Received 16/04/18

INEQUALITIES OF HERMITE-HADAMARD TYPE FOR
COMPOSITE CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we obtain some inequalities of Hermite-Hadamard
type for composite convex functions. Applications for AG, AH-convex func-
tions, GA, GG, GH-convex functions and HA, HG, H H-convex function are
given. Applications for p, r-convex and LogFEzp convex functions are presented
as well.

1. INTRODUCTION

The following inequality holds for any convex function f defined on R

b

(1.1) f<a+b>§1/ f(x)deM, a, beR, a <b.
2 b—a J, 2

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [18]).

But this result was nowhere mentioned in the mathematical literature and was not

widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [3]. In
1974, D. S. Mitrinovi¢ found Hermite’s note in Mathesis [18]. Since (1.1) was
known as Hadamard’s inequality, the inequality is now commonly referred as the
Hermite-Hadamard inequality.

In order to extend this result for other classes of functions, we need the following
preparations.

Let g : [a,b] — [g(a),g (b)] be a continuous strictly increasing function that is
differentiable on (a,b).

Definition 1. A function f : [a,b] — R will be called composite-g~*

cave) on [a,b] if the composite function fo g=!
cave) in the usual sense on [g(a), g (b)].

convezx (con-
:lg(a),g(b)] = R is convex (con-

In this way, any concept of convexity (log-convexity, harmonic convexity, trigono-
metric convexity, hyperbolic convexity, h-convexity, quasi-convexity, s-convexity,
s-Godunova-Levin convexity etc...) can be extended to the corresponding compos-
ite-g~! convexity. The details however will not be presented here.

If f:[a,b] — R is composite-g~! convex on [a, b] then we have the inequality

(1.2) fog  (=Nut+X ) <(1=A)fog™ (u)+Afog™" (v)
for any u, v € [g(a),g (b)] and X € [0,1].
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This is equivalent to the condition
(1.3) Fog  ((T=Ng(®)+Ag(s)) < (L—X)f(t) +Af(s)

for any t, s € [a,b] and X € [0,1].
If we take g (¢) = Int, t € [a,b] C (0,00), then the condition (1.3) becomes

(1.4) ) < (=N 10+ (5)
forany t, s € [a,b] and A € [0, 1], which is the concept of G A-convezity as considered
in [1].

If we take g (t) = —1, t € [a,b] C (0,00), then (1.3) becomes

(1.5) Haos) 0=V

for any ¢, s € [a,b] and X € [0,1], which is the concept of H A-convexity as consid-
ered in [1].

If p > 0 and we consider g (t) = t?, t € [a,b] C (0,00), then the condition (1.3)
becomes

(1.6) FIA=NE+AM)YP] < (1= X) () + A (5)

for any ¢, s € [a,b] and X\ € [0,1], which is the concept of p-convezity as considered
in [22].
If we take g (t) = expt, t € [a,b], then the condition (1.3) becomes

(1.7) S ((1 =N exp (t) +expg (s))] < (1= A) f () + Af (s)

which is the concept of LogEzp convex function on [a,b] as considered in [7].
Further, assume that f : [a,b] — J, J an interval of real numbers and k: J — R
a continuous function on J that is strictly increasing (decreasing) on J.

Definition 2. We say that the function f : [a,b] — J is k-composite convex (con-
cave) on |a,bl], if ko f is convex (concave) on [a,b].

In this way, any concept of convexity as mentioned above can be extended to
the corresponding k-composite convexity. The details however will not be presented
here.

With g : [a,b] — [g(a),g ()] a continuous strictly increasing function that is
differentiable on (a,b), f : [a,b] — J, J an interval of real numbers and k : J — R
a continuous function on J that is strictly increasing (decreasing) on J, we can also

consider the following concept:
Definition 3. We say that the function f : [a,b] — J is k-composite-g~! convex

(concave) on [a,b], if ko fog™t is convex (concave) on [g(a),g (b)].
This definition is equivalent to the condition
(1.8)  kofog ' (1=Ng®) +Xg(s) <1 =X (ko f)(t)+A(kof)(s)

for any t, s € [a,b] and X € [0,1].
If k: J — R is strictly increasing (decreasing) on J, then the condition (1.8) is
equivalent to:

(1.9) fog ' ((1=N)g(t)+Ag(s) < () kT (L= X) (ko f) () +A(ko f)(s)]
for any t, s € [a,b] and X € [0,1].
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If k(t) =Int, t >0 and f : [a,b] — (0,00), then the fact that f is k-composite
convex on [a,b] is equivalent to the fact that f is log-conver or multiplicatively
convez or AG-convex, namely, for all z, y € I and ¢ € [0, 1] one has the inequality:

(1.10) fla+ =ty <[f @] [f @]

A function f : I — R\ {0} is called AH-convex (concave) on the interval I if the
following inequality holds [1]

[t

@i
) et ) = &) G o T TN W)+ A @)

for any xz, y € [ and X € [0,1].
An important case that provides many examples is that one in which the function
is assumed to be positive for any x € I. In that situation the inequality (1.11) is

equivalent to
1

1
=27 ACEDEEEY)

1
f@)fy)
for any z, y € I and X € [0,1].

Taking into account this fact, we can conclude that the function f : I — (0, 00)
is AH-convex (concave) on [ if and only if f is k-composite concave (convex) on [
with & : (0,00) — (0,00), k(t) = 1.

Following [1], we can introduce the concept of GH-convex (concave) function

f:1C(0,00) = R on an interval of positive numbers I as satisfying the condition

IN

(=)

1—-A, A 1 _ f(@) f(y)
L1 T S B o s T TN+ A @)
Since
f (xl_’\y)‘) =foexp[(l1=AN)Inz+ Alny)]
and

f () f(y) __ foexp(Inz) foexp(Iny)
L=Nf)+Af (@) (=X foexp(y)+Afoexp(z)
then f: I C (0,00) — R is GH-convex (concave) on I if and only if foexp is AH-
convex (concave) on Inl := {z| x =1Int, ¢t € I'}. This is equivalent to the fact that
[ is k-composite-g~! concave (convex) on I with k : (0,00) — (0,00), k(t) = 1
and g (t) =1Int, t € I.

Following [1], we say that the function f : I C R\ {0} — (0,00) is HH -convez if

zy f (@) 1 ()
(1.13) f (m+(1—t)y> ST+t @)

for all z, y € I and ¢ € [0, 1]. If the inequality in (1.13) is reversed, then f is said
to be H H-concave.
We observe that the inequality (1.13) is equivalent to
1 1 1
(1.14) (1-1) i <
@ T T

zy
ter(lft)y)

for all z, y € I and ¢ € [0, 1].
This is equivalent to the fact that f is k-composite-g—
k:(0,00) — (0,00), k(t) =1+ and g (t) = —1, ¢t € [a,0].

t

L concave on [a, b] with
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The function f : I C (0,00) — (0,00) is called GG-conver on the interval I of
real umbers R if [1]

(1.15) FE@ ) < @1 @

for any =, y € I and A € [0,1]. If the inequality is reversed in (1.15) then the
function is called GG-concave.

This concept was introduced in 1928 by P. Montel [19], however, the roots of the
research in this area can be traced long before him [20]. It is easy to see that [20],
the function f : [a,b] C (0,00) — (0, 00) is GG-convez if and only if the the function
g:[Ina,lnb] = R, g=1Inof oexp is convex on [Ina,lnbd]. This is equivalent to the
fact that f is k-composite-g~! convex on [a, b] with k : (0,00) — R, k (t) = Int and
g(t) =1Int, t € [a,b].

Following [1] we say that the function f: I C R\ {0} — (0,00) is HG-convez if

Yy 1—t t

(1.16) iy, ) <U @ U o)
for all z, y € T and t € [0, 1]. If the inequality in (1.3) is reversed, then f is said to
be HG-concave.

Let f : [a,b] C (0,00) — (0, 00) and define the associated functions Gy : [§,1] —
R defined by Gy (t) =1Inf (}). Then f is HG-convez on [a,b] iff G is convex on
[%, %] . This is equivalent to the fact that f is k-composite-g~! convex on [a, b] with
k:(0,00) >R, k(t)=Intand g(t) = —1, ¢ € [a,b].

Following [21], we say that the function f : [a,b] — (0, 00) is r-convex, for r # 0,
if

(1.17) FUA=Na+dy) <[L=X)F (y) + A @)

for any z, y € [a,b] and X € [0, 1].
If r > 0, then the condition (1.17) is equivalent to

FrA=XNz+y) < (1= f"(y) +Af" (z)

namely f is k-composite convex on [a, b] where k (t) =", ¢ > 0.
If r < 0, then the condition (1.17) is equivalent to

ffA=XNz+xy) >0 =N f"(y) + 1" (2)

namely f is k-composite concave on [a, b] where k (t) =t", t > 0.

In this paper we obtain some inequalities of Hermite-Hadamard type for com-
posite convex functions. Applications for various classes of convexity as provided
above are given as well.

2. SOME REFINEMENTS

We need the following refinement of Hermite-Hadamard inequality. This result
was obtained for the first time by Barnett, Cerone & Dragomir in 2002 in the
paper [2, p. 10, Eq. (2.2)] where various applications for the Hermite-Hadamard
divergence measure in Information Theory were also given. The same result was
also rediscovered by El Farissi in 2010 with a similar proof, see [16].
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Lemma 1. Assume that h : [¢,d] — R is convex on [¢,d]. Then for any A € [0,1]
we have

(2.1) h<c2d> <\ (M‘*)C> +(1_A)h((1+x)d;r(1_x)c)

h(c)+ h(d)
—

1
< B [A((T=XNec+ M)+ (c)+(1=Nh(d)] <
Proof. For the sake of completeness, we give here a simple proof as in [2]. Ap-
plying the Hermite-Hadamard inequality on each subinterval [c, (1 — \) ¢+ Ad],
[(1—=X) e+ Ad,d], where A € (0,1), then we have,

h<c+(1 _2)\)0+)\d) X [(1=X)c+ Ad— (]

(1=X)e+Ad
< / h (u) du

h(1=XNc+Ad)+h(c)
2

< X [(1= N e+ M-

and

h((l—/\)c2+/\d+d> i (- e xd

d
< / h(u) du
(1-A)etrd

. h(d)+h((12—>\)c+>\d) .

[d—(1—Xc—Ad,

which are clearly equivalent to

e (1=X\)e+Ad

(2.2) Ah(Ad—F(Z a) >< dic/ h (u) du
< A ((L=A)c+ Ad) + Ah(c)
- 2

and

(2.3) )

B I+Nd+(1-=XNec 1 ) du
S )\)h( 2 )<dc/(1—>\)c+)\dh()d

< (IT=XNh({d)+ A =XNh((1—=Xc+Ad)
— 2 )

respectively.

Summing (2.2) and (2.3), we obtain the second and first inequality in (2.1).
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By the convexity property, we obtain

Ah(Ade_MC)HlA)h((”A)dJr(l—A)c)

2
zh[)\ (MA)C)HI_A)((HA)CZ;GA)C)]

2
c+d
-+(5°)

and the first inequality in (2.1) is proved. O

For various inequalities of Hermite-Hadamard type see the monograph online [8]
and the more recent survey paper [6].

If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can define the g-mean of two numbers
a,bel as

b
(2.4) M, (a,b) =g~ (9 @9 )) .
If I =R and g (t) =t is the identity function, then M, (a,b) = A(a,b) := “TH’,
the arithmetic mean. If I = (0,00) and g (t) = Int, then M, (a,b) = G (a,b) := Vab,

the geometric mean. If I = (0,00) and g(t) = 1, then M, (a,b) = H (a,b) :=

%, the harmonic mean. If I = (0,00) and g (t) = t?, p # 0, then M, (a,b) =

M, (a,b) = (%)1/197 the power mean with exponent p. Finally, if I = R and
g (t) = expt, then

b
(2.5) M, (a,b) = LME (a,b) == In (W) ,

the LogMeanEzxp function.

Theorem 1. Let g : [a,b] — [g(a), g (b)] be a continuous strictly increasing func-

tion that is differentiable on (a,b). If f : [a,b] — R is composite-g~1 convex on

[a,b], then

(2.6)  f (M, (a,b)) < Afog™" (Ag (b) + (2{ A)g(a))

+(1=N)fog! ((1+A)9(b)ﬂ;(1—k)9(a))

1 b ,
Sm/a f@)g (t)dt
< % [fog™ (1 =X g(a) +Ag (b)) + Af (a) + (1 = X) f (b)]

_f@+f)
- 2
for any X € [0,1].
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Proof. From the inequality (2.1) we have for the convex function f o g=*

d € [g(a),g(b)] that

@7 fog (;d>

<Afog (W)Hl/\)fog1<(1+/\)d;(1_’\)c>

ot [ rer wa

and c,

< [Fog ™ (1=Net M)+ A7 og™ () + (1= X) fog™ ()]
L feg” 1(C)J;fog‘l(d)

for any A € [0,1].
If we take ¢ = g (a) and d = ¢ (b), then we get

(28)  fog! <W>
<Afog L <A9 (b) + (227 )\)g(a))

#-nsogt (4

1 g9(b) .
<T@ yy 1o
< LFoa ™ (1N g(a) +Ag(B) + Af (@) + (1- 3 £ ()]
7

(a) +f(b)
= 2

1+>\)g(b)+(1—/\)9(a)>
2

for any X € [0,1].
Using the change of variable g =1 (u) = ¢, ¢ € [a,b] we haveu = g (), du = ¢’ (t) dt

and
g(b)
/ du-/ ft
g(a)

and by (2.8) we get the desired result (2.6). O

Corollary 1. With the assumptions of Theorem 1 we have

(2.9 f(Mgm,b))sl[fo - (g“’)f’g(“))wogl (9<>+439<b>)]

/f

[f (M, (a,5)) +

w\»—tm

; @110

f(a );f()]
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Remark 1. Using the change of variable u = (1 —s)c+ sd, s € [0,1], then we
have du = (d — ¢) ds, which gives that

dic/cdh(u)du:/Olh((l—S)C—&-sd)ds.

Using this fact, we have from Theorem 1 the following inequality

(2.10) f (M, (a,b)) < Afog (/\g(b)+(2—/\)g(a)>

2
+(1=N)fog? <(1+A)g(b)42r(1—k)g(a)>
b—a ! ,
Sm/o f((1l—s8)a+sb)g (1 —s)a+ sb)ds

1
:/0 Fog ((1—7)g(a)+7g (b)) dr

for all X € [0,1].

Corollary 2. Let g: [a,b] — [g(a), g ()] be a continuous strictly increasing func-
tion that is differentiable on (a,b), f : [a,b] — J, J an interval of real numbers and
k:J — R a continuous function on J that is strictly increasing (decreasing) on J.
If the function f : [a,b] — J is k-composite-g~1 convex on [a,b], then

(2.11)  f (Mg (a,b))

<)k {)\kofog_l (M(b) + (22—A>g<a>>

+(1-Nkofog! (<1+A>g<b>;<1—x>g<a>>}

—1 1 b o /
<(2)h (g(b)_g(a)/a k f(t)g(t)dt>

<@k {5 b Fog™ (1= g(@)+ g ) + Ao f (@) + (1= ko 1)

< (i (KoLl rbes )

for any X € 0,1].
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Proof. From (2.6) we have

(2.12) ko f (M, (a,0))

(1= Nkofog! (<1+A>g<b>;<1—x>g<a>>

IN

1 b ,
g(b)—g<a>/a ko f(t)g (t)dt

5 [£o fog™ (1= X)g(a) + Mg (4)) + Mo £ (a) + (1= \) ko f (5]

ko f(a)+ko f(b)
2

IN

for any A € [0,1].
Taking k~! in (2.12) we obtain the desired result (2.11). O

In 1906, Fejér [17], while studying trigonometric polynomials, obtained the fol-
lowing inequalities which generalize that of Hermite & Hadamard:

Theorem 2 (Fejér’s Inequality). Consider the integral f: h () w () dz, where h
is a convex function in the interval (a,b) and w is a positive function in the same
interval such that

w(z)=w(a+b—2x), for any = € [a, ]

i.e., y =w(x) is a symmetric curve with respect to the straight line which contains
the point (% (a+0b) 70) and is normal to the x-azis. Under those conditions the
following inequalities are valid:

(2.13) h(“;b) wa(x)dxg[lbh(m)w(x)dxg}W)*h(b)/jw(x)dx.

If h is concave on (a,b), then the inequalities reverse in (2.13).

If w : [a,b] — Ris continuous and positive on the interval [a, b] , then the function
W [a, [0, 00) is strictly increasing and differentiable on (a,b) and the inverse
W—l

b] —
: a,f;w(s) ds} — [a, b] exists.

Corollary 3. Assume that w : [a,b] — R is continuous and positive on the inter-
val [a,b] and f : [a,b] — R is composite-W =1 convex on [a,b], then we have the
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following Fejér’s type inequality

1
w 1<2/a w(s)ds)]
b b
<\f lWl (;)\/ w(s)ds> +(1A)le1 <;(1+)\)/a w(s)dsﬂ

1 b
< f () w(t)dt
f;w(s)/a (tyw ()
1 _ b
<2[le 1(A/@w(s)ds>

for all A €10,1].
In particular, we have

(1
(2.15) f lW ! (2/a w(s)ds)]

(2.14) f

+

fla)+f®)| _ fla)+ f(b)

2 - 2 '
Remark 2. Assume that w : [a,b] — R is continuous and positive on the interval
[a,b], f : [a,b] — J, J an interval of real numbers and k : J — R a continuous

function on J that is strictly increasing (decreasing) on J. If the function f : [a,b] —
J is k-composite-W =% convex on [a,b], then

1
(2.16) f lW ! (2/a w(s)ds)]
b
<(>)kt {)\kof [Wl (;A/a w (s) dsﬂ
+(1—=XNkof [Wl (;(1+)\)/bw(s)ds>]}

1 b
< (>)kt ko f(t)w(t)dt
) (I;,w(s)/a () w (1)

<>kt {; lkof lWl (x\/bw(s)ds>

for all X € 0,1].

kof(a)+kof(b)>
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In particular, we have

(1
(2.17) f lW (2/a w (s) ds)]
1 b

—1 1 -1 ’ 1 1
(>)k {Q[koflw w(S)d8> +2k°f(a)+2kof(b)”
S(Z)k_l(kof(a);kof(b))_

3. REVERSE INEQUALITIES

The following reverse inequalities may be stated:

Theorem 3. Let g : [a,b] — [g(a), g (b)] be a continuous strictly increasing func-
tion that is differentiable on (a,b). If f : [a,b] — R is composite-g~1 convexr on
[a,b], then

(3.1) 0< / f () g (@) dt — f (M, (a,b))
1 fL)  fi(a)
=gl ot {g' @ 5]
and
f@) 1)
(3.2) 0< 5 / [t

1 f’ b
< g9 —g(a) [g/_ (b) gi (a)} ’

provided that the lateral derivatives f' (a), ¢’ (a), f. (b) and g’ (b) are finite.

Proof. Let h : [¢,d] — R be a convex function on [c,d]. We use the inequality that
has been established in [4]

d
= [ rwae-n (S50 < ga-a @ - n o)

and the inequality obtained in [5]

(3.3) 0<

hic)+h(d) 1

d
(3.4) 0< 5 _d—c/ h(u)dugé(d—c) [h_(d) — Rl ()] .

The constant § is best possible in both (3.3) and (3.4).
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From the inequalities (3.3) and (3.4) we have for the convex function h = fog™!

and ¢, d € [g(a), g (b)] that

d
(35) o<t [ Uea - (rog) (37)
<s@-o[(fes™) @~ (fog™), ()]
and
° —1 c o -1 d
(3.6) o< o9 >()J2r(f 9 )(d)_dlc/ (Fog™) (w)du

< L@ [(fes™) @~ (Fog™), ()]

Since f o g~! has lateral derivatives for z € (g (a),g (b)) it follows f has lateral
derivatives in each point of (a,b) and by the chain rule and the derivative of the
inverse function, we have

(3.7) (fog™) () =(frog ) () (97" (2) =
Therefore, by (3.5) and (3.6) we get

(38) 0< ic/d (fog™) (wdu—(fog™) (C;d>

(fiog™)(2)
(gog71)(2) "

d
1. | (fleg™) (@)  (frog™) (o
S5 e @ (geg D@
and
° —1 c ° —1 d
(3.9) o< o9 )()J;(f 9 )(d)_dic/c (Fog™) (w)du

1

Lo (fLog™') (@) (fiog™')(c)
=3 (g eg7)(d) (90971 ()
and by taking ¢ = g(a) and d = ¢ (b) in (3.8) and (3.9), then we get the desired
results (3.1) and (3.2). O

Corollary 4. Assume that w : [a,b] — R is continuous and positive on the interval
[a,b]. If f : [a,b] — R is composite-W =1 convex on [a, ], then we have the following
weighted reverse integml inequalities

(3.10) <l " F @y di— f [ -t (;/abw(s)ds>]
<éiw(bb> {;&))Mbw(s)ds
and
(3.11) 0< f(a);f(b) - f;:}(s) /abf(t)w(t)dt
<§V U /ab“’(s)ds’
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provided that f' (b) and f', (a) are finite.

Remark 3. Let g: [a,b] — [g(a),g (b)] be a continuous strictly increasing function
that is differentiable on (a,b), f :[a,b] — J, J an interval of real numbers and k :
J — R a continuous function on J that is strictly increasing on J and differentiable
on the interior of J. If the function f : [a,b] — J is k-composite-g~1 convexr on

[a,b] and f (a), g\ (a), f.(b), g_ (b), k' (f (a)) and K’ (f (b)) are finite, then by

Theorem 3 we have

1 b ,
(3.12) osg(b)_g(a)/a (ko £)(t) g/ (t)dt — ko f (M, (a,b))
Lo RGOS (@) £ (@)
<o g<>>[ e ATy ]
and
o a [¢] b
gy o< P HOERO ot e nmg
Lo RGOS0 K (@) £ (@)
<liw g<>>[ o AT }

Assume that w : [a,b] — R is continuous and positive on the interval [a,b],
f i [a,b] = J, J an interval of real numbers and k : J — R a continuous function
on J that is strictly increasing on J and differentiable on the interior of J. If the
function f : [a,b] — J is k-composite-W 1 convex on [a,b] and f! (a), f. (b),
k' (f (a)) and K' (f (b)) are finite, then we have the weighted inequalities

b b
(3.14) ogm/a (kof)(t)w(t)dt—kof<w—1 (;/a w(s)ds>>

g
Lo TR 0) K () £ (a)
<Low g<>>[ o e }
and
O a O b
(3.15) o< hellO 2k f“’)—g(b)fg(a)/ (ko f) (t)w (1) dt
LTRGBS K () £ )
<o) g<>>[ o o }

4. APPLICATIONS FOR AG AND AH-CONVEX FUNCTIONS

The function f : [a,b] — (0,00) is AG-convex means that f is k-composite
convex on [a,b] with k (¢t) = Int¢, t > 0. By making use of Corollary 2 for g (t) = t,
we get

(4.1) f(‘”b) < p (M—A)a) o ((1+A)b+(1—A)a>

2 2 2

< exp (bia /blnf(t) dt)

< \VF (=N a+20) £ (@) 12 () < VT (@) F )
for any A € [0,1], see also [9].
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If we use Remark 3 for g (t) = t, then we get

(42) 0<b1a/1mf(ﬂﬁ—1f<a+b><](b_@[f(®_fimq

8 f)  fla)
and
Inf(a)+Inf(b) 1 bn A fi(a)
(43) 0= 2 e ) a0 )Lﬂw f@)}

By taking the exponential in (4.2) and (4.3) we get the equivalent inequalities

(4.4) 1< o <bl; gﬁj)f " dt) < exp {; (b—a) 12O _ £y @] }

and

V[ (a) f(b) { [ ]
4.5 1< <expl=(b—a _
o ‘wdgﬁw@@—”8( T~ T
that was obtained in [9].
The function f : [a,b] — (0,00) is AH-convex on [a,b] means that f is k-

composite concave on [a,b] with k : (0,00) — (0,00), k(t) = 1. By making use of
Corollary 2 for g (t) = t, we get

(4.6) f(“;b>
< {)\fl (W) LN ((1+/\)bJ2r(1>\)a>}—1

b -1
SQiaLf*@ﬁ>

< {1 [ (A=Na+ )+ A (a)+ 1=\ f! (b)]}_

<<<f1m);fW®)_l

for any A € [0,1].
By taking the power —1, this inequality is equivalent to

47) (“‘2”’)
2/\f_1 <)\b+(22_)\)a>+(1_>\)f_1 <(1+)‘)b;(1_)‘)a>
1 b
Zb—a/af
A =N a+ )+ A @)+ 1 =N b)) >
€ [0,1].

fHa)+ 71 (0)
2

>

1
2
Ae

for any
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If we use Remark 3 for g (t) = t, then we get

w0 0= (43) ot froms oo [£0£0)

and

f20)  f*(a)

“Ha)+ (D) fL®)  fy (a)]
5 :

(4.9) O<7/f pi— L g;(b—a){

5. APPLICATIONS FOR GA, GG AND GH-CONVEX FUNCTIONS

If we take g (t) = Int, ¢t € [a,b] C (0,00), then f : [a,b] — R is GA-convex on
[a,b] means that that f : [a,b] — R composite-g~! convex on [a,b]. By making use
of Corollary 2 for k (t) = t, we get

G1)  f(Vab) <=0 (aT0F) 4 s (a7 02)

L[ f@)
= m(g)/a &
% [F (@20%) + (1= X) £ (b) + Af (a)] < M

for any A € [0,1]. This result was obtained in [10].
If we use Remark 3 for k (t) = ¢, then we get

IN

52 o< | 00 g (var) < g (2) ) - st )
and
(5.3) ogf(a);f(b) n ( /f dt<8ln< )[bf (b) —afl (a)].

These results were also obtained in [10].

The function f : I C (0,00) — (0, 00) is GG-conver means that f is k-composite-

g~ ! convex on [a,b] with &k : (0,00) — R, k(t) =1Int and g (¢t) = Int, t € [a,b]. By

making use of Corollary 2 we get

(54) f (\/CE) < f (a%b%) FLA (a%b%)

1 "In f (t)
<exp <ln(2)/a ; dt)

<\ (@) £ (@) f12 (0) < V(@) £ (0)

for any A € [0,1]. This result was obtained in [11], see also [12].
If we use Remark 3, then we have the inequalities

[OL fﬁr(am}

F@ W) 2 (b)[u>

1 b In f(s) a
exp (ln b—Ina fa s ds

(5.5) 1<
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and
SO fl (a)a

exp (lnbilna f: st) < <b> s [W‘W}
7 (Vab) ) |

These results were obtained in [11], see also [12].

We also have that f : [a,b] C (0,00) — R is GH-convex on [a,b] is equivalent
to the fact that f is k-composite-g~! concave on [a,b] with k : (0,00) — (0, 00),
k()= % and g (t) = Int, t € I. By making use of Corollary 2 we get

(5.6) 1<

a

(5.7) f(Vab) < [ar (T 03) 1 (1= ) ! (ala*b%ﬂ’l

TSN
§<m<s>/a t ‘“)

< {; /7 (@78 + A5 (@) + (1= 2) S ()] }

for any A € [0,1].
This is equivalent to

(5.8) f* (\/@) > A\t <a%b%) (=Nt (a%b%>

I O]
= In (3) /a t di

[ (@20 + A7 @) + (1= fH(0)]

fHa)+ 710
5 :

>

N | —

>

If we use Remark 3, then we get

o 02 (8) -ty [ 0= ) [

and

fHa) + 71 0)
2

(-8

6. APPLICATIONS FOR HA, HG AND HH-CONVEX FUNCTIONS

AN )
(5.10) Ogln(g)/a -

Let f : [a,b] C (0,00) — R be an HA-convex function on the interval [a,b].
This is equivalent to the fact that f is composite-g~! convex on [a,b] with the
increasing function g (t) = f%. Then by applying Corollary 2 for k () = t, we have
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the inequalities

6.1) f <a21bb> A=A ((1 Y aQib(A+ 1)b) +Af (@_i)%))

ab_ " f(t)

- b—a/u t2 dt
< 17 (g ) (1= N F (@) AT 0)
=2 P\ a=Nar “
@)+ i )
- 2

for any A € [0,1]. This result was obtained in [13].

If we use Remark 3, then we get

ab [P f () 2ab 1[f(b)b* - £ (a)a?
(62) Oﬁm/a 2 dtf(a+b>§8{ b ](ba)
and

a a b ! 2 p aa2
68 0 OTIO b [0, L[LOE-LEE],

This results were obtained in [13].

Let f : [a,b] C (0,00) — (0,00) be an HG-convex function on the interval
[a,b] . This is equivalent to the fact that f is k-composite-g~! convex on [a, b] with
k:(0,00) = R, k(t) =Int and g (t) = —1, ¢ € [a,b]. Then by applying Corollary
2, we have the inequalities

o0 1(55) < (aowerorms) " (@erm)
< exp (biba /ab - {Q(t) dt)

< \/f (M’)Hb) F @I PO < V@) )

for any A € [0,1]. This result was obtained in [14].
If we use Remark 3, then we get

exp (2 [ 240 at) LT 0B [y (@a*] b—a
O E T ) <o (5[ Fo ) )
and
@70 LT BB f(a)a*] b—a
(6.6) ISeXp (%fb ln);(t)dt) < exp (8[ F) +f(a) } ab )

a t

These results were obtained in [14].
Let f : [a,b] C (0,00) — (0,00) be an HH-convex function on the interval
[a,b]. This is equivalent to the fact that f is k-composite-g~! concave on [a,b]
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with & : (0,00) — (0,00), k(t) = L and g(t) = —1, t € [a,b]. Then by applying

t
Corollary 2, we have the inequalities

6.7) f <a2f’b>
<P (eaarm) * 007 (5 —A)agibumb)}l

a W)
S(b—a/a 12 dt)

t?

L (o) v @)L

for any A € [0,1].
By taking the power —1 in (6.7), then we get

6.8) f! (fj_bb)

>0 (g=erm) + 0 (Tt o)

ab /b L)

“b—-a 12

Zé{fl((l—;)waﬂb)“f1(‘1)”1””1(1))} > (a);fi =

for any A € [0,1].
If we use Remark 3, then we get

_,{ 2ab ab [P ()
(6:9) OSfl(a—i—b)_b—a/a 12 dt

1[0 (b)  a*fi(a)] ab
§8{f2(b) 7 (@) }b—a

and

(6.10) 0< -2 /bf;(t)dt_fl(a);fl(b)

1 b2 (b)_azfjr(a) ab
S8[ o) ) }b—a'

For related results, see [15].

7. APPLICATIONS FOR p, -CONVEX AND LogExp CONVEX FUNCTIONS

If p > 0 and we consider g (t) = t*, ¢ € [a,b] C (0,00), then f : [a,b] C (0,00) —
(0,00) is p-convex on [a, b] is equivalent to the fact that f is composite-g~! convex

IN

7N\
&,’

L

—~

&

+

&ﬁ

L

—

=
~_
L
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on [a,b] . Using Corollary 2 for k (t) =t we get
(7.1)  f (M, (a,b))
_ D 1/p
S)\f[()\bf’—k@ \)a )

+Q=-XN7f

2 2

<(1+/\)bp+(1—)\)ap>1/p]

<l [ e
fla)+ /()

<
N 2

{f [((1 — ) a” +Abp)1/ﬂ + M (a)+ (1 — )\)f(b)} <

N |

for any A € [0, 1], where M), (a,b) := (%)UP. This improves the corresponding
result from [22].
If we use Remark 3, then we get

b , , a
02 0= 2 [ rmea- ron o < oo -y |28 - L)

b — ap pp—1 apb—1
and

a+t?  p [ - 1 L) fi(a)
@3 o< "E oS [ roeas sw oo |[BR - EE).

Assume that the function f : [a,b] — (0,00) is r-convex, for r > 0. This is
equivalent to the fact that f is k-composite convex with k (¢) = ¢, ¢t > 0, and by
Corollary 2 for g (t) =t we get

(14) f (a;b>

< [ (M2 Ly ((m)bm_m)}m

2 2
1 b ) 1/r
< (5 [ row)

1/r (a4 r 1/r
<{FUr@-nermar@ra-nre} < (HOEE)

for any A\ € [0,1].
By taking the power r > 0, we get the equivalent inequality

<AfT </\a+(2_)\)b>+(1_)\)fr<(1+/\)b+(1_)\)a>

2
Tt
gb—a/af (t) dt

[fr((l—)\)a—l—)\b)+)\fr(a)+(1_)\)fr(b)]Sw

for any A € [0,1].
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From Remark 3, we get for g (¢t) = ¢ that

(7.6) Ogbla/abfr(t)dt_f,.(a;—b)

"(a r b
<SO-Q OO - @) ()]

Assume that f : [a,b] — R is LogEzp convex function on [a,b] as considered in
[7]. This is equivalent to the fact that f is composite-g~! with g (¢) = expt. By
utilising Corollary 2 for k (t) = t we get,

(7.8) f(LME (a,b))
< xf [m <)\epr+(2—)\)expa>}+(1 — A f [111 ((1+)\)epr+(1—)\)expa>]

2 2
1 b
< 7/ f(t) exptdt
expb—expa J,

[f I (1 = A)exp (a) + Aexp (b)) + Af (a) + (1= A) f(b)] <

fla) +f(b)

<
- 2

N =

for A\ € [a,b], where LME (a,b) :=In (%ﬁ"pb) .

If we use Remark 3, then we get
1 b
. < t tdt — f (LME (a,b
19 0% e [ fWewtat - (LME @)

< 5 (b~ expa) [exp (b) 7 () — exp (~a) 11 (a)]
and

b
(7.10) 0< f(“);f(b) - eXpbieXpa/ £ () exp tdt

< S (expb = expa) [exp () £2.(6) — exp (=a) £1 (0)]
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