
INEQUALITIES FOR A GENERALIZED FINITE HILBERT
TRANSFORM OF CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we obtain some new inequalities for a generalized
�nite Hilbert transform of convex functions. Applications for particular in-
stances of �nite Hilbert transforms are given as well.

1. Introduction

Finite Hilbert transform on the open interval (a; b) is de�ned by

(1.1) (Tf) (a; b; t) :=
1

�
PV

Z b

a

f (�)

� � td� := lim
"!0+

"Z t�"

a

+

Z b

t+"

#
f (�)

� (� � t)d�

for t 2 (a; b) and for various classes of functions f for which the above Cauchy
Principal Value integral exists, see [14, Section 3.2] or [18, Lemma II.1.1].
Suppose that I is an interval of real numbers with interior �I and f : I ! R is

a convex function on I. Then f is continuous on �I and has �nite left and right
derivatives at each point of �I. Moreover, if x; y 2 �I and x < y; then f 0� (x) �
f 0+ (x) � f 0� (y) � f 0+ (y) which shows that both f 0� and f 0+ are nondecreasing
function on �I. It is also known that a convex function must be di¤erentiable except
for at most countably many points.
For a convex function f : I ! R, the subdi¤erential of f denoted by @f is the

set of all functions ' : I ! [�1;1] such that '
�
�I
�
� R and

(1.2) f (x) � f (a) + (x� a)' (a) for any x; a 2 I:

It is also well known that if f is convex on I; then @f is nonempty, f 0�, f
0
+ 2 @f

and if ' 2 @f , then

f 0� (x) � ' (x) � f 0+ (x) for any x 2 �I.

In particular, ' is a nondecreasing function. If f is di¤erentiable and convex on �I,
then @f = ff 0g :
The following result holds for the �nite Hilbert transform of convex functions.
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Theorem 1 (Dragomir et al., 2001 [2]). Let f : (a; b)! R be a convex function on
(a; b). Then we have

1

�

�
f (t) ln

�
b� t
t� a

�
+ f (t)� f (a) + f 0+ (t) (b� t)

�
(1.3)

� (Tf) (a; b; t)

� 1

�

�
f (t) ln

�
b� t
t� a

�
+ f (b)� f (t) + f 0� (t) (t� a)

�
;

for all t 2 (a; b).
In particular, we have

1

�

�
f

�
a+ b

2

�
� f (a) + f 0+

�
a+ b

2

��
b� a
2

��
(1.4)

� (Tf)
�
a; b;

a+ b

2

�
� 1

�

�
f (b)� f

�
a+ b

2

�
+ f 0�

�
a+ b

2

��
b� a
2

��
:

For several recent papers devoted to inequalities for the �nite Hilbert transform
(Tf), see [3]-[11], [15]-[17] and [19]-[20].
We can naturally generalize the concept of Hilbert transform as follows.
For a continuous strictly increasing function g : [a; b] ! [g (a) ; g (b)] that is

di¤erentiable on (a; b) we de�ne the following generalization of the �nite Hilbert
transform of a function f : (a; b)! C by

(Tgf) (a; b; t) :=
1

�
PV

Z b

a

f (�) g0 (�)

g (�)� g (t)d�(1.5)

:= lim
"!0+

"Z t�"

a

+

Z b

t+"

#
f (�) g0 (�)

� [g (�)� g (t)]d�

:=
1

�
lim
"!0+

"Z t�"

a

f (�) g0 (�)

g (�)� g (t)d� +
Z b

t+"

f (�) g0 (�)

g (�)� g (t)d�
#

for t 2 (a; b) ; provided the above PV exists.
For [a; b] � (0;1) and g (t) = ln t; t 2 [a; b] we have the logarithmic �nite Hilbert

transform de�ned by

(1.6) (Tlnf) (a; b; t) :=
1

�
lim
"!0+

"Z t�"

a

f (�)

� ln
�
�
t

�d� + Z b

t+"

f (�)

� ln
�
�
t

�d�#
where t 2 (a; b) :
For g (t) = exp (�t) ; t 2 [a; b] � R with � > 0 we have exponential �nite Hilbert

transform de�ned by�
Texp(�)f

�
(a; b; t)(1.7)

:=
1

�
lim
"!0+

"Z t�"

a

f (�) exp (��)

exp (��)� exp (�t)d� +
Z b

t+"

f (�) exp (��)

exp (��)� exp (�t)d�
#

where t 2 (a; b) :
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For [a; b] � (0;1) and g (t) = tr; t 2 [a; b] ; r > 0; we have the positive r-power
�nite Hilbert transform de�ned by

(1.8) (Trf) (a; b; t) :=
r

�
lim
"!0+

"Z t�"

a

f (�) � r�1

� r � tr d� +

Z b

t+"

f (�) � r�1

� r � tr d�

#
;

where t 2 (a; b) :
Similarly, we can consider the function g (t) = �t�p; t 2 [a; b] � (0;1) ; p > 0;

and then we have the negative p-power �nite Hilbert transform

(T�pf) (a; b; t) :=
p

�
lim
"!0+

"Z t�"

a

f (�) ��p�1

t�p � ��p d� +
Z b

t+"

f (�) ��p�1

t�p � ��p d�
#

(1.9)

=
ptp

�
lim
"!0+

"Z t�"

a

f (�)

� (�p � tp)d� +
Z b

t+"

f (�)

� (�p � tp)d�
#
;

where t 2 (a; b) :
For [a; b] �

h
� �
2� ;

�
2�

i
and g (t) = sin (�t) ; t 2 [a; b] where � > 0; we have the

�-sine �nite Hilbert transform�
Tsin(�)f

�
(a; b; t)(1.10)

:=
�

�
lim
"!0+

"Z t�"

a

f (�) cos (��)

sin (��)� sin (�t)d� +
Z b

t+"

f (�) cos (��)

sin (��)� sin (�t)d�
#

where t 2 (a; b) :
For g (t) = sinh (�t) ; t 2 [a; b] � R with � > 0 we have �-sinh �nite Hilbert

transform�
Tsinh(�)f

�
(a; b; t)(1.11)

:=
�

�
lim
"!0+

"Z t�"

a

f (�) cosh (��)

sinh (��)� sinh (�t)d� +
Z b

t+"

f (�) cosh (��)

sinh (��)� sinh (�t)d�
#

where t 2 (a; b) :
Similar transforms can be associated to the following functions as well:

g (t) = tan (�t) ; t 2 [a; b] �
�
� �

2�
;
�

2�

�
where � > 0;

and

g (t) = tanh (�t) ; t 2 [a; b] � R with � > 0:
Motivated by the above results, we establish in this paper some inequalities for

the generalized �nite Hilbert transform of convex functions on an interval. Appli-
cations for some particular instances of �nite Hilbert transforms such as the ones
from (1.6)-(1.11) are given as well.

2. Main Results

Consider the function 1 (t) = 1; t 2 (a; b). We need the following preliminary
result:
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Lemma 1. For a continuous strictly increasing function g : [a; b] ! [g (a) ; g (b)]
that is di¤erentiable on (a; b) we have

(2.1) (Tg1) (a; b; t) =
1

�
ln

�
g (b)� g (t)
g (t)� g (a)

�
; t 2 (a; b) :

We also have for f : (a; b)! C that

(2.2) (Tgf) (a; b; t) =
1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
+
1

�
PV

Z b

a

f (�)� f (t)
g (�)� g (t) g

0 (�) d�

for t 2 (a; b) ; provided that the PV from the right hand side of the equality (2.2)
exists.

Proof. We have

(Tg1) (a; b; t) =
1

�
lim
"!0+

"Z t�"

a

g0 (�)

g (�)� g (t)d� +
Z b

t+"

g0 (�)

g (�)� g (t)d�
#

(2.3)

=
1

�
lim
"!0+

h
ln jg (�)� g (t)jjt�"a + ln (g (�)� g (t))jbt+"

i
=
1

�
lim
"!0+

[ln (g (t)� g (t� "))� ln (g (t)� g (a))

+ ln (g (b)� g (t))� ln (g (t+ ")� g (t))]

=
1

�
ln

�
g (b)� g (t)
g (t)� g (a)

�
+
1

�
lim
"!0+

ln

�
g (t)� g (t� ")
g (t+ ")� g (t)

�
for t 2 (a; b) :
Since g is di¤erentiable, we have

lim
"!0+

g (t)� g (t� ")
g (t+ ")� g (t) = lim

"!0+

g(t)�g(t�")
"

g(t+")�g(t)
"

=
g0 (t)

g0 (t)
= 1

for t 2 (a; b) ; and by (2.3) we get (2.1).
From the de�nition (1.5) we deduce

(Tgf) (a; b; t) :=
1

�
PV

Z b

a

(f (�)� f (t) + f (t)) g0 (�)
g (�)� g (t) d�

=
1

�
PV

Z b

a

(f (�)� f (t)) g0 (�) d�
g (�)� g (t) +

1

�
PV

Z b

a

f (t) g0 (�) d�

g (�)� g (t)

=
1

�
PV

Z b

a

(f (�)� f (t)) g0 (�) d�
g (�)� g (t) +

1

�
f (t)PV

Z b

a

g0 (�) d�

g (�)� g (t)

=
1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
+
1

�
PV

Z b

a

(f (�)� f (t)) g0 (�) d�
g (�)� g (t)

for t 2 (a; b) ; which proves the identity (2.2). �

If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can de�ne the g-mean of two numbers
a; b 2 I as

(2.4) Mg (a; b) := g�1
�
g (a) + g (b)

2

�
:
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If I = R and g (t) = t is the identity function, then Mg (a; b) = A (a; b) := a+b
2 ;

the arithmetic mean. If I = (0;1) and g (t) = ln t; thenMg (a; b) = G (a; b) :=
p
ab,

the geometric mean. If I = (0;1) and g (t) = 1
t ; then Mg (a; b) = H (a; b) :=

2ab
a+b ; the harmonic mean. If I = (0;1) and g (t) = tp; p 6= 0; then Mg (a; b) =

Mp (a; b) :=
�
ap+bp

2

�1=p
; the power mean with exponent p. Finally, if I = R and

g (t) = exp t; then

Mg (a; b) = LME (a; b) := ln

�
exp a+ exp b

2

�
;

the LogMeanExp function.

Theorem 2. Assume that g : [a; b] ! [g (a) ; g (b)] is a continuous strictly in-
creasing function that is di¤erentiable on (a; b) ; f a function such that f � g�1 :
(g (a) ; g (b))! R is a convex function on (g (a) ; g (b)). Then for t 2 (a; b) we have

(2.5)
1

�

�
f (t)� f (a) + [g (b)� g (t)]

f 0+ (t)

g0 (t)

�
� (Tgf) (a; b; t)�

1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
� 1

�

�
f (b)� f (t) + [g (t)� g (a)]

f 0� (t)

g0 (t)

�
:

In particular, we have

(2.6)
1

�

�
f (Mg (a; b))� f (a) +

g (b)� g (a)
2

�
f 0+ (Mg (a; b))

g0 (Mg (a; b))

�
� (Tgf) (a; b;Mg (a; b))

� 1

�

�
f (b)� f (Mg (a; b)) +

g (b)� g (a)
2

�
f 0� (Mg (a; b))

g0 (Mg (a; b))

�
:

Proof. For t; � 2 (a; b) with t 6= � we then have

(2.7)
f (�)� f (t)
g (�)� g (t) =

f � g�1 (g (�))� f � g�1 (g (t))
g (�)� g (t) :

By the convexity of f � g�1 we can state that for all g (a) � c < d � g (b) we
have

(2.8)
�
f � g�1

�0
� (d) �

�
f � g�1

�
(d)�

�
f � g�1

�
(c)

d� c �
�
f � g�1

�0
+
(c) :

Since f � g�1 has lateral derivatives for z 2 (g (a) ; g (b)) it follows f has lateral
derivatives in each point of (a; b) and by the chain rule and the derivative of the
inverse function,

(2.9)
�
f � g�1

�0
� (z) =

�
f 0� � g�1

�
(z)
�
g�1

�0
(z) =

�
f 0� � g�1

�
(z)

(g0 � g�1) (z) :
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Let t 2 (a; b) and t� a > " > 0; then by (2.8) and (2.9) we have

f � g�1 (g (�))� f � g�1 (g (t))
g (�)� g (t) =

f � g�1 (g (t))� f � g�1 (g (�))
g (t)� g (�)(2.10)

�
�
f 0+ � g�1

�
(g (�))

(g0 � g�1) (g (�)) =
f 0+ (�)

g0 (�)

for � 2 (a; t� ") :
If we integrate the inequality (2.10) over � on (a; t� ") ; we get by (2.7) thatZ t�"

a

f (�)� f (t)
g (�)� g (t) g

0 (�) d� �
Z t�"

a

f 0+ (�)

g0 (�)
g0 (�) d�(2.11)

=

Z t�"

a

f 0+ (�) d� = f (t� ")� f (a)

for t 2 (a; b) and t� a > " > 0:
Let t 2 (a; b) and b� t > " > 0; then

f � g�1 (g (�))� f � g�1 (g (t))
g (�)� g (t) �

�
f 0+ � g�1

�
(g (t))

(g0 � g�1) (g (t)) =
f 0+ (t)

g0 (t)

for � 2 (t+ "; b) :
This implies thatZ b

t+"

f (�)� f (t)
g (�)� g (t) g

0 (�) d� �
Z b

t+"

f 0+ (t)

g0 (t)
g0 (�) d�(2.12)

=
f 0+ (t)

g0 (t)
[g (b)� g (t+ ")]

for t 2 (a; b) and b� t > " > 0:
By adding the inequalities (2.11) and (2.12) we getZ t�"

a

f (�)� f (t)
g (�)� g (t) g

0 (�) d� +

Z b

t+"

f (�)� f (t)
g (�)� g (t) g

0 (�) d�(2.13)

� f (t� ")� f (a) +
f 0+ (t)

g0 (t)
[g (b)� g (t+ ")]

for t 2 (a; b) and min fb� t; t� ag > " > 0:
By taking the limit over "! 0+ in (2.13) we get

(2.14) PV

Z b

a

f (�)� f (t)
g (�)� g (t) g

0 (�) d� � f (t)� f (a) +
f 0+ (t)

g0 (t)
[g (b)� g (t)]

for t 2 (a; b).
By using the identity (2.2) we get the �rst inequality in (2.5).
Let t 2 (a; b) and t� a > " > 0; then by (2.8) and (2.9) we also have

f � g�1 (g (�))� f � g�1 (g (t))
g (�)� g (t) =

f � g�1 (g (t))� f � g�1 (g (�))
g (t)� g (�)(2.15)

�
�
f 0� � g�1

�
(g (t))

(g0 � g�1) (g (t)) =
f 0� (t)

g0 (t)

for � 2 (a; t� ") :



INEQUALITIES FOR A GENERALIZED FINITE HILBERT TRANSFORM 7

If we integrate the inequality (2.15) over � on (a; t� ") ; we get by (2.7) thatZ t�"

a

f (�)� f (t)
g (�)� g (t) g

0 (�) d� �
Z t�"

a

f 0� (t)

g0 (t)
g0 (�) d�(2.16)

=
f 0� (t)

g0 (t)
[g (t� ")� g (a)]

for t 2 (a; b) and t� a > " > 0:
Let t 2 (a; b) and b� t > " > 0; then

(2.17)
f � g�1 (g (�))� f � g�1 (g (t))

g (�)� g (t) �
�
f 0� � g�1

�
(g (�))

(g0 � g�1) (g (�)) =
f 0� (�)

g0 (�)

for � 2 (t+ "; b) :
If we integrate the inequality (2.17) over � on (t+ "; b) ; we get

(2.18)
Z b

t+"

f (�)� f (t)
g (�)� g (t) g

0 (�) d� �
Z b

t+"

f 0� (�)

g0 (�)
g0 (�) d� = f (b)� f (t+ ")

for t 2 (a; b) and b� t > " > 0:
By adding the inequalities (2.16) and (2.18) we getZ t�"

a

f (�)� f (t)
g (�)� g (t) g

0 (�) d� +

Z b

t+"

f (�)� f (t)
g (�)� g (t) g

0 (�) d�(2.19)

�
f 0� (t)

g0 (t)
[g (t� ")� g (a)] + f (b)� f (t+ ")

for t 2 (a; b) and min fb� t; t� ag > " > 0:
By taking the limit over "! 0+ in (2.19) we get

PV

Z b

a

f (�)� f (t)
g (�)� g (t) g

0 (�) d� � f (b)� f (t) +
f 0� (t)

g0 (t)
[g (t)� g (a)]

for t 2 (a; b) :
By using the identity (2.2) we obtain the second inequality in (2.5). �

Remark 1. With the assumptions of Theorem 2, and if f is di¤erentiable on (a; b) ;
then we have

(2.20)
1

�

�
f (t)� f (a) + [g (b)� g (t)] f

0 (t)

g0 (t)

�
� (Tgf) (a; b; t)�

1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
� 1

�

�
f (b)� f (t) + [g (t)� g (a)] f

0 (t)

g0 (t)

�
for all t 2 (a; b) :
In particular, we have

(2.21)
1

�

�
f (Mg (a; b))� f (a) +

g (b)� g (a)
2

f 0 (Mg (a; b))

g0 (Mg (a; b))

�
� (Tgf) (a; b;Mg (a; b))

� 1

�

�
f (b)� f (Mg (a; b)) +

g (b)� g (a)
2

f 0 (Mg (a; b))

g0 (Mg (a; b))

�
:
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We also have:

Theorem 3. Assume that g : [a; b] ! [g (a) ; g (b)] is a continuous strictly in-
creasing function that is di¤erentiable on (a; b) and g0+ (a) and g� (b) are �nite. If
f � g�1 : (g (a) ; g (b)) ! R is a convex function on (a; b) and f has �nite lateral
derivatives f 0+ (a) and f� (b) ; then for t 2 (a; b) we have

(2.22)
f 0+ (a)

�g0+ (a)
[g (b)� g (a)] � f (t)� f (a)

� [g (t)� g (a)] [g (b)� g (a)]

� (Tgf) (a; b; t)�
1

�
f (t) ln

�
g (b)� g (t)
g (t)� g (a)

�
� f (b)� f (t)
� [g (b)� g (t)] [g (b)� g (a)] �

f 0� (b)

�g0� (b)
[g (b)� g (a)] :

In particular, for t =Mg (a; b) we get

(2.23)
f 0+ (a)

�g0+ (a)
[g (b)� g (a)] � 2

�
[f (Mg (a; b))� f (a)]

� (Tgf) (a; b;Mg (a; b))

� 2

�
[f (b)� f (Mg (a; b))] �

f 0� (b)

�g0� (b)
[g (b)� g (a)] :

Proof. We recall that if � : I ! R is a continuous convex function on the interval
of real numbers I and � 2 I then the divided di¤erence function �� : I n f�g ! R,

�� (t) := [�; t; �] :=
� (t)� � (�)

t� �
is monotonic nondecreasing on I n f�g :
Using this property for the function � : (c; d)! R, we have for t 2 (c; d) that

� (c)� � (t)
c� t � � (�)� � (t)

� � t � � (d)� � (t)
d� t

for any � 2 (c; d) ; � 6= t:
By the gradient inequality for the convex function � we also have

� (t)� � (c)
t� c � �0+ (c) for t 2 (c; d)

and
� (d)� � (t)

d� t � �� (d) for t 2 (c; d) :

Therefore we have the following inequality

�0+ (c) �
� (t)� � (c)

t� c � � (�)� � (t)
� � t(2.24)

� � (d)� � (t)
d� t � �� (d)

for t; � 2 (c; d) and � 6= t:
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If we write the inequality (2.24) for the convex function � = f � g�1 and the
interval (g (a) ; g (b)) ; we get�

f 0+ � g�1
�
(g (a))�

g0+ � g�1
�
(g (a))

�
�
f � g�1

�
(g (t))�

�
f � g�1

�
(g (a))

g (t)� g (a)(2.25)

�
�
f � g�1

�
(g (�))�

�
f � g�1

�
(g (t))

g (�)� g (t)

�
�
f � g�1

�
(g (b))�

�
f � g�1

�
(g (t))

g (b)� g (t)

�
�
f 0� � g�1

�
(g (b))�

g0� � g�1
�
(g (b))

for t; � 2 (a; b) and � 6= t:
This is equivalent to

(2.26)
f 0+ (a)

g0+ (a)
� f (t)� f (a)
g (t)� g (a) �

f (�)� f (t)
g (�)� g (t) �

f (b)� f (t)
g (b)� g (t) �

f 0� (b)

g0� (b)

for t; � 2 (a; b) and � 6= t:
If we multiply with g0 (�) � 0 and take the PV in (2.26), then we get

f 0+ (a)

g0+ (a)

Z b

a

g0 (�) d� � f (t)� f (a)
g (t)� g (a)

Z b

a

g0 (�) d�

� PV

Z b

a

f (�)� f (t)
g (�)� g (t) g

0 (�) d�

�
Z b

a

f (b)� f (t)
g (b)� g (t) g

0 (�) d� �
f 0� (b)

g0� (b)

Z b

a

g0 (�) d�

for t 2 (a; b) ; which is equivalent to
f 0+ (a)

g0+ (a)
[g (b)� g (a)] � f (t)� f (a)

g (t)� g (a) [g (b)� g (a)]

� PV

Z b

a

f (�)� f (t)
g (�)� g (t) g

0 (�) d�

� f (b)� f (t)
g (b)� g (t) [g (b)� g (a)] �

f 0� (b)

g0� (b)
[g (b)� g (a)]

for t 2 (a; b) :
By the use of the identity (2.2) we obtain the desired result (2.22). �

3. Applications for GA-Convex Functions

Let I � (0;1) be an interval; a real-valued function f : I ! R is said to be
GA-convex (concave) on I if

(3.1) f
�
x1��y�

�
� (�) (1� �) f (x) + �f (y)

for all x; y 2 I and � 2 [0; 1].
Since the condition (3.1) can be written as

(3.2) f � exp ((1� �) lnx+ � ln y) � (�) (1� �) f � exp (lnx) + �f � exp (ln y) ;
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then we observe that f : I ! R is GA-convex (concave) on I if and only if f � exp
is convex (concave) on ln I := fln z; z 2 Ig : If I = [a; b] then ln I = [ln a; ln b] :
It is known that the function f (x) = ln (1 + x) is GA-convex on (0;1) [1].
For real and positive values of x, the Euler gamma function � and its logarithmic

derivative  , the so-called digamma function, are de�ned by

� (x) :=

Z 1

0

tx�1e�tdt and  (x) :=
�0 (x)

� (x)
:

It has been shown in [21] that the function f : (0;1)! R de�ned by

f (x) =  (x) +
1

2x

is GA-concave on (0;1) while the function g : (0;1)! R de�ned by

g (x) =  (x) +
1

2x
+

1

12x2

is GA-convex on (0;1) :
If [a; b] � (0;1) and the function g : [ln a; ln b] ! R is convex (concave) on

[ln a; ln b] ; then the function f : [a; b] ! R, f (t) = g (ln t) is GA-convex (concave)
on [a; b] :
Indeed, if x; y 2 [a; b] and � 2 [0; 1] ; then

f
�
x1��y�

�
= g

�
ln
�
x1��y�

��
= g [(1� �) lnx+ � ln y]

� (�) (1� �) g (lnx) + �g (ln y) = (1� �) f (x) + �f (y)
showing that f is GA-convex (concave) on [a; b] :
Consider the following logarithmic �nite Hilbert transform

(3.3) (Tlnf) (a; b; t) :=
1

�
lim
"!0+

"Z t�"

a

f (�)

� ln
�
�
t

�d� + Z b

t+"

f (�)

� ln
�
�
t

�d�#
where t 2 (a; b) � (0;1) :

Proposition 1. Assume that f : [a; b] � (0;1)! R is GA-convex on [a; b] ; then

(3.4)
1

�

�
f (t)� f (a) + tf 0+ (t) ln

�
b

t

��
� (Tlnf) (a; b; t)�

1

�
f (t) ln

 
ln
�
b
t

�
ln
�
t
a

�!

� 1

�

�
f (b)� f (t) + tf 0� (t) ln

�
t

a

��
for all t 2 (a; b) :
In particular,

(3.5)
1

�

"
f (G (a; b))� f (a) +G (a; b) ln

 r
b

a

!
f 0+ (G (a; b))

#
� (Tgf) (a; b;G (a; b))

� 1

�

"
f (b)� f (G (a; b)) +G (a; b) ln

 r
b

a

!
f 0� (G (a; b))

#
;

where G (a; b) :=
p
ab is the geometric mean of a; b > 0:
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The proof follows by Theorem 2 for g (t) = ln t; t 2 (a; b) :

Proposition 2. With the assumptions of Proposition 1 and if f 0+ (a) and f
0
� (b)

are �nite, then

(3.6)
af 0+ (a)

�
ln

�
b

a

�
� f (t)� f (a)

�

ln
�
b
a

�
ln
�
t
a

�
� (Tlnf) (a; b; t)�

1

�
f (t) ln

 
ln
�
b
t

�
ln
�
t
a

�!

� f (b)� f (t)
�

ln
�
b
a

�
ln
�
b
t

� � bf 0� (b)

�
ln

�
b

a

�
;

for any t 2 (a; b) :
In particular,

(3.7)
af 0+ (a)

�
ln

�
b

a

�
� 2

�
[f (G (a; b))� f (a)]

� (Tlnf) (a; b;G (a; b))

� 2

�
[f (b)� f (G (a; b))] �

bf 0� (b)

�
ln

�
b

a

�
:

The proof follows by Theorem 3 for g (t) = ln t; t 2 (a; b) :

4. Application for LogExp Convex Function

We say that the function f : [a; b] ! R is a LogExp convex function on [a; b] if
f � ln is convex on the interval [exp a; exp b] ; namely

(4.1) (f � ln) ((1� �)u+ �v) � (1� �) (f � ln) (u) + � (f � ln) (v)

for any � 2 [0; 1] and u; v 2 [exp a; exp b] :
By taking u = exp t; v = exp s; t; s 2 [a; b] ; this is equivalent to

(4.2) f [ln ((1� �) exp t+ � exp s)] � (1� �) f (t) + �f (s)

for any � 2 [0; 1] and t; s 2 [a; b] :
For g (t) = exp (t) ; t 2 [a; b] � R we have the exponential �nite Hilbert transform

(Texpf) (a; b; t)(4.3)

:=
1

�
lim
"!0+

"Z t�"

a

f (�) exp (�)

exp (�)� exp (t)d� +
Z b

t+"

f (�) exp (�)

exp (�)� exp (t)d�
#

=
1

�
lim
"!0+

"Z t�"

a

f (�)

1� exp (t� �)d� +
Z b

t+"

f (�)

1� exp (t� �)d�
#
;

where t 2 (a; b) :
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Proposition 3. Assume that f : [a; b] ! R is LogExp convex function on [a; b] ;
then

(4.4)
1

�

�
f (t)� f (a) + [exp (b� t)� 1] f 0+ (t)

�
� (Texpf) (a; b; t)�

1

�
f (t) ln

�
exp (b� t)� 1
1� exp (a� t)

�
� 1

�

�
f (b)� f (t) + [1� exp (a� t)] f 0� (t)

�
for any t 2 (a; b) :
In particular,

(4.5)
1

�

�
f (LME (a; b))� f (a) + exp (b)� exp (a)

exp (b) + exp (a)
f 0+ (LME (a; b))

�
� (Tgf) (a; b;LME (a; b))

� 1

�

�
f (b)� f (LME (a; b)) +

exp (b)� exp (a)
exp (b) + exp (a)

f 0� (LME (a; b))

�
;

where LME (a; b) = ln
�
exp a+exp b

2

�
is the the LogMeanExp function of a; b:

The proof follows by Theorem 2 for g (t) = exp t; t 2 (a; b) :

Proposition 4. With the assumptions of Proposition 3 and if f 0+ (a) and f
0
� (b)

are �nite, then

(4.6)
f 0+ (a)

�
[exp (b� a)� 1] � f (t)� f (a)

�

�
exp (b� a)� 1
exp (t� a)� 1

�
� (Texpf) (a; b; t)�

1

�
f (t) ln

�
exp (b� t)� 1
1� exp (a� t)

�
� f (b)� f (t)

�

�
1� g (a� b)
1� g (t� b)

�
�
f 0� (b)

�
[1� exp (a� b)]

for t 2 (a; b) :
In particular,

(4.7)
f 0+ (a)

�
[exp (b� a)� 1] � 2

�
[f (LME (a; b))� f (a)]

� (Texpf) (a; b;LME (a; b))

� 2

�
[f (b)� f (LME (a; b))] �

f 0� (b)

�
[1� exp (a� b)] :

The proof follows by Theorem 3 for g (t) = exp t; t 2 (a; b) :

5. Application for Positive p-Convex Function

Let p > 0:We say that the function f : [a; b] � [0;1)! R is a positive p-convex
function on [a; b] if f � (�)1=p is convex on the interval [ap; bp] ; namely

(5.1) f
h
((1� �)u+ �v)1=p

i
� (1� �) f

�
u1=p

�
+ �f

�
v1=p

�
for any � 2 [0; 1] and u; v 2 [ap; bp] :
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By taking u = tp; v = sp; t; s 2 [a; b] ; this is equivalent to, see also [22]

(5.2) f
h
((1� �) tp + �sp)1=p

i
� (1� �) f (t) + �f (s)

for any � 2 [0; 1] and t; s 2 [a; b] :
For [a; b] � (0;1) and g (t) = tp; t 2 [a; b] ; p > 0; we consider the positive

p-power Hilbert transform

(5.3) (Tpf) (a; b; t) :=
p

�
lim
"!0+

"Z t�"

a

f (�) �p�1

�p � tp d� +

Z b

t+"

f (�) �p�1

�p � tp d�

#
;

where t 2 (a; b) :
Proposition 5. Assume that f : [a; b]! R is positive p-convex function on [a; b] ;
then

(5.4)
1

�

�
f (t)� f (a) + bp � tp

ptp�1
f 0+ (t)

�
� (Tpf) (a; b; t)�

1

�
f (t) ln

�
bp � tp
tp � ap

�
� 1

�

�
f (b)� f (t) + tp � ap

ptp�1
f 0� (t)

�
for t 2 (a; b) :
In particular, we have

(5.5)
1

�

�
f (Mp (a; b))� f (a) +

bp � ap

2pMp�1
p (a; b)

f 0+ (Mp (a; b))

�
� (Tgf) (a; b;Mp (a; b))

� 1

�

�
f (b)� f (Mp (a; b)) +

bp � ap

2pMp�1
p (a; b)

f 0� (Mp (a; b))

�
;

where Mp (a; b) :=
�
ap+bp

2

�1=p
:

The proof follows by Theorem 2 for g (t) = tp; t 2 [a; b] :
Proposition 6. With the assumptions of Proposition 5 and if f 0+ (a) and f

0
� (b)

are �nite, then

(5.6)
bp � ap
p�ap�1

f 0+ (a) �
f (t)� f (a)

�

�
bp � ap
tp � ap

�
� (Tpf) (a; b; t)�

1

�
f (t) ln

�
bp � tp
tp � ap

�
� f (b)� f (t)

�

�
bp � ap
bp � tp

�
� bp � ap
p�ap�1

f 0� (b) :

In particular,

(5.7)
bp � ap
p�ap�1

f 0+ (a) �
2

�
[f (Mp (a; b))� f (a)]

� (Tpf) (a; b;Mp (a; b))

� 2

�
[f (b)� f (Mp (a; b))] �

bp � ap
p�ap�1

f 0� (b) :
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The proof follows by Theorem 3 for g (t) = tp; t 2 (a; b) :
Similar results may be stated for negative p-power convex functions, namely for

g (t) = � 1
tp ; t 2 [a; b] � (0;1) : The details are omitted.
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