
INEQUALITIES OF HERMITE-HADAMARD TYPE FOR
COMPOSITE CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we obtain some inequalities of Hermite-Hadamard
type for composite convex functions. Applications for AG, AH-convex func-
tions, GA; GG; GH-convex functions and HA; HG; HH-convex function are
given. Applications for p, r-convex and LogExp convex functions are presented
as well.

1. Introduction

The following inequality holds for any convex function f de�ned on R

(1.1) f

�
a+ b

2

�
� 1

b� a

Z b

a

f(x)dx � f(a) + f(b)

2
; a; b 2 R, a < b:

It was �rstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [18]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite�s result.
E. F. Beckenbach, a leading expert on the history and the theory of convex

functions, wrote that this inequality was proven by J. Hadamard in 1893 [3]. In
1974, D. S. Mitrinovíc found Hermite�s note in Mathesis [18]. Since (1.1) was
known as Hadamard�s inequality, the inequality is now commonly referred as the
Hermite-Hadamard inequality.
In order to extend this result for other classes of functions, we need the following

preparations.
Let g : [a; b] ! [g (a) ; g (b)] be a continuous strictly increasing function that is

di¤erentiable on (a; b) :

De�nition 1. A function f : [a; b] ! R will be called composite-g�1 convex (con-
cave) on [a; b] if the composite function f � g�1 : [g (a) ; g (b)] ! R is convex (con-
cave) in the usual sense on [g (a) ; g (b)] :

In this way, any concept of convexity (log-convexity, harmonic convexity, trigono-
metric convexity, hyperbolic convexity, h-convexity, quasi-convexity, s-convexity,
s-Godunova-Levin convexity etc...) can be extended to the corresponding compos-
ite-g�1 convexity. The details however will not be presented here.
If f : [a; b]! R is composite-g�1 convex on [a; b] then we have the inequality

(1.2) f � g�1 ((1� �)u+ �v) � (1� �) f � g�1 (u) + �f � g�1 (v)
for any u; v 2 [g (a) ; g (b)] and � 2 [0; 1] :
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This is equivalent to the condition

(1.3) f � g�1 ((1� �) g (t) + �g (s)) � (1� �) f (t) + �f (s)
for any t; s 2 [a; b] and � 2 [0; 1] :
If we take g (t) = ln t, t 2 [a; b] � (0;1) ; then the condition (1.3) becomes

(1.4) f
�
t1��s�

�
� (1� �) f (t) + �f (s)

for any t; s 2 [a; b] and � 2 [0; 1] ; which is the concept ofGA-convexity as considered
in [1].
If we take g (t) = � 1

t ; t 2 [a; b] � (0;1) ; then (1.3) becomes

(1.5) f

�
ts

(1� �) s+ �t

�
� (1� �) f (t) + �f (s)

for any t; s 2 [a; b] and � 2 [0; 1] ; which is the concept of HA-convexity as consid-
ered in [1].
If p > 0 and we consider g (t) = tp; t 2 [a; b] � (0;1) ; then the condition (1.3)

becomes

(1.6) f
h
((1� �) tp + �sp)1=p

i
� (1� �) f (t) + �f (s)

for any t; s 2 [a; b] and � 2 [0; 1] ; which is the concept of p-convexity as considered
in [22].
If we take g (t) = exp t; t 2 [a; b] ; then the condition (1.3) becomes

(1.7) f [ln ((1� �) exp (t) + exp g (s))] � (1� �) f (t) + �f (s)
which is the concept of LogExp convex function on [a; b] as considered in [7].
Further, assume that f : [a; b]! J; J an interval of real numbers and k : J ! R

a continuous function on J that is strictly increasing (decreasing) on J:

De�nition 2. We say that the function f : [a; b]! J is k-composite convex (con-
cave) on [a; b], if k � f is convex (concave) on [a; b] :

In this way, any concept of convexity as mentioned above can be extended to
the corresponding k-composite convexity. The details however will not be presented
here.
With g : [a; b] ! [g (a) ; g (b)] a continuous strictly increasing function that is

di¤erentiable on (a; b) ; f : [a; b]! J; J an interval of real numbers and k : J ! R
a continuous function on J that is strictly increasing (decreasing) on J; we can also
consider the following concept:

De�nition 3. We say that the function f : [a; b] ! J is k-composite-g�1 convex
(concave) on [a; b] ; if k � f � g�1 is convex (concave) on [g (a) ; g (b)] :

This de�nition is equivalent to the condition

(1.8) k � f � g�1 ((1� �) g (t) + �g (s)) � (1� �) (k � f) (t) + � (k � f) (s)
for any t; s 2 [a; b] and � 2 [0; 1] :
If k : J ! R is strictly increasing (decreasing) on J; then the condition (1.8) is

equivalent to:

(1.9) f � g�1 ((1� �) g (t) + �g (s)) � (�) k�1 [(1� �) (k � f) (t) + � (k � f) (s)]
for any t; s 2 [a; b] and � 2 [0; 1] :
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If k (t) = ln t; t > 0 and f : [a; b] ! (0;1), then the fact that f is k-composite
convex on [a; b] is equivalent to the fact that f is log-convex or multiplicatively
convex or AG-convex, namely, for all x; y 2 I and t 2 [0; 1] one has the inequality:

(1.10) f (tx+ (1� t) y) � [f (x)]t [f (y)]1�t :

A function f : I ! Rn f0g is called AH-convex (concave) on the interval I if the
following inequality holds [1]

(1.11) f ((1� �)x+ �y) � (�) 1

(1� �) 1
f(x) + �

1
f(y)

=
f (x) f (y)

(1� �) f (y) + �f (x)

for any x; y 2 I and � 2 [0; 1] :
An important case that provides many examples is that one in which the function

is assumed to be positive for any x 2 I: In that situation the inequality (1.11) is
equivalent to

(1� �) 1

f (x)
+ �

1

f (y)
� (�) 1

f ((1� �)x+ �y)
for any x; y 2 I and � 2 [0; 1] :
Taking into account this fact, we can conclude that the function f : I ! (0;1)

is AH-convex (concave) on I if and only if f is k-composite concave (convex) on I
with k : (0;1)! (0;1) ; k (t) = 1

t :
Following [1], we can introduce the concept of GH-convex (concave) function

f : I � (0;1)! R on an interval of positive numbers I as satisfying the condition

(1.12) f
�
x1��y�

�
� (�) 1

(1� �) 1
f(x) + �

1
f(y)

=
f (x) f (y)

(1� �) f (y) + �f (x) :

Since
f
�
x1��y�

�
= f � exp [(1� �) lnx+ � ln y]

and
f (x) f (y)

(1� �) f (y) + �f (x) =
f � exp (lnx) f � exp (ln y)

(1� �) f � exp (y) + �f � exp (x)
then f : I � (0;1)! R is GH-convex (concave) on I if and only if f � exp is AH-
convex (concave) on ln I := fxj x = ln t; t 2 Ig : This is equivalent to the fact that
f is k-composite-g�1 concave (convex) on I with k : (0;1) ! (0;1) ; k (t) = 1

t
and g (t) = ln t; t 2 I:
Following [1], we say that the function f : I � Rnf0g ! (0;1) is HH-convex if

(1.13) f

�
xy

tx+ (1� t) y

�
� f (x) f (y)

(1� t) f (y) + tf (x)
for all x; y 2 I and t 2 [0; 1]. If the inequality in (1.13) is reversed, then f is said
to be HH-concave.
We observe that the inequality (1.13) is equivalent to

(1.14) (1� t) 1

f (x)
+ t

1

f (y)
� 1

f
�

xy
tx+(1�t)y

�
for all x; y 2 I and t 2 [0; 1].
This is equivalent to the fact that f is k-composite-g�1 concave on [a; b] with

k : (0;1)! (0;1) ; k (t) = 1
t and g (t) = �

1
t ; t 2 [a; b] :
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The function f : I � (0;1) ! (0;1) is called GG-convex on the interval I of
real umbers R if [1]

(1.15) f
�
x1��y�

�
� [f (x)]1�� [f (y)]�

for any x; y 2 I and � 2 [0; 1] : If the inequality is reversed in (1.15) then the
function is called GG-concave.
This concept was introduced in 1928 by P. Montel [19], however, the roots of the

research in this area can be traced long before him [20]. It is easy to see that [20],
the function f : [a; b] � (0;1)! (0;1) is GG-convex if and only if the the function
g : [ln a; ln b]! R, g = ln �f � exp is convex on [ln a; ln b] : This is equivalent to the
fact that f is k-composite-g�1 convex on [a; b] with k : (0;1)! R; k (t) = ln t and
g (t) = ln t; t 2 [a; b] :
Following [1] we say that the function f : I � R n f0g ! (0;1) is HG-convex if

(1.16) f

�
xy

tx+ (1� t) y

�
� [f (x)]1�t [f (y)]t

for all x; y 2 I and t 2 [0; 1]. If the inequality in (1.3) is reversed, then f is said to
be HG-concave.
Let f : [a; b] � (0;1)! (0;1) and de�ne the associated functions Gf :

�
1
b ;

1
a

�
!

R de�ned by Gf (t) = ln f
�
1
t

�
: Then f is HG-convex on [a; b] i¤ Gf is convex on�

1
b ;

1
a

�
: This is equivalent to the fact that f is k-composite-g�1 convex on [a; b] with

k : (0;1)! R; k (t) = ln t and g (t) = � 1
t ; t 2 [a; b] :

Following [21], we say that the function f : [a; b]! (0;1) is r-convex, for r 6= 0;
if

(1.17) f ((1� �)x+ �y) � [(1� �) fr (y) + �fr (x)]1=r

for any x; y 2 [a; b] and � 2 [0; 1].
If r > 0; then the condition (1.17) is equivalent to

fr ((1� �)x+ �y) � (1� �) fr (y) + �fr (x)

namely f is k-composite convex on [a; b] where k (t) = tr; t � 0:
If r < 0; then the condition (1.17) is equivalent to

fr ((1� �)x+ �y) � (1� �) fr (y) + �fr (x)

namely f is k-composite concave on [a; b] where k (t) = tr; t > 0:
In this paper we obtain some inequalities of Hermite-Hadamard type for com-

posite convex functions. Applications for various classes of convexity as provided
above are given as well.

2. Some Refinements

We need the following re�nement of Hermite-Hadamard inequality. This result
was obtained for the �rst time by Barnett, Cerone & Dragomir in 2002 in the
paper [2, p. 10, Eq. (2.2)] where various applications for the Hermite-Hadamard
divergence measure in Information Theory were also given. The same result was
also rediscovered by El Farissi in 2010 with a similar proof, see [16].
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Lemma 1. Assume that h : [c; d] ! R is convex on [c; d]. Then for any � 2 [0; 1]
we have

h

�
c+ d

2

�
� �h

�
�d+ (2� �) c

2

�
+ (1� �)h

�
(1 + �) d+ (1� �) c

2

�
(2.1)

� 1

d� c

Z d

c

h (u) du

� 1

2
[h ((1� �) c+ �d) + �h (c) + (1� �)h (d)] � h (c) + h (d)

2
:

Proof. For the sake of completeness, we give here a simple proof as in [2]. Ap-
plying the Hermite-Hadamard inequality on each subinterval [c; (1� �) c+ �d] ;
[(1� �) c+ �d; d], where � 2 (0; 1) ; then we have,

h

�
c+ (1� �) c+ �d

2

�
� [(1� �) c+ �d� c]

�
Z (1��)c+�d

c

h (u) du

� h ((1� �) c+ �d) + h (c)
2

� [(1� �) c+ �d� c]

and

h

�
(1� �) c+ �d+ d

2

�
� [d� (1� �) c� �d]

�
Z d

(1��)c+�d
h (u) du

� h (d) + h ((1� �) c+ �d)
2

� [d� (1� �) c� �d] ;

which are clearly equivalent to

�h

�
�d+ (2� �) c

2

�
� 1

d� c

Z (1��)c+�d

c

h (u) du(2.2)

� �h ((1� �) c+ �d) + �h (c)
2

and

(1� �)h
�
(1 + �) d+ (1� �) c

2

�
� 1

d� c

Z d

(1��)c+�d
h (u) du

(2.3)

� (1� �)h (d) + (1� �)h ((1� �) c+ �d)
2

;

respectively.
Summing (2.2) and (2.3), we obtain the second and �rst inequality in (2.1).
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By the convexity property, we obtain

�h

�
�d+ (2� �) c

2

�
+ (1� �)h

�
(1 + �) d+ (1� �) c

2

�
� h

�
�

�
�d+ (2� �) c

2

�
+ (1� �)

�
(1 + �) d+ (1� �) c

2

��
= h

�
c+ d

2

�
and the �rst inequality in (2.1) is proved. �

For various inequalities of Hermite-Hadamard type see the monograph online [8]
and the more recent survey paper [6].
If g is a function which maps an interval I of the real line to the real numbers,

and is both continuous and injective then we can de�ne the g-mean of two numbers
a; b 2 I as

(2.4) Mg (a; b) := g
�1
�
g (a) + g (b)

2

�
:

If I = R and g (t) = t is the identity function, then Mg (a; b) = A (a; b) :=
a+b
2 ;

the arithmetic mean. If I = (0;1) and g (t) = ln t; thenMg (a; b) = G (a; b) :=
p
ab,

the geometric mean. If I = (0;1) and g (t) = 1
t ; then Mg (a; b) = H (a; b) :=

2ab
a+b ; the harmonic mean. If I = (0;1) and g (t) = tp; p 6= 0; then Mg (a; b) =

Mp (a; b) :=
�
ap+bp

2

�1=p
; the power mean with exponent p. Finally, if I = R and

g (t) = exp t; then

(2.5) Mg (a; b) = LME (a; b) := ln

�
exp a+ exp b

2

�
;

the LogMeanExp function.

Theorem 1. Let g : [a; b] ! [g (a) ; g (b)] be a continuous strictly increasing func-
tion that is di¤erentiable on (a; b) : If f : [a; b] ! R is composite-g�1 convex on
[a; b] ; then

f (Mg (a; b)) � �f � g�1
�
�g (b) + (2� �) g (a)

2

�
(2.6)

+ (1� �) f � g�1
�
(1 + �) g (b) + (1� �) g (a)

2

�
� 1

g (b)� g (a)

Z b

a

f (t) g0 (t) dt

� 1

2

�
f � g�1 ((1� �) g (a) + �g (b)) + �f (a) + (1� �) f (b)

�
� f (a) + f (b)

2

for any � 2 [0; 1] :
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Proof. From the inequality (2.1) we have for the convex function f � g�1 and c;
d 2 [g (a) ; g (b)] that

f � g�1
�
c+ d

2

�
(2.7)

� �f � g�1
�
�d+ (2� �) c

2

�
+ (1� �) f � g�1

�
(1 + �) d+ (1� �) c

2

�
� 1

d� c

Z d

c

f � g�1 (u) du

� 1

2

�
f � g�1 ((1� �) c+ �d) + �f � g�1 (c) + (1� �) f � g�1 (d)

�
� f � g�1 (c) + f � g�1 (d)

2

for any � 2 [0; 1] :
If we take c = g (a) and d = g (b) ; then we get

f � g�1
�
g (a) + g (b)

2

�
(2.8)

� �f � g�1
�
�g (b) + (2� �) g (a)

2

�
+ (1� �) f � g�1

�
(1 + �) g (b) + (1� �) g (a)

2

�
� 1

g (b)� g (a)

Z g(b)

g(a)

f � g�1 (u) du

� 1

2

�
f � g�1 ((1� �) g (a) + �g (b)) + �f (a) + (1� �) f (b)

�
� f (a) + f (b)

2

for any � 2 [0; 1] :
Using the change of variable g�1 (u) = t; t 2 [a; b] we have u = g (t) ; du = g0 (t) dt

and Z g(b)

g(a)

f � g�1 (u) du =
Z b

a

f (t) g0 (t) dt

and by (2.8) we get the desired result (2.6). �

Corollary 1. With the assumptions of Theorem 1 we have

f (Mg (a; b)) �
1

2

�
f � g�1

�
g (b) + 3g (a)

4

�
+ f � g�1

�
g (a) + 3g (b)

4

��
(2.9)

� 1

g (b)� g (a)

Z b

a

f (t) g0 (t) dt

� 1

2

�
f (Mg (a; b)) +

f (a) + f (b)

2

�
� f (a) + f (b)

2
:
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Remark 1. Using the change of variable u = (1� s) c + sd; s 2 [0; 1] ; then we
have du = (d� c) ds; which gives that

1

d� c

Z d

c

h (u) du =

Z 1

0

h ((1� s) c+ sd) ds:

Using this fact, we have from Theorem 1 the following inequality

f (Mg (a; b)) � �f � g�1
�
�g (b) + (2� �) g (a)

2

�
(2.10)

+ (1� �) f � g�1
�
(1 + �) g (b) + (1� �) g (a)

2

�
� b� a
g (b)� g (a)

Z 1

0

f ((1� s) a+ sb) g0 ((1� s) a+ sb) ds

=

Z 1

0

f � g�1 ((1� �) g (a) + �g (b)) d�

� 1

2

�
f � g�1 ((1� �) g (a) + �g (b)) + �f (a) + (1� �) f (b)

�
� f (a) + f (b)

2

for all � 2 [0; 1] :

Corollary 2. Let g : [a; b]! [g (a) ; g (b)] be a continuous strictly increasing func-
tion that is di¤erentiable on (a; b) ; f : [a; b]! J; J an interval of real numbers and
k : J ! R a continuous function on J that is strictly increasing (decreasing) on J:
If the function f : [a; b]! J is k-composite-g�1 convex on [a; b] ; then

(2.11) f (Mg (a; b))

� (�) k�1
�
�k � f � g�1

�
�g (b) + (2� �) g (a)

2

�
+(1� �) k � f � g�1

�
(1 + �) g (b) + (1� �) g (a)

2

��
� (�) k�1

 
1

g (b)� g (a)

Z b

a

k � f (t) g0 (t) dt
!

� (�) k�1
�
1

2

�
k � f � g�1 ((1� �) g (a) + �g (b)) + �k � f (a) + (1� �) k � f (b)

��
� (�) k�1

�
k � f (a) + k � f (b)

2

�

for any � 2 [0; 1] :
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Proof. From (2.6) we have

k � f (Mg (a; b))(2.12)

� �k � f � g�1
�
�g (b) + (2� �) g (a)

2

�
+ (1� �) k � f � g�1

�
(1 + �) g (b) + (1� �) g (a)

2

�
� 1

g (b)� g (a)

Z b

a

k � f (t) g0 (t) dt

� 1

2

�
k � f � g�1 ((1� �) g (a) + �g (b)) + �k � f (a) + (1� �) k � f (b)

�
� k � f (a) + k � f (b)

2

for any � 2 [0; 1] :
Taking k�1 in (2.12) we obtain the desired result (2.11). �

In 1906, Fejér [17], while studying trigonometric polynomials, obtained the fol-
lowing inequalities which generalize that of Hermite & Hadamard:

Theorem 2 (Fejér�s Inequality). Consider the integral
R b
a
h (x)w (x) dx, where h

is a convex function in the interval (a; b) and w is a positive function in the same
interval such that

w (x) = w (a+ b� x) ; for any x 2 [a; b]

i.e., y = w (x) is a symmetric curve with respect to the straight line which contains
the point

�
1
2 (a+ b) ; 0

�
and is normal to the x-axis. Under those conditions the

following inequalities are valid:

(2.13) h

�
a+ b

2

�Z b

a

w (x) dx �
Z b

a

h (x)w (x) dx � h (a) + h (b)

2

Z b

a

w (x) dx:

If h is concave on (a; b), then the inequalities reverse in (2.13).

If w : [a; b]! R is continuous and positive on the interval [a; b] ; then the function
W : [a; b]! [0;1) is strictly increasing and di¤erentiable on (a; b) and the inverse
W�1 :

h
a;
R b
a
w (s) ds

i
! [a; b] exists.

Corollary 3. Assume that w : [a; b] ! R is continuous and positive on the inter-
val [a; b] and f : [a; b] ! R is composite-W�1 convex on [a; b] ; then we have the
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following Fejér�s type inequality

(2.14) f

"
W�1

 
1

2

Z b

a

w (s) ds

!#

� �f
"
W�1

 
1

2
�

Z b

a

w (s) ds

!#
+ (1� �) f

"
W�1

 
1

2
(1 + �)

Z b

a

w (s) ds

!#

� 1R b
a
w (s)

Z b

a

f (t)w (t) dt

� 1

2

"
f

"
W�1

 
�

Z b

a

w (s) ds

!#
+ �f (a) + (1� �) f (b)

#
� f (a) + f (b)

2

for all � 2 [0; 1] :
In particular, we have

(2.15) f

"
W�1

 
1

2

Z b

a

w (s) ds

!#

� 1

2
f

"
W�1

 
1

4

Z b

a

w (s) ds

!#
+
1

2
f

"
W�1

 
3

4

Z b

a

w (s) ds

!#

� 1R b
a
w (s)

Z b

a

f (t)w (t) dt

� 1

2

"
f

"
W�1

 
1

2

Z b

a

w (s) ds

!#
+
f (a) + f (b)

2

#
� f (a) + f (b)

2
:

Remark 2. Assume that w : [a; b] ! R is continuous and positive on the interval
[a; b] ; f : [a; b] ! J; J an interval of real numbers and k : J ! R a continuous
function on J that is strictly increasing (decreasing) on J: If the function f : [a; b]!
J is k-composite-W�1 convex on [a; b] ; then

(2.16) f

"
W�1

 
1

2

Z b

a

w (s) ds

!#

� (�) k�1
(
�k � f

"
W�1

 
1

2
�

Z b

a

w (s) ds

!#

+(1� �) k � f
"
W�1

 
1

2
(1 + �)

Z b

a

w (s) ds

!#)

� (�) k�1
 

1R b
a
w (s)

Z b

a

k � f (t)w (t) dt
!

� (�) k�1
(
1

2

"
k � f

"
W�1

 
�

Z b

a

w (s) ds

!#
+ �k � f (a) + (1� �) k � f (b)

#)

� (�) k�1
�
k � f (a) + k � f (b)

2

�
for all � 2 [0; 1] :
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In particular, we have

(2.17) f

"
W�1

 
1

2

Z b

a

w (s) ds

!#

� (�) k�1
(
1

2
k � f

"
W�1

 
1

4

Z b

a

w (s) ds

!#
+
1

2
k � f

"
W�1

 
3

4

Z b

a

w (s) ds

!#)

� (�) k�1
 

1R b
a
w (s)

Z b

a

k � f (t)w (t) dt
!

� (�) k�1
(
1

2

"
k � f

"
W�1

 
1

2

Z b

a

w (s) ds

!#
+
1

2
k � f (a) + 1

2
k � f (b)

#)

� (�) k�1
�
k � f (a) + k � f (b)

2

�
:

3. Reverse Inequalities

The following reverse inequalities may be stated:

Theorem 3. Let g : [a; b] ! [g (a) ; g (b)] be a continuous strictly increasing func-
tion that is di¤erentiable on (a; b) : If f : [a; b] ! R is composite-g�1 convex on
[a; b] ; then

0 � 1

g (b)� g (a)

Z b

a

f (t) g0 (t) dt� f (Mg (a; b))(3.1)

� 1

8
(g (b)� g (a))

�
f 0� (b)

g0� (b)
�
f 0+ (a)

g0+ (a)

�
and

0 � f (a) + f (b)

2
� 1

g (b)� g (a)

Z b

a

f (t) g0 (t) dt(3.2)

� 1

8
(g (b)� g (a))

�
f 0� (b)

g0� (b)
�
f 0+ (a)

g0+ (a)

�
;

provided that the lateral derivatives f 0+ (a) ; g
0
+ (a) ; f

0
� (b) and g

0
� (b) are �nite.

Proof. Let h : [c; d]! R be a convex function on [c; d] : We use the inequality that
has been established in [4]

(3.3) 0 � 1

d� c

Z d

c

h (u) du� h
�
c+ d

2

�
� 1

8
(d� c)

�
h0� (d)� h0+ (c)

�
and the inequality obtained in [5]

(3.4) 0 � h (c) + h (d)

2
� 1

d� c

Z d

c

h (u) du � 1

8
(d� c)

�
h0� (d)� h0+ (c)

�
:

The constant 18 is best possible in both (3.3) and (3.4).



12 S. S. DRAGOMIR

From the inequalities (3.3) and (3.4) we have for the convex function h = f �g�1
and c; d 2 [g (a) ; g (b)] that

0 � 1

d� c

Z d

c

�
f � g�1

�
(u) du�

�
f � g�1

��c+ d
2

�
(3.5)

� 1

8
(d� c)

h�
f � g�1

�0
� (d)�

�
f � g�1

�0
+
(c)
i

and

0 �
�
f � g�1

�
(c) +

�
f � g�1

�
(d)

2
� 1

d� c

Z d

c

�
f � g�1

�
(u) du(3.6)

� 1

8
(d� c)

h�
f � g�1

�0
� (d)�

�
f � g�1

�0
+
(c)
i
:

Since f � g�1 has lateral derivatives for z 2 (g (a) ; g (b)) it follows f has lateral
derivatives in each point of (a; b) and by the chain rule and the derivative of the
inverse function, we have

(3.7)
�
f � g�1

�0
� (z) =

�
f 0� � g�1

�
(z)
�
g�1

�0
(z) =

�
f 0� � g�1

�
(z)

(g0 � g�1) (z) :

Therefore, by (3.5) and (3.6) we get

0 � 1

d� c

Z d

c

�
f � g�1

�
(u) du�

�
f � g�1

��c+ d
2

�
(3.8)

� 1

8
(d� c)

"�
f 0� � g�1

�
(d)

(g0 � g�1) (d) �
�
f 0+ � g�1

�
(c)

(g0 � g�1) (c)

#
and

0 �
�
f � g�1

�
(c) +

�
f � g�1

�
(d)

2
� 1

d� c

Z d

c

�
f � g�1

�
(u) du(3.9)

� 1

8
(d� c)

"�
f 0� � g�1

�
(d)

(g0 � g�1) (d) �
�
f 0+ � g�1

�
(c)

(g0 � g�1) (c)

#
and by taking c = g (a) and d = g (b) in (3.8) and (3.9), then we get the desired
results (3.1) and (3.2). �
Corollary 4. Assume that w : [a; b]! R is continuous and positive on the interval
[a; b] : If f : [a; b]! R is composite-W�1 convex on [a; b] ; then we have the following
weighted reverse integral inequalities

0 � 1R b
a
w (s)

Z b

a

f (t)w (t) dt� f
"
W�1

 
1

2

Z b

a

w (s) ds

!#
(3.10)

� 1

8

�
f 0� (b)

w (b)
�
f 0+ (a)

w (a)

� Z b

a

w (s) ds

and

0 � f (a) + f (b)

2
� 1R b

a
w (s)

Z b

a

f (t)w (t) dt(3.11)

� 1

8

�
f 0� (b)

w (b)
�
f 0+ (a)

w (a)

� Z b

a

w (s) ds;
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provided that f 0� (b) and f
0
+ (a) are �nite.

Remark 3. Let g : [a; b]! [g (a) ; g (b)] be a continuous strictly increasing function
that is di¤erentiable on (a; b) ; f : [a; b]! J; J an interval of real numbers and k :
J ! R a continuous function on J that is strictly increasing on J and di¤erentiable
on the interior of J: If the function f : [a; b] ! J is k-composite-g�1 convex on
[a; b] and f 0+ (a) ; g

0
+ (a) ; f

0
� (b), g

0
� (b) ; k

0 (f (a)) and k0 (f (b)) are �nite, then by
Theorem 3 we have

0 � 1

g (b)� g (a)

Z b

a

(k � f) (t) g0 (t) dt� k � f (Mg (a; b))(3.12)

� 1

8
(g (b)� g (a))

�
k0 (f (b)) f 0� (b)

g0� (b)
�
k0 (f (a)) f 0+ (a)

g0+ (a)

�
and

0 � k � f (a) + k � f (b)
2

� 1

g (b)� g (a)

Z b

a

(k � f) (t) g0 (t) dt(3.13)

� 1

8
(g (b)� g (a))

�
k0 (f (b)) f 0� (b)

g0� (b)
�
k0 (f (a)) f 0+ (a)

g0+ (a)

�
:

Assume that w : [a; b] ! R is continuous and positive on the interval [a; b] ;
f : [a; b] ! J; J an interval of real numbers and k : J ! R a continuous function
on J that is strictly increasing on J and di¤erentiable on the interior of J: If the
function f : [a; b] ! J is k-composite-W�1 convex on [a; b] and f 0+ (a) ; f

0
� (b),

k0 (f (a)) and k0 (f (b)) are �nite, then we have the weighted inequalities

0 � 1

g (b)� g (a)

Z b

a

(k � f) (t)w (t) dt� k � f
 
W�1

 
1

2

Z b

a

w (s) ds

!!
(3.14)

� 1

8
(g (b)� g (a))

�
k0 (f (b)) f 0� (b)

w (b)
�
k0 (f (a)) f 0+ (a)

w (a)

�
and

0 � k � f (a) + k � f (b)
2

� 1

g (b)� g (a)

Z b

a

(k � f) (t)w (t) dt(3.15)

� 1

8
(g (b)� g (a))

�
k0 (f (b)) f 0� (b)

w (b)
�
k0 (f (a)) f 0+ (a)

w (a)

�
:

4. Applications for AG and AH-Convex Functions

The function f : [a; b] ! (0;1) is AG-convex means that f is k-composite
convex on [a; b] with k (t) = ln t; t > 0: By making use of Corollary 2 for g (t) = t;
we get

(4.1) f

�
a+ b

2

�
� f�

�
�b+ (2� �) a

2

�
f1��

�
(1 + �) b+ (1� �) a

2

�
� exp

 
1

b� a

Z b

a

ln f (t) dt

!
�
q
f ((1� �) a+ �b) f� (a) f1�� (b) �

p
f (a) f (b)

for any � 2 [0; 1] ; see also [9].
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If we use Remark 3 for g (t) = t; then we get

(4.2) 0 � 1

b� a

Z b

a

ln f (t) dt� ln f
�
a+ b

2

�
� 1

8
(b� a)

�
f 0� (b)

f (b)
�
f 0+ (a)

f (a)

�
and

(4.3) 0 � ln f (a) + ln f (b)

2
� 1

b� a

Z b

a

ln f (t) dt � 1

8
(b� a)

�
f 0� (b)

f (b)
�
f 0+ (a)

f (a)

�
:

By taking the exponential in (4.2) and (4.3) we get the equivalent inequalities

(4.4) 1 �
exp

�
1
b�a

R b
a
ln f (t) dt

�
f
�
a+b
2

� � exp
�
1

8
(b� a)

�
f 0� (b)

f (b)
�
f 0+ (a)

f (a)

��
and

(4.5) 1 �
p
f (a) f (b)

exp
�

1
b�a

R b
a
ln f (t) dt

� � exp�1
8
(b� a)

�
f 0� (b)

f (b)
�
f 0+ (a)

f (a)

��
that was obtained in [9].
The function f : [a; b] ! (0;1) is AH-convex on [a; b] means that f is k-

composite concave on [a; b] with k : (0;1) ! (0;1) ; k (t) = 1
t : By making use of

Corollary 2 for g (t) = t; we get

(4.6) f

�
a+ b

2

�
�
�
�f�1

�
�b+ (2� �) a

2

�
+ (1� �) f�1

�
(1 + �) b+ (1� �) a

2

���1
�
 

1

b� a

Z b

a

f�1 (t) dt

!�1

�
�
1

2

�
f�1 ((1� �) a+ �b) + �f�1 (a) + (1� �) f�1 (b)

���1
�
�
f�1 (a) + f�1 (b)

2

��1
for any � 2 [0; 1] :
By taking the power �1; this inequality is equivalent to

(4.7) f�1
�
a+ b

2

�
� �f�1

�
�b+ (2� �) a

2

�
+ (1� �) f�1

�
(1 + �) b+ (1� �) a

2

�
� 1

b� a

Z b

a

f�1 (t) dt

� 1

2

�
f�1 ((1� �) a+ �b) + �f�1 (a) + (1� �) f�1 (b)

�
� f�1 (a) + f�1 (b)

2

for any � 2 [0; 1] :



INEQUALITIES OF HERMITE-HADAMARD TYPE 15

If we use Remark 3 for g (t) = t; then we get

(4.8) 0 � f�1
�
a+ b

2

�
� 1

b� a

Z b

a

f�1 (t) dt � 1

8
(b� a)

�
f 0� (b)

f2 (b)
�
f 0+ (a)

f2 (a)

�
and

(4.9) 0 � 1

b� a

Z b

a

f�1 (t) dt� f
�1 (a) + f�1 (b)

2
� 1

8
(b� a)

�
f 0� (b)

f2 (b)
�
f 0+ (a)

f2 (a)

�
:

5. Applications for GA; GG and GH-Convex Functions

If we take g (t) = ln t, t 2 [a; b] � (0;1) ; then f : [a; b] ! R is GA-convex on
[a; b] means that that f : [a; b]! R composite-g�1 convex on [a; b] : By making use
of Corollary 2 for k (t) = t; we get

f
�p
ab
�
� (1� �) f

�
a
1��
2 b

�+1
2

�
+ �f

�
a
2��
2 b

�
2

�
(5.1)

� 1

ln
�
b
a

� Z b

a

f (t)

t
dt

� 1

2

�
f
�
a1��b�

�
+ (1� �) f (b) + �f (a)

�
� f (a) + f (b)

2

for any � 2 [0; 1] : This result was obtained in [10].
If we use Remark 3 for k (t) = t; then we get

(5.2) 0 � 1

ln
�
b
a

� Z b

a

f (t)

t
dt� f

�p
ab
�
� 1

8
ln

�
b

a

��
bf 0� (b)� af 0+ (a)

�
and

(5.3) 0 � f (a) + f (b)

2
� 1

ln
�
b
a

� Z b

a

f (t)

t
dt � 1

8
ln

�
b

a

��
bf 0� (b)� af 0+ (a)

�
:

These results were also obtained in [10].
The function f : I � (0;1)! (0;1) is GG-convex means that f is k-composite-

g�1 convex on [a; b] with k : (0;1)! R; k (t) = ln t and g (t) = ln t; t 2 [a; b] : By
making use of Corollary 2 we get

(5.4) f
�p
ab
�
� f�

�
a
2��
2 b

�
2

�
f1��

�
a
1��
2 b

�+1
2

�
� exp

 
1

ln
�
b
a

� Z b

a

ln f (t)

t
dt

!
�
q
f (a1��b�) f� (a) f1�� (b) �

p
f (a) f (b)

for any � 2 [0; 1] : This result was obtained in [11], see also [12].
If we use Remark 3, then we have the inequalities

(5.5) 1 �
p
f (a) f (b)

exp
�

1
ln b�ln a

R b
a
ln f(s)
s ds

� � � b
a

� 1
8

�
f0�(b)b

f(b)
�
f0+(a)a

f(a)

�
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and

(5.6) 1 �
exp

�
1

ln b�ln a
R b
a
ln f(s)
s ds

�
f
�p
ab
� �

�
b

a

� 1
8

�
f0�(b)b

f(b)
�
f0+(a)a

f(a)

�
:

These results were obtained in [11], see also [12].
We also have that f : [a; b] � (0;1) ! R is GH-convex on [a; b] is equivalent

to the fact that f is k-composite-g�1 concave on [a; b] with k : (0;1) ! (0;1) ;
k (t) = 1

t and g (t) = ln t; t 2 I: By making use of Corollary 2 we get

(5.7) f
�p
ab
�
�
h
�f�1

�
a
2��
2 b

�
2

�
+ (1� �) f�1

�
a
1��
2 b

�+1
2

�i�1
�
 

1

ln
�
b
a

� Z b

a

f�1 (t)

t
dt

!�1

�
�
1

2

�
f�1

�
a1��b�

�
+ �f�1 (a) + (1� �) f�1 (b)

���1
�
�
f�1 (a) + f�1 (b)

2

��1
for any � 2 [0; 1] :
This is equivalent to

(5.8) f�1
�p
ab
�
� �f�1

�
a
2��
2 b

�
2

�
+ (1� �) f�1

�
a
1��
2 b

�+1
2

�
� 1

ln
�
b
a

� Z b

a

f�1 (t)

t
dt

� 1

2

�
f�1

�
a1��b�

�
+ �f�1 (a) + (1� �) f�1 (b)

�
� f�1 (a) + f�1 (b)

2
:

If we use Remark 3, then we get

(5.9) 0 � f�1
�p
ab
�
� 1

ln
�
b
a

� Z b

a

f�1 (t)

t
dt � 1

8
ln

�
b

a

��
bf 0� (b)

f2 (b)
�
af 0+ (a)

f2 (a)

�
and

(5.10) 0 � 1

ln
�
b
a

� Z b

a

f�1 (t)

t
dt� f

�1 (a) + f�1 (b)

2

� 1

8
ln

�
b

a

��
bf 0� (b)

f2 (b)
�
af 0+ (a)

f2 (a)

�
:

6. Applications for HA; HG and HH-Convex Functions

Let f : [a; b] � (0;1) ! R be an HA-convex function on the interval [a; b] :
This is equivalent to the fact that f is composite-g�1 convex on [a; b] with the
increasing function g (t) = � 1

t : Then by applying Corollary 2 for k (t) = t; we have
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the inequalities

f

�
2ab

a+ b

�
� (1� �) f

�
2ab

(1� �) a+ (�+ 1) b

�
+ �f

�
2ab

(2� �) a+ �b

�
(6.1)

� ab

b� a

Z b

a

f (t)

t2
dt

� 1

2

�
f

�
ab

(1� �) a+ �b

�
+ (1� �) f (a) + �f (b)

�
� f (a) + f (b)

2

for any � 2 [0; 1] : This result was obtained in [13].
If we use Remark 3, then we get

(6.2) 0 � ab

b� a

Z b

a

f (t)

t2
dt� f

�
2ab

a+ b

�
� 1

8

�
f 0� (b) b

2 � f 0+ (a) a2

ab

�
(b� a)

and

(6.3) 0 � f (a) + f (b)

2
� ab

b� a

Z b

a

f (t)

t2
dt � 1

8

�
f 0� (b) b

2 � f 0+ (a) a2

ab

�
(b� a) :

This results were obtained in [13].
Let f : [a; b] � (0;1) ! (0;1) be an HG-convex function on the interval

[a; b] : This is equivalent to the fact that f is k-composite-g�1 convex on [a; b] with
k : (0;1) ! R; k (t) = ln t and g (t) = � 1

t ; t 2 [a; b] : Then by applying Corollary
2, we have the inequalities

f

�
2ab

a+ b

�
� f1��

�
2ab

(1� �) a+ (�+ 1) b

�
f�
�

2ab

(2� �) a+ �b

�
(6.4)

� exp
 

ab

b� a

Z b

a

ln f (t)

t2
dt

!

�

s
f

�
ab

(1� �) a+ �b

�
[f (a)]

1��
[f (b)]

� �
p
f (a) f (b)

for any � 2 [0; 1] : This result was obtained in [14].
If we use Remark 3, then we get

(6.5) 1 �
exp

�
ab
b�a

R b
a
ln f(t)
t2 dt

�
f
�
2ab
a+b

� � exp
�
1

8

�
f 0� (b) b

2

f (b)
�
f 0+ (a) a

2

f (a)

�
b� a
ab

�
and

(6.6) 1 �
p
f (a) f (b)

exp
�
ab
b�a

R b
a
ln f(t)
t2 dt

� � exp�1
8

�
f 0� (b) b

2

f (b)
�
f 0+ (a) a

2

f (a)

�
b� a
ab

�
:

These results were obtained in [14].
Let f : [a; b] � (0;1) ! (0;1) be an HH-convex function on the interval

[a; b] : This is equivalent to the fact that f is k-composite-g�1 concave on [a; b]
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with k : (0;1) ! (0;1) ; k (t) = 1
t and g (t) = � 1

t ; t 2 [a; b] : Then by applying
Corollary 2, we have the inequalities

(6.7) f

�
2ab

a+ b

�
�
�
�f�1

�
2ab

(2� �) a+ �b

�
+ (1� �) f�1

�
2ab

(1� �) a+ (�+ 1) b

���1
�
 

ab

b� a

Z b

a

f�1 (t)

t2
dt

!�1

�
�
1

2

�
f�1

�
ab

(1� �) a+ �b

�
+ �f�1 (a) + (1� �) f�1 (b)

���1
�
�
f�1 (a) + f�1 (b)

2

��1
for any � 2 [0; 1] :
By taking the power �1 in (6.7), then we get

(6.8) f�1
�
2ab

a+ b

�
� �f�1

�
2ab

(2� �) a+ �b

�
+ (1� �) f�1

�
2ab

(1� �) a+ (�+ 1) b

�
� ab

b� a

Z b

a

f�1 (t)

t2
dt

� 1

2

�
f�1

�
ab

(1� �) a+ �b

�
+ �f�1 (a) + (1� �) f�1 (b)

�
� f�1 (a) + f�1 (b)

2

for any � 2 [0; 1] :
If we use Remark 3, then we get

(6.9) 0 � f�1
�
2ab

a+ b

�
� ab

b� a

Z b

a

f�1 (t)

t2
dt

� 1

8

�
b2f 0� (b)

f2 (b)
�
a2f 0+ (a)

f2 (a)

�
ab

b� a

and

(6.10) 0 � ab

b� a

Z b

a

f�1 (t)

t2
dt� f

�1 (a) + f�1 (b)

2

� 1

8

�
b2f 0� (b)

f2 (b)
�
a2f 0+ (a)

f2 (a)

�
ab

b� a:

For related results, see [15].

7. Applications for p, r-Convex and LogExp Convex Functions

If p > 0 and we consider g (t) = tp; t 2 [a; b] � (0;1) ; then f : [a; b] � (0;1)!
(0;1) is p-convex on [a; b] is equivalent to the fact that f is composite-g�1 convex
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on [a; b] : Using Corollary 2 for k (t) = t we get

(7.1) f (Mp (a; b))

� �f
"�
�bp + (2� �) ap

2

�1=p#
+ (1� �) f

"�
(1 + �) bp + (1� �) ap

2

�1=p#

� p

bp � ap
Z b

a

f (t) tp�1dt

� 1

2

n
f
h
((1� �) ap + �bp)1=p

i
+ �f (a) + (1� �) f (b)

o
� f (a) + f (b)

2

for any � 2 [0; 1] ; where Mp (a; b) :=
�
ap+bp

2

�1=p
: This improves the corresponding

result from [22].
If we use Remark 3, then we get

(7.2) 0 � p

bp � ap
Z b

a

f (t) tp�1dt� f (Mp (a; b)) �
1

8p
(bp � ap)

�
f 0� (b)

bp�1
�
f 0+ (a)

ap�1

�
and

(7.3) 0 � ap + bp

2
� p

bp � ap
Z b

a

f (t) tp�1dt � 1

8p
(bp � ap)

�
f 0� (b)

bp�1
�
f 0+ (a)

ap�1

�
:

Assume that the function f : [a; b] ! (0;1) is r-convex, for r > 0: This is
equivalent to the fact that f is k-composite convex with k (t) = tr; t > 0; and by
Corollary 2 for g (t) = t we get

(7.4) f

�
a+ b

2

�
�
�
�fr

�
�a+ (2� �) b

2

�
+ (1� �) fr

�
(1 + �) b+ (1� �) a

2

��1=r
�
 

1

b� a

Z b

a

fr (t) dt

!1=r

�
�
1

2
[fr ((1� �) a+ �b) + �fr (a) + (1� �) fr (b)]

�1=r
�
�
fr (a) + fr (b)

2

�1=r
for any � 2 [0; 1] :
By taking the power r > 0; we get the equivalent inequality

(7.5) fr
�
a+ b

2

�
� �fr

�
�a+ (2� �) b

2

�
+ (1� �) fr

�
(1 + �) b+ (1� �) a

2

�
� 1

b� a

Z b

a

fr (t) dt

� 1

2
[fr ((1� �) a+ �b) + �fr (a) + (1� �) fr (b)] � fr (a) + fr (b)

2

for any � 2 [0; 1] :
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From Remark 3, we get for g (t) = t that

(7.6) 0 � 1

b� a

Z b

a

fr (t) dt� fr
�
a+ b

2

�
� r

8
(b� a)

�
fr�1 (b) f 0� (b)� fr�1 (a) f 0+ (a)

�
and

(7.7) 0 � fr (a) + fr (b)

2
� 1

b� a

Z b

a

fr (t) dt

� r

8
(b� a)

�
fr�1 (b) f 0� (b)� fr�1 (a) f 0+ (a)

�
:

Assume that f : [a; b] ! R is LogExp convex function on [a; b] as considered in
[7]. This is equivalent to the fact that f is composite-g�1 with g (t) = exp t. By
utilising Corollary 2 for k (t) = t we get,

(7.8) f (LME (a; b))

� �f
�
ln

�
� exp b+ (2� �) exp a

2

��
+(1� �) f

�
ln

�
(1 + �) exp b+ (1� �) exp a

2

��
� 1

exp b� exp a

Z b

a

f (t) exp tdt

� 1

2
[f [ln ((1� �) exp (a) + � exp (b))] + �f (a) + (1� �) f (b)] � f (a) + f (b)

2

for � 2 [a; b] ; where LME (a; b) := ln
�
exp a+exp b

2

�
:

If we use Remark 3, then we get

0 � 1

exp b� exp a

Z b

a

f (t) exp tdt� f (LME (a; b))(7.9)

� 1

8
(exp b� exp a)

�
exp (�b) f 0� (b)� exp (�a) f 0+ (a)

�
and

0 � f (a) + f (b)

2
� 1

exp b� exp a

Z b

a

f (t) exp tdt(7.10)

� 1

8
(exp b� exp a)

�
exp (�b) f 0� (b)� exp (�a) f 0+ (a)

�
:
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