
WEIGHTED INEQUALITIES OF OSTROWSKI TYPE FOR
FUNCTIONS OF BOUNDED VARIATION AND APPLICATIONS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish some upper bounds for the quantity����[g (b)� g (a)] f (x)� Z b

a
f (t) g0 (t) dt

����
under the assumptions that g : [a; b] ! [g (a) ; g (b)] is a continuous strictly
increasing function that is di¤ erentiable on (a; b) and f : [a; b]! C is a func-
tion of bounded variation on [a; b]. When g is an integral, namely g (x) =R x
a w (s) ds; where w : [a; b]! (0;1) is continuous on [a; b] ; then a re�nement
and some related versions of an Ostrowski type weighted inequality are pro-
vided. Applications for continuous probability density functions supported on
�nite and in�nite intervals and two examples are also given.

1. Introduction

The following inequality of Ostrowski type for functions of bounded variation
holds:

Theorem 1 (Dragomir, 1999 [3]). Let f : [a; b] ! C be a function of bounded
variation on [a; b] : Then for all x 2 [a; b] ; we have the inequality

(1.1)

�����
Z b

a

f (t) dt� (b� a) f (x)
����� �

�
1

2
(b� a) +

����x� a+ b2
����� b_

a

(f) ;

where
Wb
a (f) denotes the total variation of f: The constant

1
2 is the best possible

one.

The best inequality one can get from (1.1) is embodied in:

Corollary 1. Let f : [a; b]! C be a function of bounded variation. Then we have
the inequality:

(1.2)

�����
Z b

a

f (t) dt� (b� a) f
�
a+ b

2

������ � 1

2
(b� a)

b_
a

(f)

The constant 12 is best possible.

For related results, see [6], [7] and the survey paper [8].
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2 S. S. DRAGOMIR

In order to extend Ostrowski�s type inequality (1.1) to weighted integral, in 2008
Tseng et al. [10] obtained the following result�����f (x)

Z b

a

w (s) ds�
Z b

a

f (t)w (t) dt

�����(1.3)

� 1

2

"Z b

a

w (s) ds+

�����
Z x

a

w (s) ds�
Z b

x

w (s) ds

�����
#

b_
a

(f) ;

for any x 2 [a; b] ; provided that w is continuous and positive on [a; b] and f is of
bounded variation on [a; b] :
This result was also recaptured from a more general inequality by Liu in [9].
Motivated by the above results, in this paper we establish some upper bounds

for the quantity �����[g (b)� g (a)] f (x)�
Z b

a

f (t) g0 (t) dt

�����
under the assumptions that g : [a; b] ! [g (a) ; g (b)] is a continuous strictly in-
creasing function that is di¤erentiable on (a; b) and f : [a; b] ! C is a function
of bounded variation on [a; b]. When g is an integral, namely g (x) =

R x
a
w (s) ds;

where w : [a; b]! (0;1) is continuous on [a; b] and f : [a; b]! C is of bounded vari-
ation on [a; b] ; then a re�nement and some related versions of the inequality (1.3)
are provided. Applications for continuous probability density functions supported
on �nite and in�nite intervals with two examples are also given.

2. Ostrowski Type Results

We need the following inequality for functions of bounded variation:

Lemma 1. Let h : [c; d] ! C be a function of bounded variation on [c; d] : Then
for all z 2 [c; d] ; we have the inequality�����

Z d

c

h (t) dt� (d� c)h (z)
�����(2.1)

� (z � c)
z_
c

(h) + (d� z)
d_
z

(h)

�

8>>>>>>>>><>>>>>>>>>:

�
1
2 (d� c) +

��z � c+d
2

���Wd
c (h) ;

[(z � c)p + (d� z)p]1=p
h
(
Wz
c (h))

q
+
�Wd

z (h)
�qi1=q

where p; q > 1 and 1
p +

1
q = 1;

(d� c)
h
1
2

Wd
c (h) +

1
2

���Wzc (h)�Wdz (h)���i ;
;

where
Wd
c (h) denotes the total variation of h:

Proof. Using the integration by parts formula for Riemann-Stieltjes integrals we
have Z z

c

(t� c) dh (t) = h (z) (z � c)�
Z z

c

h (t) dt
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and

Z d

z

(t� d)dh (t) = h (z) (d� z)�
Z d

z

h (t) dt:

If we add the above two equalities, we obtain the following equality of interest, see
[5]

(2.2) (d� c)h (z)�
Z d

c

h (t) dt =

Z d

c

p (z; t) dh (t) ;

where

p (z; t) :=

�
t� c if t 2 [c; z)
t� d if z 2 [z; d] ;

for all z; t 2 [c; d] :
It is well known [1, p. 177] that if q : [�; �] ! C is continuous on [�; �] and
v : [�; �]! C is of bounded variation on [�; �] ; then

(2.3)

�����
Z �

�

q (z) dv (z)

����� � max
z2[�;�]

jq (z)j
�_
�

(v):

Applying the property (2.3) we get

�����
Z d

c

p (z; t) dh (t)

����� =
�����
Z z

c

(t� c) dh (t) +
Z d

z

(t� d)dh (t)
�����(2.4)

�
����Z z

c

(t� c) dh (t)
����+
�����
Z d

z

(t� d)dh (t)
�����

� max
t2[c;z]

jt� cj
z_
c

(h) + max
t2[z;d]

jt� dj
d_
z

(h)

= (z � c)
z_
c

(h) + (d� z)
d_
z

(h)

and then by (2.4), via the identity (2.2), we deduce the �rst inequality in (2.1).
By utilising Hölder�s discrete inequality for two positive numbers, we also have

(z � c)
z_
c

(h) + (d� z)
d_
z

(h)
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�

8>>>>>>>>><>>>>>>>>>:

max fz � c; d� zg
hWz

c (h) +
Wd
z (h)

i
[(z � c)p + (d� z)p]1=p

h
(
Wz
c (h))

q
+
�Wd

z (h)
�qi1=q

where p; q > 1 and 1
p +

1
q = 1;

(z � c+ d� z)max
nWz

c (h) ;
Wd
z (h)

o

=

8>>>>>>>>><>>>>>>>>>:

�
1
2 (d� c) +

��z � c+d
2

���Wd
c (h)

[(z � c)p + (d� z)p]1=p
h
(
Wz
c (h))

q
+
�Wd

z (h)
�qi1=q

where p; q > 1 and 1
p +

1
q = 1;

(d� c)
h
1
2

Wd
c (h) +

1
2

���Wzc (h)�Wdz (h)���i ;
which proves the last part of (2.1). �

Corollary 2 (Dragomir, 2014 [7]). Let h : [c; d] ! C be a function of bounded
variation and p 2 (c; d) such that

Wp
c (h) =

Wd
p (h) : Then we have the inequality�����

Z d

c

h (t) dt� (d� c)h (p)
����� � 1

2
(d� c)

d_
c

(h) :

For other Ostrowski type inequalities, see [2].

Theorem 2. Let g : [a; b] ! [g (a) ; g (b)] be a continuous strictly increasing func-
tion that is di¤erentiable on (a; b) : If f : [a; b] ! C is a function of bounded
variation on [a; b], then we have�����[g (b)� g (a)] f (x)�

Z b

a

f (t) g0 (t) dt

�����(2.5)

� [g (x)� g (a)]
x_
a

(f) + [g (b)� g (x)]
b_
x

(f)

�

8>>>>>>>>><>>>>>>>>>:

h
1
2 [g (b)� g (a)] +

���g (x)� g(a)+g(b)
2

���iWba (f) ;
[[g (x)� g (a)]p + [g (b)� g (x)]p]1=p

h
(
Wx
a (f))

q
+
�Wb

x (f)
�qi1=q

where p; q > 1 and 1
p +

1
q = 1;

[g (b)� g (a)]
h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
for all x 2 [a; b] :

Proof. Assume that [c; d] � [a; b] : Let g (c) = z0 < z1 < ::: < zn�1 < zn = g (d) ;
n � 1; a division of the interval [g (c) ; g (d)] : Put xi = g�1 (zi) ; i 2 f0; :::; ng : Then
c = x0 < x1 < ::: < zn�1 < zn = c is a division of [c; d] :
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Observe that
n�1X
i=0

��f � g�1 (zi+1)� f � g�1 (zi)�� = n�1X
i=0

jf (xi+1)� f (xi)j ;

which shows that, if f : [c; d]! C is a function of bounded variation on [c; d] ; then
f � g�1 : [g (c) ; g (d)] ! C is of bounded variation on [g (c) ; g (d)] and the total
variation of f � g�1 on [g (c) ; g (d)] is the same with the total variation of f on
[c; d] ; namely

(2.6)
g(d)_
g(c)

�
f � g�1

�
=

d_
c

(f) :

Now, if we use the inequality (2.1) for the function h = f � g�1 on the interval
[g (a) ; g (b)] we get for any z 2 [g (a) ; g (b)] that

(2.7)

�����
Z g(b)

g(a)

�
f � g�1

�
(u) du� (g (b)� g (a))

�
f � g�1

�
(z)

�����
� (z � g (a))

z_
g(a)

�
f � g�1

�
+ (g (b)� z)

g(b)_
z

�
f � g�1

�

�

8>>>>>>>>><>>>>>>>>>:

h
1
2 (g (b)� g (a)) +

���z � g(a)+g(b)
2

���iWg(b)g(a)

�
f � g�1

�
;

[(z � g (a))p + (g (b)� z)p]1=p
h�Wz

g(a)

�
f � g�1

��q
+
�Wg(b)

z

�
f � g�1

��qi1=q
where p; q > 1 and 1

p +
1
q = 1;

(g (b)� g (a))
h
1
2

Wg(b)
g(a)

�
f � g�1

�
+ 1

2

���Wzg(a) �f � g�1��Wg(b)z

�
f � g�1

����i :
Using the property (2.6) and taking z = g (x) ; x 2 [a; b] ; in (2.7) we then get

(2.8)

�����
Z g(b)

g(a)

�
f � g�1

�
(u) du� (g (b)� g (a)) f (x)

�����
� (g (x)� g (a))

x_
a

(f) + (g (b)� g (x))
b_
x

(f)

�

8>>>>>>>>><>>>>>>>>>:

h
1
2 (g (b)� g (a)) +

���g (x)� g(a)+g(b)
2

���iWba (f) ;
[(g (x)� g (a))p + (g (b)� g (x))p]1=p

h
(
Wx
a (f))

q
+
�Wb

x (f)
�qi1=q

where p; q > 1 and 1
p +

1
q = 1;

(g (b)� g (a))
h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i :
Observe also that, by the change of variable t = g�1 (u) ; u 2 [g (a) ; g (b)] ; we

have u = g (t) that gives du = g0 (t) dt and

(2.9)
Z g(b)

g(a)

�
f � g�1

�
(u) du =

Z b

a

f (t) g0 (t) dt:
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By choosing z = g (x) with x 2 [a; b] in (2.8) and making use of (2.6) and (2.9)
we get the desired result (2.5).
The best constant follows by Lemma 1. �

If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can de�ne the g-mean of two numbers
a; b 2 I as

(2.10) Mg (a; b) := g
�1
�
g (a) + g (b)

2

�
:

If I = R and g (t) = t is the identity function, then Mg (a; b) = A (a; b) :=
a+b
2 ;

the arithmetic mean. If I = (0;1) and g (t) = ln t; thenMg (a; b) = G (a; b) :=
p
ab,

the geometric mean. If I = (0;1) and g (t) = � 1
t ; then Mg (a; b) = H (a; b) :=

2ab
a+b ; the harmonic mean. If I = (0;1) and g (t) = tp; p 6= 0; then Mg (a; b) =

Mp (a; b) :=
�
ap+bp

2

�1=p
; the power mean with exponent p. Finally, if I = R and

g (t) = exp t; then

(2.11) Mg (a; b) = LME (a; b) := ln

�
exp a+ exp b

2

�
;

the LogMeanExp function.

Corollary 3. With the assumptions of Theorem 2 we have

(2.12)

�����
Z b

a

f (t) g0 (t) dt� [g (b)� g (a)] f (Mg (a; b))

����� � 1

2
[g (b)� g (a)]

b_
a

(f) :

Moreover, if p 2 (a; b) is such that
Wp
a (f) =

Wb
p (f) ; then

(2.13)

�����
Z b

a

f (t) g0 (t) dt� [g (b)� g (a)] f (p)
����� � 1

2
[g (b)� g (a)]

b_
a

(f) :

Let f : [a; b]! C be a function of bounded variation. We can give the following
examples of interest.
a). If we take g : [a; b] � (0;1)! R, g (t) = ln t; in (2.5) then we get�����ln

�
b

a

�
f (x)�

Z b

a

f (t)

t
dt

�����(2.14)

� ln
�x
a

� x_
a

(f) + ln

�
b

x

� b_
x

(f)

�

8>>>>>>>>><>>>>>>>>>:

h
1
2 ln

�
b
a

�
+
���ln� x

G(a;b)

����iWba (f) ;
h�
ln
�
x
a

��p
+
�
ln
�
b
x

��pi1=p h
(
Wx
a (f))

q
+
�Wb

x (f)
�qi1=q

where p; q > 1 and 1
p +

1
q = 1;

ln
�
b
a

� h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
for any x 2 [a; b] � (0;1) :
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In particular, we have

(2.15)

�����
Z b

a

f (t)

t
dt� ln

�
b

a

�
f (G (a; b))

����� � 1

2
ln

�
b

a

� b_
a

(f) ;

where G (a; b) :=
p
ab is the geometric mean.

If p 2 (a; b) is such that
Wp
a (f) =

Wb
p (f) ; then

(2.16)

�����
Z b

a

f (t)

t
dt� ln

�
b

a

�
f (p)

����� � 1

2
ln

�
b

a

� b_
a

(f) :

b). If we take g : [a; b] � R! (0;1), g (t) = exp t; in (2.5) then we get

(2.17)

�����(exp b� exp a) f (x)�
Z b

a

f (t) exp tdt

�����
� (expx� exp a)

x_
a

(f) + (exp b� expx)
b_
x

(f)

�

8>>>>>>>>><>>>>>>>>>:

h
1
2 (exp b� exp a) +

���expx� exp a+exp b
2

���iWba (f) ;
[(expx� exp a)p + (exp b� expx)p]1=p

h
(
Wx
a (f))

q
+
�Wb

x (f)
�qi1=q

where p; q > 1 and 1
p +

1
q = 1;

(exp b� exp a)
h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
for any x 2 [a; b] :
In particular, we have

�����(exp b� exp a) f (LME (a; b))�
Z b

a

f (t) exp tdt

�����(2.18)

� 1

2
(exp b� exp a)

b_
a

(f) ;

where LME (a; b) := ln
�
exp a+exp b

2

�
is the LogMeanExp function.

If p 2 (a; b) is such that
Wp
a (f) =

Wb
p (f) ; then

(2.19)

�����(exp b� exp a) f (p)�
Z b

a

f (t) exp tdt

����� � 1

2
(exp b� exp a)

b_
a

(f) :
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c). If we take g : [a; b] � (0;1)! R, g (t) = tr; r > 0 in (2.5), then we get�����(br � ar) f (x)� r
Z b

a

f (t) tr�1dt

�����(2.20)

� (xr � ar)
x_
a

(f) + (br � xr)
b_
x

(f)

�

8>>>>>>>>><>>>>>>>>>:

�
1
2 (b

r � ar) +
��xr � ar+br

2

���Wb
a (f) ;

[(xr � ar)p + (br � xr)p]1=p
h
(
Wx
a (f))

q
+
�Wb

x (f)
�qi1=q

where p; q > 1 and 1
p +

1
q = 1;

(br � ar)
h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
for any x 2 [a; b] � (0;1) :
In particular, we have

(2.21)

�����(br � ar) f (Mr (a; b))� r
Z b

a

f (t) tr�1dt

����� � 1

2
(br � ar)

b_
a

(f) ;

where Mr (a; b) :=
�
ar+br

2

�1=r
; r > 0 is the power mean with exponent r > 0:

If p 2 (a; b) is such that
Wp
a (f) =

Wb
p (f) ; then

(2.22)

�����(br � ar) f (p)� r
Z b

a

f (t) tr�1dt

����� � 1

2
(br � ar)

b_
a

(f) :

d). If we take g : [a; b] � (0;1)! R, g (t) = �t�r; r > 0 in (2.5), then we get�����
�
br � ar
brar

�
f (x)� r

Z b

a

f (t) t�r�1dt

�����(2.23)

�
�
xr � ar
xrar

� x_
a

(f) +

�
br � xr
brxr

� b_
x

(f)

�

8>>>>>>>>><>>>>>>>>>:

h
1
2

�
br�ar
brar

�
+
���x�r � a�r+b�r

2

���iWba (f) ;
h�

xr�ar
xrar

�p
+
�
br�xr
brxr

�pi1=p h
(
Wx
a (f))

q
+
�Wb

x (f)
�qi1=q

where p; q > 1 and 1
p +

1
q = 1;�

br�ar
brar

� h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
for any x 2 [a; b] � (0;1) :
In particular, we have

(2.24)

�����
�
br � ar
brar

�
f (M�r (a; b))� r

Z b

a

f (t) t�r�1dt

����� � 1

2

�
br � ar
brar

� b_
a

(f)
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where

M�r (a; b) :=

�
a�r + b�r

2

��1=r
=

�
2arbr

br + ar

�1=r
:

If p 2 (a; b) is such that
Wp
a (f) =

Wb
p (f) ; then

(2.25)

�����
�
br � ar
brar

�
f (p)� r

Z b

a

f (t) t�r�1dt

����� � 1

2

�
br � ar
brar

� b_
a

(f) :

The particular case r = 1 gives�����
�
b� a
ba

�
f (x)�

Z b

a

f (t)

t2
dt

�����(2.26)

�
�
x� a
xa

� x_
a

(f) +

�
b� x
bx

� b_
x

(f)

�

8>>>>>>>>><>>>>>>>>>:

h
1
2

�
b�a
ba

�
+
���H(a;b)�xH(a;b)x

���iWba (f) ;
h�

x�a
xa

�p
+
�
b�x
bx

�pi1=p h
(
Wx
a (f))

q
+
�Wb

x (f)
�qi1=q

where p; q > 1 and 1
p +

1
q = 1;�

b�a
ba

� h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
for any x 2 [a; b] � (0;1) ; where H (a; b) := 2ab

b+a is the Harmonic mean.
In particular, we have

(2.27)

�����
�
b� a
ba

�
f (H (a; b))�

Z b

a

f (t)

t2
dt

����� � 1

2

�
b� a
ba

� b_
a

(f) :

If p 2 (a; b) is such that
Wp
a (f) =

Wb
p (f) ; then

(2.28)

�����
�
b� a
ba

�
f (p)�

Z b

a

f (t)

t2
dt

����� � 1

2

�
b� a
ba

� b_
a

(f) :

3. Weighted Integral Inequalities and Probability Distributions

If w : [a; b]! R is continuous and positive on the interval [a; b] ; then the function
W : [a; b]! [0;1); W (x) :=

R x
a
w (s) ds is strictly increasing and di¤erentiable on

(a; b) : We have W 0 (x) = w (x) for any x 2 (a; b) :
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Proposition 1. Assume that w : [a; b] ! (0;1) is continuous on [a; b] and f :
[a; b]! C is of bounded variation on [a; b] ; then we have

�����f (x)
Z b

a

w (s) ds�
Z b

a

f (t)w (t) dt

�����(3.1)

�
x_
a

(f)

Z x

a

w (s) ds+
b_
x

(f)

Z b

x

w (s) ds

�

8>>>>>>>>><>>>>>>>>>:

1
2

hR b
a
w (s) ds+

���R xa w (s) ds� R bx w (s) ds���iWba (f) ;
h�R x

a
w (s) ds

�p
+
�R b

x
w (s) ds

�pi1=p h
(
Wx
a (f))

q
+
�Wb

x (f)
�qi1=q

where p; q > 1 and 1
p +

1
q = 1;

1
2

hWb
a (f) +

���Wxa (f)�Wbx (f)���i R ba w (s) ds
for all x 2 [a; b] :
In particular, if

MW (a; b) :=W�1

 
1

2

Z b

a

w (s) ds

!
;

then we have

(3.2)

�����f (MW (a; b))

Z b

a

w (s) ds�
Z b

a

f (t)w (t) dt

����� � 1

2

b_
a

(f)

Z b

a

w (s) ds:

Moreover, if p 2 (a; b) is such that
Wp
a (f) =

Wb
p (f) ; then

(3.3)

�����f (p)
Z b

a

w (s) ds�
Z b

a

f (t)w (t) dt

����� � 1

2

b_
a

(f)

Z b

a

w (s) ds:

The proof follows by Theorem 2 for g (x) :=
R x
a
w (s) ds; x 2 [a; b] :

The above result can be extended for in�nite intervals I by assuming that the
function f : I ! C is locally of bounded variation on I.
For instance, if I = [a;1), f : [a;1) ! C is locally of bounded variation on

[a;1) with

1_
a

(f) := lim
b!1

b_
a

(f) <1
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and w (s) > 0 for s 2 [a;1) with
R1
a
w (s) ds = 1; namely w is a probability density

function on [a;1), then by (3.1) we get����f (x)� Z 1

a

f (t)w (t) dt

����(3.4)

�W (x)
x_
a

(f) + [1�W (x)]
1_
x

(f)

�

8>>>>>><>>>>>>:

�
1
2 +

��W (x)� 1
2

���W1
a (f) ;

[W p (x) + (1�W (x))
p
]
1=p �

(
Wx
a (f))

q
+ (
W1
x (f))

q�1=q
where p; q > 1 and 1

p +
1
q = 1;

1
2 [
W1
a (f) + j

Wx
a (f)�

W1
x (f)j]

for any x 2 [a;1), where W (x) :=
R x
a
w (s) ds is the cumulative distribution func-

tion.
If m 2 (a;1) is the median point for w, namely W (m) = 1

2 ; then by (3.4) we
get

(3.5)

����f (m)� Z 1

a

f (t)w (t) dt

���� � 1

2

1_
a

(f) :

Also, if p 2 (a;1) such that
Wp
a (f) =

W1
p (f) ; then

(3.6)

����f (p)� Z 1

a

f (t)w (t) dt

���� � 1

2

1_
a

(f) :

In probability theory and statistics, the beta prime distribution (also known as
inverted beta distribution or beta distribution of the second kind) is an absolutely
continuous probability distribution de�ned for x > 0 with two parameters � and
�, having the probability density function:

w�;� (x) :=
x��1 (1 + x)

����

B (�; �)

where B is Beta function

B (�; �) :=

Z 1

0

t��1 (1� t)��1 ; �; � > 0:

The cumulative distribution function is

W�;� (x) = I x
1+x

(�; �)

where I is the regularized incomplete beta function de�ned by

Iz (�; �) :=
B (z;�; �)

B (�; �)
:

Here B (�;�; �) is the incomplete beta function de�ned by

B (z;�; �) :=

Z z

0

t��1 (1� t)��1 ; �; �; z > 0:
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Assume that f : [0;1) ! C is locally of bounded variation on [0;1) withW1
0 (f) <1: Using the inequality (3.4) we have for x > 0 that����f (x)� 1

B (�; �)

Z 1

0

f (t) t��1 (1 + t)
����

dt

����(3.7)

� I x
1+x

(�; �)
x_
0

(f) +
h
1� I x

1+x
(�; �)

i 1_
x

(f)

�

8>>>>>>>>>>><>>>>>>>>>>>:

h
1
2 +

���I x
1+x

(�; �)� 1
2

���iW10 (f) ;
h�
I x
1+x

(�; �)
�p
+
�
1� I x

1+x
(�; �)

�pi1=p
�
(
Wx
0 (f))

q
+ (
W1
x (f))

q�1=q
where p; q > 1 and 1

p +
1
q = 1;

1
2 [
W1
0 (f) + j

Wx
0 (f)�

W1
x (f)j] ;

for �; � > 0:
Similar results may be stated for the probability distributions that are supported

on the whole axis R. Namely, if I = R, f : R ! C is locally of bounded variation
on R with

1_
�1

(f) := lim
b!1;a!�1

b_
a

(f) <1

and w (s) > 0 for s 2 R with
R1
�1 w (s) ds = 1; namely w is a probability density

function on R, then by (3.1) we get����f (x)� Z 1

�1
f (t)w (t) dt

����(3.8)

�W (x)

x_
�1

(f) + [1�W (x)]

1_
x

(f)

�

8>>>>>>><>>>>>>>:

�
1
2 +

��W (x)� 1
2

���W1
�1 (f) ;

[W p (x) + (1�W (x))
p
]
1=p ��Wx

�1 (f)
�q
+ (
W1
x (f))

q�1=q
where p; q > 1 and 1

p +
1
q = 1;

1
2

�W1
�1 (f) +

��Wx
�1 (f)�

W1
x (f)

���
for any x 2 R, whereW (x) :=

R x
�1 w (s) ds is the cumulative distribution function.

If m 2 R is the median point for w, namely W (m) = 1
2 ; then by (3.4) we get

(3.9)

����f (m)� Z 1

�1
f (t)w (t) dt

���� � 1

2

1_
�1

(f) :

Also, if p 2 (a;1) such that
Wp
�1 (f) =

W1
p (f) ; then

(3.10)

����f (p)� Z 1

�1
f (t)w (t) dt

���� � 1

2

1_
�1

(f) :

In what follows we give an example.
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The probability density of the normal distribution on (�1;1) is

w�;�2 (x) :=
1p
2��

exp

 
� (x� �)

2

2�2

!
; x 2 R,

where � is the mean or expectation of the distribution (and also its median and
mode), � is the standard deviation, and �2 is the variance.
The cumulative distribution function is

W�;�2 (x) =
1

2
+
1

2
erf

�
x� �
�
p
2

�
;

where the error function erf is de�ned by

erf (x) =
2p
�

Z x

0

exp
�
�t2

�
dt:

If f : R! R is locally of bounded variation with
W1
�1 (f) <1, then from (3.8)

we have �����f (x)� 1p
2��

Z 1

�1
f (t) exp

 
� (x� �)

2

2�2

!
dt

�����(3.11)

� 1

2

(�
1 + erf

�
x� �
�
p
2

�� x_
�1

(f) +

�
1� erf

�
x� �
�
p
2

�� 1_
x

(f)

)

�

8>>>>>>>>>>><>>>>>>>>>>>:

1
2

h
1 +

���erf �x��
�
p
2

����iW1�1 (f) ;
1
2

h�
1 + erf

�
x��
�
p
2

��p
+
�
1� erf

�
x��
�
p
2

��pi1=p
�
��Wx

�1 (f)
�q
+ (
W1
x (f))

q�1=q
where p; q > 1 and 1

p +
1
q = 1;

1
2

�W1
�1 (f) +

��Wx
�1 (f)�

W1
x (f)

���
for any x 2 R.
In particular, we have

(3.12)

�����f (�)� 1p
2��

Z 1

�1
f (t) exp

 
� (x� �)

2

2�2

!
dt

����� � 1

2

1_
�1

(f) :

Also, if p 2 R such that
Wp
�1 (f) =

W1
p (f) ; then

(3.13)

�����f (p)� 1p
2��

Z 1

�1
f (t) exp

 
� (x� �)

2

2�2

!
dt

����� � 1

2

1_
�1

(f) :
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