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WEIGHTED INEQUALITIES OF OSTROWSKI TYPE FOR
FUNCTIONS OF BOUNDED VARIATION AND APPLICATIONS

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. In this paper we establish some upper bounds for the quantity

9 (6) — g (a)] f () — /f (1) dt

under the assumptions that g : [a,b] — [g(a),g (b)] is a continuous strictly
increasing function that is differentiable on (a,b) and f : [a,b] — C is a func-
tion of bounded variation on [a,b]. When g is an integral, namely g (z) =
JZw (s)ds, where w : [a,b] — (0, 00) is continuous on [a,b], then a refinement
and some related versions of an Ostrowski type weighted inequality are pro-
vided. Applications for continuous probability density functions supported on

finite and infinite intervals and two examples are also given.

1. INTRODUCTION

The following inequality of Ostrowski type for functions of bounded variation
holds:

Theorem 1 (Dragomir, 1999 [3]). Let f : [a,b] — C be a function of bounded
variation on [a,b]. Then for all x € [a,b], we have the inequality

- B(ba)Jr‘ma;rbH\b/(f),

a

(1.1) t)dt — (b—a) f (z)

where \/Z (f) denotes the total variation of f. The constant % is the best possible
one.

The best inequality one can get from (1.1) is embodied in:

Corollary 1. Let f : [a,b] — C be a function of bounded variation. Then we have

the inequality:
Hdt—(b—a) f <“+b>

The constant % is best possible.

(1.2)

1
ib—a\/

a

For related results, see [6], [7] and the survey paper [8].
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In order to extend Ostrowski’s type inequality (1.1) to weighted integral, in 2008
Tseng et al. [10] obtained the following result

(1.3) f(:v)/ w(s)ds—/ Ft)w(t)dt

g;l/abw(s)der /amw(s)ds/:w(s)ds

for any x € [a,b], provided that w is continuous and positive on [a,b] and f is of
bounded variation on [a, b] .
This result was also recaptured from a more general inequality by Liu in [9].
Motivated by the above results, in this paper we establish some upper bounds
for the quantity

o

a

b
w@—MMfm—/f®d®ﬁ

under the assumptions that g : [a,b] — [g(a),g ()] is a continuous strictly in-
creasing function that is differentiable on (a,b) and f : [a,b] — C is a function
of bounded variation on [a,b]. When g is an integral, namely g (z) = [ w(s) ds,
where w : [a,b] — (0, 00) is continuous on [a, b] and f : [a,b] — C is of bounded vari-
ation on [a,b], then a refinement and some related versions of the inequality (1.3)
are provided. Applications for continuous probability density functions supported

on finite and infinite intervals with two examples are also given.

2. OstrOWSKI TYPE RESULTS
We need the following inequality for functions of bounded variation:
Lemma 1. Let h : [¢,d] — C be a function of bounded variation on [c,d]. Then
for all z € [¢,d], we have the inequality

d

(2.1) h(t)dt— (d—c)h(2)

[(Z — C)p + (d — z)p]l/p [(Vj (h))q + (vg (h))CI} 1/q

where p, q>1and%+%:1,

Proof. Using the integration by parts formula for Riemann-Stieltjes integrals we
have

IA

b

(d=o) [§VE () + 4 Vi () = V()

where \/g (h) denotes the total variation of h.

/Z(t—c)dh(t):h(z)(z—c)—/zh(t)dt
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and
d d
/ (t—d)dh(t) = h(z)(d-z) —/ h(t) dt.

If we add the above two equalities, we obtain the following equality of interest, see

[5]
d d
(2.2) (d—c)h(z)—/ h(t)dt:/ p (=) dh (t) |

where

(21) = t—ciftelez)
PRz b= t—dif z € [z,d]’

for all z,t € [¢,d] .
It is well known [1, p. 177] that if ¢ : [o, 5] — C is continuous on [, (] and
v : [, B] — C is of bounded variation on [«, 3], then

B

< max q(2)| \/(v).

2.3
( ) Ze[a’ﬁ]

/fq<z> o (2)

Applying the property (2.3) we get

d z d
(2.4) / p(zt)dh ()| = / (t— ) dh () + / (t — d)dh (¢)

<

d
/ (t — d)dh (t)

/:(tc)dh(t)‘+

z d
< = eV O+ g = AV 09

d

=(z=)\/ (W) +(d—2)\/ (h)

z

and then by (2.4), via the identity (2.2), we deduce the first inequality in (2.1).
By utilising Holder’s discrete inequality for two positive numbers, we also have

z d
(=) () +(d=2)\/(n)
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max { — ¢,d — 2} [V () + V2 (8)]
q71/q
) o @— 2 (Vi) (VEm) ]
B Wherep,q>1and%+%:1,
(2 = e+ d— 2y max {V} (n), V< (h) }
[3(@=o)+ ]z = < Vi)
) e vy + (viw)']
B Wherep,q>1and%+%:1,
(@=0) [V + 3 |Vim) - Vim)|].
which proves the last part of (2.1). O

Corollary 2 (Dragomir, 2014 [7]). Let h : [¢,d] — C be a function of bounded
variation and p € (c,d) such that \/* (h) = \/Z (k). Then we have the inequality

1 d
S§(d_0)\/(h)-

[

/ h(#)dt— (d— ) h (p)

For other Ostrowski type inequalities, see [2].

Theorem 2. Let g : [a,b] — [g(a), g ()] be a continuous strictly increasing func-
tion that is differentiable on (a,b). If f : [a,b] — C is a function of bounded
variation on [a,b], then we have

b
(2.5) [g(b)*g(a)]f(x)*/ f)g (t)dt

1/q

IN

lg (=) = g @V +19(0) — g @11 [(va () + (V2 (D)

)
where p, q>1and%+% 1

)

lg () —g(a)] |2V (f)+3

for all x € [a,b].

Vi (= Vi)

Proof. Assume that [c,d] C [a,b]. Let g(c) = 20 < 21 < ... < 21 < 2z, = g(d),
n > 1, a division of the interval [g (¢), g (d)]. Put x; = g~ ! (2;), i € {0,...,n} . Then
c=x0 < x1 < ... <2p_1 < 2z, =cis a division of [c,d].
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Observe that

Z|foglzz+1 Oglzz|—Z|f (wis1) = f (23)],

which shows that, if f:[e,d] — C is a function of bounded variation on [c,d], then
fog™t:[g(c),g(d)] — C is of bounded variation on [g(c), g (d)] and the total
variation of f o g~! on [g(c),g(d)] is the same with the total variation of f on
[c, d] , namely

g(d) d

(2.6) \V (feg )=\
g(c) c

1

Now, if we use the inequality (2.1) for the function h = f o g~! on the interval

g (), g (b)] we get for any z € [g(a),g (b)] that

g(b)
(2.7) / L Fes @9 ®)—g@) (Fog ) ()
z g(b)
<e-g@)\ Fog ) +®) -2\ (Fos™)
g(a) z

N

|

(9(8) — (@) + |z = 22O Vo) (fog71),

IN

=9 @) + (o) 1" [(Viw (Foo™)) "+ (VIO (rog7) ] "

where p, q>1and%+%:1,

(9(0) =g (@) [$VID (Fog™) + % Vi (Fog™) = VI (Fog )]

Using the property (2.6) and taking z = g (z), « € [a,b], in (2.7) we then get

g(b)
(2.8) / (fog™) (u)du—(g(b) - g(a)) f ()

(a)

b
<(g(@) —g @)V (H+® - 9@) ()
[5(90) = g(@) + |g () - 22520 |2 (),

(9(2) ~ 9 (@) + (g ) - g @1 vz 0+ (Ve) ]

where p, q>1and%+%:1,

IN

(9(8) =g (@) [V (1) + 1 |VatH = Vi (]|

Observe also that, by the change of variable t = g=1 (u), u € [g(a),g(b)], we
have u = g (t) that gives du = ¢’ (¢) dt and

g(b) b
(2.9) / L Feg) wdu= / F(O)g () dt
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By choosing z = g (z) with z € [a,b] in (2.8) and making use of (2.6) and (2.9)
we get the desired result (2.5).
The best constant follows by Lemma 1. O

If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can define the g-mean of two numbers
a,bel as

b
(2.10) M, (a,b) =g~ (9 (e) ‘;g( )) .

If I =R and ¢ (t) =t is the identity function, then M, (a,b) = A(a,b) == %rb,
the arithmetic mean. If I = (0,00) and g (t) = Int, then M, (a,b) = G (a,b) := Vab,
the geometric mean. If I = (0,00) and g (t) = —+, then M, (a,b) = H (a,b) :=
%, the harmonic mean. If I = (0,00) and g (t) = t?, p # 0, then M, (a,b) =
M, (a,b) := (#)UP, the power mean with exponent p. Finally, if I = R and
g (t) = expt, then

(2.11) M, (a,b) = LME (a,b) :=In (W) ,

the LogMeanEzp function.

Corollary 3. With the assumptions of Theorem 2 we have

b
(2.12) / F) g () dt—[g(5) — g (@)] f (M, (a,b))| <

Moreover, if p € (a,b) is such that \/” (f) = VP (f), then

(2.13) ~lo®) 9 (@] F () < 5 @V ()

Let f : [a,b] — C be a function of bounded variation. We can give the following
examples of interest.
a). If we take g : [a,b] C (0,00) — R, g (t) =1Int, in (2.5) then we get

() - [ L0

<m (%) \/ (20

x

[10.2) + [1n (i) [ VE (.

(2.14)

O R AR (AT
1

where p, q>land%+%: ,

IN

I (2) [FVe (D +3 Vi - Vi)

for any z € [a,b] C (0,00).
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In particular, we have

(2.15)

1O g 1o (b) F(Gab)| < 5 (b) \:/<f>

where G (a,b) := Vab is the geometric mean.
If p € (a,b) is such that \/* (f) = \/Z (f), then

abf)dtm <Z> 1)

b). If we take g : [a,b] CR — (0,00), g (t) = expt, in (2.5) then we get

(2.16)

giln(D\z/(f).

b
(2.17) |(expb—expa) f (x) —/ f(t)exptdt
T b
< (expz —expa \/ eprfexpx)\/(f)
[% (expb —expa) + ‘expa: - expa?ipb ] \/Z (f),

1/q
[(expa — expa)’ + (expb —expa)’] " [(V2 (1) + (V2 ()]
where p, q>1and%+%:1,

IN

(expb —expa) [%VZ (f)"’%

VAGEAGH

for any z € [a,}].
In particular, we have

b
(2.18) (expb—expa) f (LME (a,b)) — / f(t)exptdt
1 b
< §(epr—expa)\a/(f)

where LM FE (a,b) :=In (%ﬁ-epr) is the LogMeanFEzp function.
If p € (a,b) is such that \/2 (f) = \/? (f), then

(2.19)

b
(expb — expa) / f(t) exptdt (exp b—expa \/
a
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c). If we take g : [a,b] C (0,00) = R, g(t) =t", r > 0in (2.5), then we get

(2.20) (b" —a") f (x) — 7“/) f)ttat

T b
<@ —a)\/ N+ -2\ ()

[5 (07 —a") + 2" = S Va (),

(@ =+ 0 = [z o+ (Ve 0)]

where p, q>1and%+%:1,

IN

(b —a") [$ Ve () +3

for any z € [a,b] C (0,00).
In particular, we have

Vi) =Vi)]

(2.21) <

(" —a) f (M, (a,b) — 7 / £t

b
v —a)\/ (),

N —

v 1/
where M, (a,b) := (%) r , 7> 0 is the power mean with exponent r > 0.

If p € (a,b) is such that \/* (f) = \/Z (f), then

(2.22) <

b
v —an\/ (f) -

M| —

W —a") [ (p) / f (et

d). If we take g : [a,b] C (0,00) = R, g(t) = —t~", r > 0 in (2.5), then we get

(bb_a“) f () r/abf(t)t”dt

<(Z25) Vin+ (%) \:/(f)

(3 () o o — =

(2.23)

1/q

[(zZ2)” + ()] v '+ (Vo (0)]

where p, q>1and%+%:1,

IN

r_ T b
(5=2) [$Vh () +14
for any « € [a,b] C (0,00).

In particular, we have

(b" - ) FOL @) -7 [ Nl

brar

VAGEAGH

(2.24)
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where

a "+ bT -1/r 2a"b" 1/r
o= () (@)

If p € (a,b) is such that \/* (f) = \/z (f), then

bra”

(2.25) ‘ (br - ) - f e

b
1 /0" —a”
< — .
<5 (5 )V
The particular case r = 1 gives
b—a b f(t)
< ba >f(£L') _A 12

(2.26) dt

[N
7~ N\
I
g
=)
IS
N—
n<s
=
+
§ N\
>
SN
5
I3
< N—
R<e~
=
SN~—

IN

[y + 5] T+ (ven) ]
d —

where p, ¢ > 1 an

for any x € [a,b] C (0,00), where H (a,b) := E_%’l is the Harmonic mean.
In particular, we have

("Z;L“)f(ﬂm,b»—/;

If p € (a,b) is such that \/* (f) = \/° (f), then

p

(2.29) |(” =) rw- [ Aok

(2.27) f t(;) dt| <

(%) \b/ .

3. WEIGHTED INTEGRAL INEQUALITIES AND PROBABILITY DISTRIBUTIONS

If w : [a,b] — R is continuous and positive on the interval [a, b] , then the function
W : [a,b] — [0,00), W () := [ w(s)ds is strictly increasing and differentiable on
(a,b) . We have W’ (z) = w (x) for any = € (a,b).
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Proposition 1. Assume that w : [a,b] — (0,00) is continuous on [a,b] and f :
[a,b] — C is of bounded variation on [a,b], then we have

b b
(3.1) ‘f(x)/ w(s)ds—/ Flt)w () dt

gﬁml%®@+0méu@@
L[ w (s)ds + | [ w () ds = [ w () ds|| VE ().

{(f;w (s)ds)” + (f:w (S)ds)p}l/p [(VZ (A" + (\/i (f))qr/q

where p, q>1and%+%:1,

IN

SVE+ VE @ = Ve )|] S w(s) ds

for all x € [a,b].
In particular, if

then we have

b b
(3.2) ‘ £ (My (a,b)) / w(s) ds — / F)w(t)dt

1. b
S2Yuylw@m&

Moreover, if p € (a,b) is such that \/” (f) = \/Z (f), then

b b b b
(33) |ﬂm/w®@/f®w®ﬁ§;Vm/u$M&

The proof follows by Theorem 2 for g (z) := [ w(s)ds, x € [a, b].

The above result can be extended for infinite intervals I by assuming that the
function f : I — C is locally of bounded variation on I.

For instance, if I = [a,00), f : [a,00) — C is locally of bounded variation on
[a, 00) with

b

V()= lim \/ (f) < o0

b—oo
a
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and w (s) > 0 for s € [a,00) with [ w(s) ds = 1, namely w is a probability density
function on [a, c0), then by (3.1) we get

(3.4) ‘f(x)— S <>dt]
<Wi(e \/ DI\ ()
[ L+ W () =3[V (),

WP (z) + (1 -
where p, g > 1 an

%[V"o () +IVa () =V (D]

for any x € | , where W (z) := ["w (s)ds is the cumulative distribution func-
tion.
If m € (a,00) is the median point for w, namely W (m) = 1, then by (3.4) we

get

(3.5) ’f(m) —/:Of(t> dt’ = ;?

Also, if p € (a,00) such that \/, (f) = V" (f), then

(3.6) )f(p) —/aoof(t) dt‘ = ;?

In probability theory and statistics, the beta prime distribution (also known as
inverted beta distribution or beta distribution of the second kind) is an absolutely
continuous probability distribution defined for x > 0 with two parameters « and
[, having the probability density function:

o 1.0471 (1 + x)*a*ﬁ
waﬂ (I’) L B (06,5)

where B is Beta function

1
B(a,f) = / P 1= a, B0,
0
The cumulative distribution function is

Was (@) = 1= (o, B)
where I is the regularized incomplete beta function defined by

B (z;a, )
B(a,B)
Here B (-; , 3) is the incomplete beta function defined by

I, (o, 8) :=

B (z;a,0) ::/ ot (1—t)571, a, B, z>0.
0
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Assume that f : [0,00) — C is locally of bounded variation on [0,00) with
Vo (f) < oc. Using the inequality (3.4) we have for z > 0 that

(3.7) f(x)—ﬁ Ooof(t)tal L0 b
<Le (@A () + [1-Te @8]V ()
0 T
3+ e a3 Vi (),
1/p
) w0y ()]
a (Vo (M + (V7 ())] !
where p, q>1and —|— =1,
5 Vo () + Vo () = Vo (DO,
for a, 5 > 0.

Similar results may be stated for the probability distributions that are supported
on the whole axis R. Namely, if I = R, f : R — C is locally of bounded variation
on R with

[e's) b

V= lim \(f)<oo

b—00,a——00
—o0 a

and w(s) > 0 for s € R with ffooo w(s)ds = 1, namely w is a probability density
function on R, then by (3.1) we get

(3.9) - /_ T e dt‘
<W () \/ (N+1-W @]\ ()

G+ @) =3 VI (),
W77 2) 1 W )T [V (D) + (V2 ]

W (2))"]
1
where p, q>1and5 3

IN

IV D+ IV () =V (D]

for any « € R, where W (z) := [*_ w (s)ds is the cumulative distribution function.
If m € R is the median point for w, namely W (m) = 3, then by (3.4) we get

o0

(39 ro- [T rowow <y V0.
Also, if p € (a,00) such that \/* _ (f) = V" (f), then
(3.10) ‘ / £t dt‘ < % \ ().

In what follows we give an example.
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The probability density of the normal distribution on (—o0,00) is

1 (@ — )
'U)'uqo-2 (.’I,') = ﬁ exp —T , T € R,

where p is the mean or expectation of the distribution (and also its median and
mode), o is the standard deviation, and o2 is the variance.
The cumulative distribution function is

1 1 T— U
1% = -+ —erf
por (@)= 3+ Ler (Uﬂ)
where the error function erf is defined by
2 x
erf (z) = —/ exp (—t?) dt.
Vi Jy )

If f: R — R is locally of bounded variation with \/™_ (f) < oo, then from (3.8)
we have

(3.11) |f(:r) . mf(t)exp<(x20é‘)>dt

AN

N | =
——
| —

—
+

@

~

=8
N
Q
Nl =
N————
g <l*
=

+
| —

—_

|

@

—~

=
7N
Q
Sl
N———
| IR
z~z<8

=
—

1 IV ) (V)
where p, q>1and%—|—%=1,
TV D+ VI () =V (D]
for any =z € R.

In particular, we have

(312) F) - [ few (—“;{f‘”) <2\

Also, if p € R such that \/* _ (f) =V, (f), then R

(3.13) ‘f(p) - [ e (—“;ﬂ) <5V )
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