t € (a,b).

For [a,b] C [—le, ;—p] and g (t) = sin(pt), t € [a,b] where p > 0, we have the

p-sine finite Hilbert transform
(1.10) (Tiin(p) f) (@, b;t)
t—e b
e f(r)eos(por) fr)eos(por)
1m /a +/t

sin (p7) — sin (pt) 1 sin (p7) — sin (pt)

where t € (a,b).
For g (t) = sinh(ot), t € [a,b] C R with o > 0 we have o-sinh finite Hilbert
transform

(1.11)  (Tsinn(o) f) (a, b t)
. l /“ f()coshor) /b £ () cosh (o) dT]

T e—0+ sinh (o7) — sinh (ot) +e sinh (o7) — sinh (ot)

where t € (a,b).
Similar transforms can be associated to the following functions as well:

T ow
t) =+t t), t b -, it 0
g (t) = tan (pt), €[a7]C{ 2p’2p} where p > 0,

and
g (t) = tanh (ot), t € [a,b] C R with o > 0.
Motivated by the above results, we establish in this paper some inequalities for
the generalized finite Hilbert transform of convex functions on an interval. Appli-

cations for some particular instances of finite Hilbert transforms such as the ones
from (1.6)-(1.11) are given as well.

2. MAIN RESULTS

Consider the function 1 (¢t) = 1, t € (a,b). We need the following preliminary
result:
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Lemma 1. For a continuous strictly increasing function g : [a,b] — [g(a),g (b)]
that is differentiable on (a,b) we have

(2.1) (T,1) (a,b51) = %m (M) Lt € (a,b).
We also have for f: (a,b) — C that
_ b T) —
(2.2) (Ty,f) (a,bst) = %f(t) In (M) + %PV/ Mg’ (1)dr

fort € (a,b), provided that the PV from the right hand side of the equality (2.2)
exists.

Proof. We have

N A b 9@
(23) (Tg]‘) (CL, b’ t) B ; 51—1>I(I)1+ [/@ de * /t+6 MdT]

T e—0
=~ lim (g (1) g (t ) ~ (g (1) g (a))
+In(g(0) —g(t) —In(g(t+e)—g(t))]

(a) T e—04

for ¢t € (a,b).
Since g is differentiable, we have

9 —glt—2) _ . "2 g

Mg re g0 W Emmmm T g
for ¢t € (a,b), and by (2.3) we get (2.1).
From the definition (1.5) we deduce
b o ' (r
(T,f) (a,b51) == PV / U gf(g)_*gf(t(;))g @ 4
_1 ") - f®))g (dr 1 fWg (r
- v [ e [
_1 ") - f®))g (dr 1 " g (n)dr
s o o e L /agm 18
1, (g —g() —F () (7)dr
= prom (S ) < v [P
for ¢t € (a,b), which proves the identity (2.2). O

If ¢ is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can define the g-mean of two numbers
a,bel as

(2.4) M, (a,b) == g~ (9(“)2*9(1’)) .
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If I =R and g (t) = t is the identity function, then M, (a,b) = A(a,b) := £,
the arithmetic mean. If I = (0,00) and g (¢t) = Int, then M, (a,b) = G(a,b) := \/>
the geometric mean. If I = (0,00) and g (t) = then M,y (a,b) = H (a,

b) =
21127 the harmonic mean. If I = (0,00) and g (¢ ) = tP, p # 0, then M, (a,b) =

M, (a,b) := (%)mj7 the power mean with exponent p. Finally, if I = R and
g (t) = expt, then

M, (a,b) = LME (a,b) := In <e><pa2+epr) |

the LogMeanEzxp function.

Theorem 2. Assume that g : [a,b] — [g(a),g(b)] is a continuous strictly in-
creasing function that is differentiable on (a,b), f a function such that fog=! :
(9(a),g (b)) — R is a convex function on (g(a),g(b)). Then fort € (a,b) we have

(2.5)

g(t)—g(a
<1lro-so+u0-s@ S2].
In particular, we have
26) |10, @) - 7 (o) 4 20520 B
< (T, ) (a.b: My (a. 1)
< 250y 5 0y ) + 2@ J;/,(%f((i ’f))))] ~

Proof. For t, T € (a,b) with ¢t # 7 we then have

2.7) -

By the convexity of f o g~! we can state that for all g(a) < ¢ < d < g(b) we
have

/

(2.8) (fog™™)" (feg™)(d)—(fog™')(0)

(@) > o

> (fog™), (o).

Since f o g~! has lateral derivatives for z € (g (a),g (b)) it follows f has lateral
derivatives in each point of (a,b) and by the chain rule and the derivative of the
inverse function,

(fiog™)(2)
(¢'og71) ()

/

(2.9) (fog™L(@) =(fiog™)(2)(g7") (2) =
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Let t € (a,b) and t —a > & > 0, then by (2.8) and (2.9) we have
fog ' (g(n) —fog ' (g(t) fog ' (g(t)—fog ' (g9(r))
(2.10) NGEYIC - MOErIG
(fiog ) (g(n) _ fi(7)
(9ogHg(r) g ()

>

for 7 € (a,t —¢).
If we integrate the inequality (2.10) over 7 on (a,t — ), we get by (2.7) that

O TO s [T
(2.11) /a g(T)ig(t)g()d 2/ g,(T)g()d

/ fi(r)ydr = f(t—e) - f(a)

for t € (a,b) and t —a >¢e > 0.
Let t € (a,b) and b—t > & > 0, then

fog ' (g(n)—fog " (g(t)
g(r)—g(t)

(fiog™')(g(t) _ fi(¥)

Z =

(geg H(g@®) g @)

for 7€ (t+e¢,b).
This implies that
b f(T)_f(t)/T b f—l&-(t)/

(212) e 9(1) g (D)

fort € (a,b) and b—¢ > e > 0.
By adding the inequalities (2.11) and (2.12) we get

Ly TGRSOy
(2.13) L ey e e g —g? (4
10

> f (t - ) (CL) (t)

for ¢t € (a,b) and min{b —¢,t —a} > e > 0.
By taking the limit over & — 0+ in (2.13) we get

[g(b) —g(t+e)

(2.14) pv/'f r)dr > f(t) ~ f(a) +

for ¢t € (a,b).
By using the identity (2.2) we get the first inequality in (2.5).
Let ¢t € (a,b) and t —a > ¢ > 0, then by (2.8) and (2.9) we also have

(2.15) fogt(g(m)—fog t(g®) fog~t(g(®)—fog ' (g9(7)

9(1)—g() g(t)—g(r)
(fLog™)(g®) _ f (1)
(gegH)g®) g @)

IN

for 7 € (a,t —¢).
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If we integrate the inequality (2.15) over 7 on (a,t — ), we get by (2.7) that

- I Ay
(2.16) L e ne oS e @
7
- L h-9-g0)

fort € (a,b) and t —a > e > 0.
Let ¢t € (a,b) and b —t > € > 0, then
fogt(g(n)—fogt(g(®)
9(1)—g()

(flog ) (g(r) _ fr(r)

< —

217) @os ™) g

for 7€ (t+e,b).
If we integrate the inequality (2.17) over 7 on (¢t + ¢,b), we get

b . b e
t+ Mg’(ﬂd7< t+ J;/((T))QI(T)dT:f(b)_f(t+€)

fort € (a,b) and b—¢ > e > 0.
By adding the inequalities (2.16) and (2.18) we get

(2.19) | IE e e rcEnoAdk

S ()
10 lg(t—e)—g(a)l+F(b) = f(t+e)
for t € (a,b) and min {b —¢,t —a} > > 0.
By taking the limit over € — 0+ in (2.19) we get

(2.18)

fr

~—

ICEIOp ) )
v [ LBy ar< 0 - 10+ S8 0 - ()
for t € (a,b).
By using the identity (2.2) we obtain the second inequality in (2.5). 0

Remark 1. With the assumptions of Theorem 2, and if f is differentiable on (a,b),
then we have

(2.20) % [f (t) = f(a) +[g(b) — g ()] J; Ez))}
<(T,f) (a,b;t) — %f(t) In <§(5)):5((2))>
< % {f(b) —f () +g() —g(a) ;:Eg

for allt € (a,b).
In particular, we have

(2.21) % f(My (a,0)) = f(a) + 2 q (MZ (a7b))
< (Tgf) (047 b; Mg ((L, b))
F(0) = f (Mg (a,0)) +

<

S|
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We also have:

Theorem 3. Assume that g : [a,b] — [g(a),g ()] is a continuous strictly in-
creasing function that is differentiable on (a,b) and ¢, (a) and g_ (b) are finite. If
fog t:(g9(a),g(b) — R is a convexr function on (a,b) and f has finite lateral
deriwvatives f! (a) and f_ (b), then fort € (a,b) we have

Bl o fO-f@
22 L0 -9 < ZOLO g0 - g @)
< (@) b - 11w (49220
FO-FO) oS
< OO w0 s = L0 0 -gw)
In particular, for t = M, (a,b) we get
223) =9 ) (@) < 217 (M, (0,8) - £ (@)
g, (a) T
< (Ty ) (b M, (a,1)
<200 -0 @ < 20 u0 g0

Proof. We recall that if & : I — R is a continuous convex function on the interval
of real numbers I and « € I then the divided difference function ®, : I'\ {a} — R,
(t)—P
D, (1) :=[a, t; @] := M
t— o

is monotonic nondecreasing on I \ {a}.
Using this property for the function @ : (¢,d) — R, we have for t € (¢, d) that
() -9(t) _ @) -0(t) _®d) -2
T—1 - d—t

c—t

for any 7 € (¢,d), T # t.
By the gradient inequality for the convex function ® we also have

2O 2 41 (0) o e e
and

i) - o

% < ®_(d) fort e (cd).
Therefore we have the following inequality

() —2(c) . 2(1)—2(1)
2.24 ¢! :
(224) I
. % <o (d)

fort, 7 € (¢,d) and T # t.
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If we write the inequality (2.24) for the convex function ® = f o g~! and the
interval (g (a),g (b)), we get

(fiog™)(g(a) _ (feg ) (g®)—(fog™")(g(a))

@5) (g ee ) (g@) = 900 —9(@)

(fog™)(g(r)—(fog™")(g(t)
- g(t)—g(t)

(fog™)(g®) = (fog™)(g(®)
- gb)—g(t)

(fLog ') (g(b)

for t, 7 € (a,b) and T # t.

This is equivalent to
fi(@ _ f) -1
gy (a) = g(t) —g(a)
for ¢, 7 € (a,b) and 7 # ¢.

If we multiply with ¢’ (7) > 0 and take the PV in (2.26), then we get

" (a b _ a b
B [ yar < TOTO [y,

(2.26)

94 (@) Ja g9(t) —g(a)
fO-r®,
< PV/ (7_) (t dr
FO =T g < 12O [0
/ —a )’ A (b)/a g
for t € (a,b), which is equivalent to
P o fO S
7. (@) [9(b) =g (a)] < MOETIO 9 (b) — g (a)]
WAGESAON
<PV ! O
f) = 1@ /2 (b)
< FIOETIO)] [g(b) —g(a)] < PR [9(b) — g (a)]
for t € (a,b).
By the use of the identity (2.2) we obtain the desired result (2.22). O

3. APPLICATIONS FOR GA-CONVEX FUNCTIONS

Let I C (0,00) be an interval; a real-valued function f : I — R is said to be
GA-convez (concave) on [ if

(3.1) FE) < (2) A=A f(2) +Af (y)

for all z, y € I and A € [0,1].
Since the condition (3.1) can be written as

(32) foexp((1-AN)Inz+Alny) <(>)(1—-A) foexp(Inz)+Afoexp(lny),
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then we observe that f: I — R is GA-convezr (concave) on I if and only if f o exp
is convex (concave) on Inl :={lnz,z € I} . If I = [a,b] then In] = [Ina,Ind].

It is known that the function f (z) =1In(1+ z) is GA-convex on (0, 00) [1].

For real and positive values of x, the Fuler gamma function I' and its logarithmic
derivative 1, the so-called digamma function, are defined by

o) I‘l/
I'(z):= /0 t*te~tdt and ¢ (z) := T ((:f))

It has been shown in [21] that the function f : (0,00) — R defined by

f@) =@+~

2x
is GA-concave on (0,00) while the function g : (0,00) — R defined by
1 1
g(x)*iﬁ(x)JF%JF@

is GA-convex on (0,00) .

If [a,b] C (0,00) and the function ¢ : [lna,Inb] — R is convex (concave) on
[lna,Ind], then the function f : [a,b] — R, f(¢) = g (Int) is GA-convex (concave)
on [a,b].

Indeed, if z, y € [a,b] and A € [0, 1], then

f (mlf’\yk) = g(n (xk)‘y’\)) =g[(1—=X)Inz+ Alny]
< (2@ =XNg(nz)+Ag(ny) = (1 -A) f(z)+Af(y)
showing that f is GA-convex (concave) on [a,b].
Consider the following logarithmic finite Hilbert transform

(3.3) (Twf) (a,b;8) == - Tim l /t-a ) gry /t f(7) dT]

T e—0+ TIn (%) +eTln (%)

where t € (a,b) C (0,00).

(34) = |£()—f(a) + 17 (6)n (i)]

Proposition 1. Assume that f : [a,b] C (0,00) — R is GA-convex on [a,b], then
7T

)

0 -1+ (L))

ln(
ln(

Sl

< (Tif) (a,b56) = - (1) (

Q|+

<

3=

for allt € (a,b).
In particular,

(3-5) % [f (G (a,0)) = f(a) + G (a,;b) In (\/E) i (G(avb))l
< (Tyf) (a,b; G (a, b))

[f (b) - f (G (a7 b)) +G (a7 b) In (\/E) fL (G (a7 b))‘| )

where G (a,b) := \ab is the geometric mean of a, b > 0.

<

3=
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The proof follows by Theorem 2 for g (t) = Int, t € (a,b) .

Proposition 2. With the assumptions of Proposition 1 and if f, (a) and f’ (b)
are finite, then

(3.6) @ In (b> < f (t) - f (a) In (%)

a T ln( )
n(t
S (Tlnf) (avb; t) - lf (t) In (1111 E:i;)
fO) = f@®I(2) _bfL (). (b
< G)

for any t € (a,b).
In particular,

ar) Ly, (”) <21/ (G (@0) - f (a)
< (Tiaf) (@5 G (a, 1))

The proof follows by Theorem 3 for g (t) = Int, t € (a,b) .

4. APPLICATION FOR LogExp CONVEX FUNCTION

We say that the function f : [a,b] — R is a LogEzp convex function on [a,b] if
f oln is convex on the interval [exp a, exp b], namely

(4.1) (folm)(1—=XNu+X)<(1—=X)(foln)(u)+A(foln)(v)

for any A € [0,1] and u, v € [expa,expb].
By taking u = expt, v = exps, t, s € [a,b], this is equivalent to

(4.2) Fln((1— N expt+Aexps)] < (1—N) f () +\f(s)

for any A € [0,1] and ¢, s € [a,}].
For g (t) = exp (t), t € [a,b] C R we have the ezponential finite Hilbert transform

(4~3) (Texpf) (a, b; t)
L[ e P S0enm
~1 [ / e [ 20 t)d]

(
exp (1) — exp (t) e exp (T

[ fm) A G)
—ME%LM et " L e

where t € (a,b).
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Proposition 3. Assume that f : [a,b] — R is LogEzp convex function on [a,b],

then
()~ [F )~ @)+ (b6~ 11 71 (0]
< T 0 bit) = 2 O (PO =5)
< [f )= F O+ 11— expla—1] £ ()

for any t € (a,b).
In particular,

1 exp (b) —exp (a) ., a
45) & |FEME @) - f @+ SN 1 (1arp (o,n)]

< (Tyf) (a,b; LM E (a, b))
exp (b) —exp (a)
exp (b) + exp (a) "~

<1 [f(b)_f(LME(a,b))+

(LME(@1)]
T
where LME (a,b) =1n (W) is the the LogMeanExp function of a, b.

The proof follows by Theorem 2 for g (t) = expt, t € (a,b).

Proposition 4. With the assumptions of Proposition 3 and if f (a) and f’ (b)
are finite, then

16) L2 -y LU el
< (Toxpf) (@,55) =~ (1) (%)

<O 200 L0 op oo

fort e (a,b).
In particular,
@1 D oo —a) -1 < 2 [ (LME (@) - £ (0)
< (Toxp ) (0 s LME (a,1)
< 2w - remp @) < =00 epa-o).

The proof follows by Theorem 3 for g (t) = expt, t € (a,b).

5. APPLICATION FOR POSITIVE p-CONVEX FUNCTION

Let p > 0. We say that the function f : [a,b] C [0,00) — R is a positive p-convex
function on [a,b] if f o (-)1/ P is convex on the interval [aP, bP], namely

(5.1) Fl@=Nut )] < @=x 7 (a7) +7f (2/7)

for any A € [0,1] and u, v € [aP, bP].
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By taking u = tP, v = sP, t, s € [a, ], this is equivalent to, see also [22]
(5.2) FL =08 420 7) < (=X 1 (1) + 2 (5)

for any A € [0,1] and ¢, s € [a, b] .
For [a,b] C (0,00) and g (t) = tP, t € [a,b], p > 0, we consider the positive
p-power Hilbert transform

(5.3) (T, f) (a,b;t) T l/f “f(r)rP~ 1d N b of(r) TP 1d7-],

T e—0+ TP — P tre TP — P
where t € (a,b) .

Proposition 5. Assume that f : [a,b] — R is positive p-convex function on [a,b],

then

1 bP — P
) 2|70 @+ T )

< G0 bt - 2 o ()
P _ gP
<tlro-ro+ S
fort e (a,b).
In particular, we have
1 W — ab

55) 2 |0y (0.0) = £ (0) + et (0 (0.0)

< (Tyf) (a,b; My (a, b))
1 bP — a?

< = f(b)—f(Mp(a,b))er

J2 (M, (a, b)) ]
where M, (a,b) := (#)UP.
The proof follows by Theorem 2 for g (t) =, t € [a,]].

Proposition 6. With the assumptions of Proposition 5 and if f, (a) and f’ (b)
are finite, then

b - [0~ f@) (o
=
< () @b - 20w (g0 )
gf@;f®<i:ﬁ>§2;fﬂ@y
In particular,
bP — aP 2
(6:1) B @) < 2 O (@) - £ (a)
< (T, a.b: M, (a.)
<210 - F My b)) < T 0
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The proof follows by Theorem 3 for g (t) = t*, t € (a,b).
Similar results may be stated for negative p-power convex functions, namely for

g(t)=—%,t€[a,b] C(0,00). The details are omitted.
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