
WEIGHTED INTEGRAL INEQUALITIES OF OSTROWSKI,
µCEBY�EV AND LUPAŞ TYPE WITH APPLICATIONS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish some weighted integral inequalities of
Ostrowski, µCeby�ev and Lupaş type. Applications for continuous probability
density functions supported on in�nite intervals with two examples are also
given.

1. Introduction

For two Lebesgue integrable functions f; g : [a; b] ! R, consider the µCeby�ev
functional :

(1.1) C (f; g) :=
1

b� a

Z b

a

f(t)g(t)dt� 1

(b� a)2
Z b

a

f(t)dt

Z b

a

g(t)dt:

In 1935, Grüss [17] showed that

(1.2) jC (f; g)j � 1

4
(M �m) (N � n) ;

provided that there exists the real numbers m; M; n; N such that

(1.3) m � f (t) �M and n � g (t) � N for a.e. t 2 [a; b] :
The constant 1

4 is best possible in (1.1) in the sense that it cannot be replaced by
a smaller quantity.
Another, however less known result, even though it was obtained by µCeby�ev in

1882, [4], states that

(1.4) jC (f; g)j � 1

12
kf 0k1 kg

0k1 (b� a)
2
;

provided that f 0; g0 exist and are continuous on [a; b] and kf 0k1 = supt2[a;b] jf 0 (t)j :
The constant 1

12 cannot be improved in the general case.
The µCeby�ev inequality (1.4) also holds if f; g : [a; b] ! R are assumed to be

absolutely continuous and f 0; g0 2 L1 [a; b] while kf 0k1 = essupt2[a;b] jf 0 (t)j :
A mixture between Grüss�result (1.2) and µCeby�ev�s one (1.4) is the following

inequality obtained by Ostrowski in 1970, [24]:

(1.5) jC (f; g)j � 1

8
(b� a) (M �m) kg0k1 ;

provided that f is Lebesgue integrable and satis�es (1.3) while g is absolutely con-
tinuous and g0 2 L1 [a; b] : The constant 18 is best possible in (1.5).
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2 S. S. DRAGOMIR

The case of euclidean norms of the derivative was considered by A. Lupaş in [21]
in which he proved that

(1.6) jC (f; g)j � 1

�2
kf 0k2 kg

0k2 (b� a) ;

provided that f; g are absolutely continuous and f 0; g0 2 L2 [a; b] : The constant 1
�2

is the best possible.
Consider now the weighted µCeby�ev functional

(1.7) Cw (f; g) :=
1R b

a
w (t) dt

Z b

a

w (t) f (t) g (t) dt

� 1R b
a
w (t) dt

Z b

a

w (t) f (t) dt
1R b

a
w (t) dt

Z b

a

w (t) g (t) dt

where f; g; w : [a; b]! R and w (t) � 0 for a.e. t 2 [a; b] are measurable functions
such that the involved integrals exist and

R b
a
w (t) dt > 0:

In [6], Cerone and Dragomir obtained, among others, the following inequalities:

(1.8) jCw (f; g)j

� 1

2
(M �m) 1R b

a
w (t) dt

Z b

a

w (t)

�����g (t)� 1R b
a
w (s) ds

Z b

a

w (s) g (s) ds

����� dt
� 1

2
(M �m)

"
1R b

a
w (t) dt

Z b

a

w (t)

�����g (t)� 1R b
a
w (s) ds

Z b

a

w (s) g (s) ds

�����
p

dt

# 1
p

� 1

2
(M �m) essup

t2[a;b]

�����g (t)� 1R b
a
w (s) ds

Z b

a

w (s) g (s) ds

�����
for p > 1; provided �1 < m � f (t) � M < 1 for a.e. t 2 [a; b] and the
corresponding integrals are �nite. The constant 12 is sharp in all the inequalities in
(1.8) in the sense that it cannot be replaced by a smaller constant.
In addition, if �1 < n � g (t) � N < 1 for a.e. t 2 [a; b] ; then the following

re�nement of the celebrated Grüss inequality is obtained:

(1.9) jCw (f; g)j

� 1

2
(M �m) 1R b

a
w (t) dt

Z b

a

w (t)

�����g (t)� 1R b
a
w (s) ds

Z b

a

w (s) g (s) ds

����� dt
� 1

2
(M �m)

24 1R b
a
w (t) dt

Z b

a

w (t)

�����g (t)� 1R b
a
w (s) ds

Z b

a

w (s) g (s) ds

�����
2

dt

35 1
2

� 1

4
(M �m) (N � n) :

Here, the constants 1
2 and

1
4 are also sharp in the sense mentioned above.

For other inequality of Grüss�type see [1]-[5], [7]-[16], [18]-[23] and [25]-[28].
Motivated by the above results, in this paper we establish some weighted integral

inequalities of Ostrowski, µCeby�ev and Lupaş type. Applications for continuous
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probability density functions supported on in�nite intervals with two examples are
also given.

2. Weighted Grüss�Type Inequalities

We can de�ne, as above

(2.1) Ch0 (f; g) :=
1

h (b)� h (a)

Z b

a

f (t) g (t)h0 (t) dt

� 1

h (b)� h (a)

Z b

a

f (t)h0 (t) dt
1

h (b)� h (a)

Z b

a

g (t)h0 (t) dt;

where h is absolutely continuous and f; g are Lebesgue measurable on [a; b] and
such that the above integrals exist.
The following weighted version of Ostrowski�s inequality holds:

Theorem 1. Let h : [a; b]! [h (a) ; h (b)] be a continuous strictly increasing func-
tion that is di¤erentiable on (a; b) : If f is Lebesgue integrable and satis�es the
condition m � f (t) � M for t 2 [a; b] and g : [a; b] ! R is absolutely continuous
on [a; b] and g0

h0 is essentially bounded, namely
g0

h0 2 L1 [a; b] ; then we have

(2.2) jCh0 (f; g)j �
1

8
[h (b)� h (a)] (M �m)





 g0h0





[a;b];1

:

The constant 18 is best possible.

Proof. Assume that [c; d] � [a; b] : If g : [c; d]! C is absolutely continuous on [c; d] ;
then g � h�1 : [h (c) ; h (d)]! C is absolutely continuous on [h (c) ; h (d)] and using
the chain rule and the derivative of inverse functions we have

(2.3)
�
g � h�1

�0
(z) =

�
g0 � h�1

�
(z)
�
h�1

�0
(z) =

�
g0 � h�1

�
(z)

(h0 � h�1) (z)
for almost every (a.e.) z 2 [h (c) ; h (d)] :
If x 2 [c; d] ; then by taking z = h (x) ; we get�

g � h�1
�0
(z) =

�
g0 � h�1

�
(h (x))

(h0 � h�1) (h (x)) =
g0 (x)

h0 (x)
:

Therefore, since g0

h0 2 L1 [c; d], hence
�
g � h�1

�0 2 L1 [h (c) ; h (d)] : Also


�g � h�1�0



[h(c);h(d)];1

=





 g0h0





[c;d];1

:

Now, if we use the Ostrowski�s inequality (1.5) for the functions f � h�1 and
g � h�1 on the interval [h (a) ; h (b)] ; then we get

(2.4)

����� 1

h (b)� h (a)

Z h(b)

h(a)

f � h�1(u)g � h�1(u)du

� 1

[h (b)� h (a)]2
Z h(b)

h(a)

f � h�1(u)du
Z h(b)

h(a)

g � h�1(u)du
�����

� 1

8
[h (b)� h (a)] (M �m)




�g � h�1�0



[h(a);h(b)];1



4 S. S. DRAGOMIR

since m � f � h�1(u) �M for all u 2 [h (a) ; h (b)] :
Observe also that, by the change of variable t = h�1 (u) ; u 2 [g (a) ; g (b)] ; we

have u = h (t) that gives du = h0 (t) dt andZ h(b)

h(a)

�
f � h�1

�
(u) du =

Z b

a

f (t)h0 (t) dt;Z h(b)

h(a)

g � h�1(u)du =
Z b

a

g (t)h0 (t) dt;Z h(b)

h(a)

f � h�1(u)g � h�1(u)du =
Z b

a

f (t) g (t)h0 (t) dt

and 


�g � h�1�0



[h(a);h(b)];1

=





 g0h0





[a;b];1

:

By making use of (2.4) we then get the desired result (2.2).
The best constant follows by Ostrowski�s inequality (1.5). �

If w : [a; b]! R is continuous and positive on the interval [a; b] ; then the function
W : [a; b]! [0;1); W (x) :=

R x
a
w (s) ds is strictly increasing and di¤erentiable on

(a; b) : We have W 0 (x) = w (x) for any x 2 (a; b) :

Corollary 1. Assume that w : [a; b]! (0;1) is continuous on [a; b] ; f is Lebesgue
integrable and satis�es the condition m � f (t) � M for t 2 [a; b] and g : [a; b] !
R is absolutely continuous on [a; b] with g0

w is essentially bounded, namely g0

w 2
L1 [a; b] ; then we have

(2.5) jCw (f; g)j �
1

8
(M �m)





g0w





[a;b];1

Z b

a

w (s) ds:

The constant 18 is best possible.

Remark 1. Under the assumptions of Corollary 1 and if there exists a constant
K > 0 such that jg0 (t)j � Kw (t) for a.e. t 2 [a; b] ; then by (2.5) we get

(2.6) jCw (f; g)j �
1

8
(M �m)K

Z b

a

w (s) ds:

We have the following weighted version of µCeby�ev inequality:

Theorem 2. Let h : [a; b]! [h (a) ; h (b)] be a continuous strictly increasing func-
tion that is di¤erentiable on (a; b) : If f , g : [a; b]! R are absolutely continuous on
[a; b] and f 0

h0 ;
g0

h0 2 L1 [a; b] ; then we have

(2.7) jCh0 (f; g)j �
1

12
[h (b)� h (a)]2





f 0h0





[a;b];1





 g0h0





[a;b];1

:

The constant 1
12 is best possible.

The proof follows by the use of µCeby�ev inequality (1.4) for the functions f �h�1
and g � h�1 on the interval [h (a) ; h (b)] :



INEQUALITIES OF OSTROWSKI, µCEBY�EV AND LUPAS TYPE 5

Corollary 2. Assume that w : [a; b] ! (0;1) is continuous on [a; b] : If f , g :
[a; b]! R are absolutely continuous on [a; b] and f 0

w ;
g0

w 2 L1 [a; b] ; then we have

(2.8) jCw (f; g)j �
1

12





f 0w





[a;b];1





g0w





[a;b];1

 Z b

a

w (s) ds

!2
:

The constant 1
12 is best possible.

Remark 2. Under the assumptions of Corollary 2 and if there exists the constants
K; L > 0 such that jf 0 (t)j � Lw (t), jg0 (t)j � Kw (t) for a.e. t 2 [a; b] ; then by
(2.8) we get

(2.9) jCw (f; g)j �
1

12
LK

 Z b

a

w (s) ds

!2
:

We also have the following version of Lupaş inequality:

Theorem 3. Let h : [a; b]! [h (a) ; h (b)] be a continuous strictly increasing func-
tion that is di¤erentiable on (a; b) : If f , g : [a; b]! R are absolutely continuous on
[a; b] and f 0

(h0)1=2
; g0

(h0)1=2
2 L2 [a; b] ; then we have

(2.10) jCh0 (f; g)j �
1

�2






 f 0

(h0)
1=2







[a;b];2






 g0

(h0)
1=2







[a;b];2

[h (b)� h (a)] :

The constant 1
�2 is best possible.

Proof. Using the identity (2.3) above, we have

Z h(b)

h(a)

����g � h�1�0 (u)���2 du = Z h(b)

h(a)

�����
�
g0 � h�1

�
(u)

(h0 � h�1) (u)

�����
2

du:

By the change of variable t = h�1 (u) ; u 2 [h (a) ; h (b)] ; we have u = h (t) that
gives du = h0 (t) dt: Therefore

Z h(b)

h(a)

�����
�
g0 � h�1

�
(u)

(h0 � h�1) (u)

�����
2

du =

Z b

b

���� g0 (t)h0 (t)

����2 h0 (t) dt
=

Z b

b

����� g0 (t)

[h0 (t)]
1=2

�����
2

dt =






 g0

(h0)
1=2







2

[a;b];2

:

In a similar way, we also have

Z h(b)

h(a)

�����
�
f 0 � h�1

�
(u)

(h0 � h�1) (u)

�����
2

du =






 f 0

(h0)
1=2







2

[a;b];2

:
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By making use of Lupaş inequality (1.6) for the functions f � h�1 and g � h�1 on
the interval [h (a) ; h (b)] we get����� 1

h (b)� h (a)

Z h(b)

h(a)

f � h�1(u)g � h�1(u)du

� 1

[h (b)� h (a)]2
Z h(b)

h(a)

f � h�1(u)du
Z h(b)

h(a)

g � h�1(u)du
�����

� 1

�2




�f � h�1�0



[h(a);h(b)];2




�g � h�1�0



[h(a);h(b)];2

[h (b)� h (a)] ;

which together with the above calculations produces the desired result (2.10). �

Corollary 3. Assume that w : [a; b] ! (0;1) is continuous on [a; b] : If f , g :
[a; b] ! R are absolutely continuous on [a; b] and f 0

w1=2
; g0

w1=2
2 L2 [a; b] ; then we

have

(2.11) jCw (f; g)j �
1

�2





 f 0

w1=2






[a;b];2





 g0

w1=2






[a;b];2

Z b

a

w (s) ds:

The constant 1
�2 is best possible.

We can give some examples of interest for several function h : [a; b]! [h (a) ; h (b)]
that are continuous strictly increasing functions and di¤erentiable on (a; b) :
a). If we take h : [a; b] � (0;1) ! R, h (t) = ln t; in (2.2), then we get for

` (t) := t; that

(2.12) jC`�1 (f; g)j �
1

8
(M �m) k`g0k[a;b];1 ln

�
b

a

�
where

(2.13) C`�1 (f; g) :=
1

ln
�
b
a

� Z b

a

f (t) g (t)

t
dt� 1

ln
�
b
a

� Z b

a

f (t)

t
dt

1

ln
�
b
a

� Z b

a

g (t)

t
dt;

and provided that f is Lebesgue integrable and satis�es the conditionm � f (t) �M
for t 2 [a; b] and g : [a; b]! R is absolutely continuous on [a; b] and `g0 2 L1 [a; b] :
If f , g : [a; b] ! R are absolutely continuous on [a; b] and `f 0; `g0 2 L1 [a; b] ;

then by (2.7) we have

(2.14) jC`�1 (f; g)j �
1

12
k`f 0k[a;b];1 k`g

0k[a;b];1
�
ln

�
b

a

��2
:

Also, if f , g : [a; b] ! R are absolutely continuous on [a; b] and `1=2f 0; `1=2g0 2
L2 [a; b] ; then we have by (2.10)

(2.15) jC`�1 (f; g)j �
1

�2




`1=2f 0



[a;b];2




`1=2g0



[a;b];2

ln

�
b

a

�
:

b). If we take h : [a; b] � R! (0;1), h (t) = exp t; in (2.2), then we get

(2.16) jCexp (f; g)j �
1

8
(M �m)





 g0exp





[a;b];1

(exp b� exp a) ;
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where

(2.17) Cexp (f; g) :=
1

exp b� exp a

Z b

a

f (t) g (t) exp tdt

� 1

exp b� exp a

Z b

a

f (t) exp tdt
1

exp b� exp a

Z b

a

g (t) exp tdt;

and provided that f is Lebesgue integrable and satis�es the conditionm � f (t) �M
for t 2 [a; b] and g : [a; b]! R is absolutely continuous on [a; b] and g0

exp 2 L1 [a; b] :
If f , g : [a; b] ! R are absolutely continuous on [a; b] and f 0

exp ;
g0

exp 2 L1 [a; b] ;
then by (2.7) we have

(2.18) jCexp (f; g)j �
1

12





 f 0exp





[a;b];1





 g0exp





[a;b];1

(exp b� exp a)2 :

Also, if f , g : [a; b] ! R are absolutely continuous on [a; b] and f 0

exp1=2
; g0

exp1=2
2

L2 [a; b] ; then we have by (2.10) that

(2.19) jCexp (f; g)j �
1

�2





 f 0

exp1=2






[a;b];2





 g0

exp1=2






[a;b];2

(exp b� exp a) :

c). If we take h : [a; b] � (0;1)! R, h (t) = tr; r > 0 in (2.2), then we get

(2.20) jCr`r�1 (f; g)j �
1

8r
(br � ar) (M �m)



`1�rg0


[a;b];1 ;

where

(2.21) Cr`r�1 (f; g) :=
r

br � ar
Z b

a

f (t) g (t) tr�1dt

� r

br � ar
Z b

a

f (t) tr�1dt
r

br � ar
Z b

a

g (t) tr�1dt;

and provided that f is Lebesgue integrable and satis�es the conditionm � f (t) �M
for t 2 [a; b] and g : [a; b] ! R is absolutely continuous on [a; b] and `1�rg0 2
L1 [a; b] :
If f , g : [a; b] ! R are absolutely continuous on [a; b] and `1�rf 0; `1�rg0 2

L1 [a; b] ; then by (2.7) we have

(2.22) jCr`r�1 (f; g)j �
1

12



`1�rf 0


[a;b];1



`1�rg0


[a;b];1 (b

r � ar)2 :

Also, if f , g : [a; b] ! R are absolutely continuous on [a; b] and `
1�r
2 f 0; `

1�r
2 g0 2

L2 [a; b] ; then we have by (2.10) that

(2.23) jCr`r�1 (f; g)j �
1

�2




` 1�r2 f 0



[a;b];2




` 1�r2 g0



[a;b];2

(br � ar) :

3. Applications for Probability Density Functions

The above result can be extended for in�nite intervals I by assuming that the
function f : I ! C is locally absolutely continuous on I.
For instance, if I = [a;1), w (s) > 0 for s 2 [a;1) with

R1
a
w (s) ds = 1; namely

w is a probability density function on [a;1), f is Lebesgue measurable and satis�es
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the condition m � f (t) �M for t 2 [a;1) and g : [a;1)! R is locally absolutely
continuous on [a;1) with g0

w 2 L1 [a;1) ; then

(3.1)

����Z 1

a

w (t) f (t) g (t) dt�
Z 1

a

w (t) f (t) dt

Z 1

a

w (t) g (t) dt

����
� 1

8
(M �m)





g0w





[a;1);1

:

Moreover, if f
0

w 2 L1 [a;1) then also

(3.2)

����Z 1

a

w (t) f (t) g (t) dt�
Z 1

a

w (t) f (t) dt

Z 1

a

w (t) g (t) dt

����
� 1

12





f 0w





[a;1);1





g0w





[a;1);1

:

If f 0

w1=2
; g0

w1=2
2 L2 [a;1) ; then we have

(3.3)

����Z 1

a

w (t) f (t) g (t) dt�
Z 1

a

w (t) f (t) dt

Z 1

a

w (t) g (t) dt

����
� 1

�2





 f 0

w1=2






[a;1);2





 g0

w1=2






[a;1);2

:

In probability theory and statistics, the beta prime distribution (also known as
inverted beta distribution or beta distribution of the second kind) is an absolutely
continuous probability distribution de�ned for x > 0 with two parameters � and
�, having the probability density function:

w�;� (x) :=
x��1 (1 + x)

����

B (�; �)

where B is Beta function

B (�; �) :=

Z 1

0

t��1 (1� t)��1 ; �; � > 0:

The cumulative distribution function is

W�;� (x) = I x
1+x

(�; �) ;

where I is the regularized incomplete beta function de�ned by

Iz (�; �) :=
B (z;�; �)

B (�; �)
:

Here B (�;�; �) is the incomplete beta function de�ned by

B (z;�; �) :=

Z z

0

t��1 (1� t)��1 ; �; �; z > 0:
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Therefore, by (3.1)-(3.3) we have for ` (t) = t; that

(3.4)

����B (�; �)Z 1

0

t��1 (1 + t)
����

f (t) g (t) dt

�
Z 1

0

t��1 (1 + t)
����

f (t) dt

Z 1

0

t��1 (1 + t)
����

g (t) dt

����
� 1

8
(M �m)B3 (�; �)




g0`1�� (1 + `)�+�



[0;1);1

;

provided m � f (t) �M for t 2 [0;1) and g0`1�� (1 + `)�+� 2 L1 [0;1) ;

(3.5)

����B (�; �)Z 1

0

t��1 (1 + t)
����

f (t) g (t) dt

�
Z 1

0

t��1 (1 + t)
����

f (t) dt

Z 1

0

t��1 (1 + t)
����

g (t) dt

����
� 1

12
B4 (�; �)




f 0`1�� (1 + `)�+�



[0;1);1




g0`1�� (1 + `)�+�



[0;1);1

;

provided f 0`1�� (1 + `)�+� ; g0`1�� (1 + `)�+� 2 L2 [0;1) and

(3.6)

����B (�; �)Z 1

0

t��1 (1 + t)
����

f (t) g (t) dt

�
Z 1

0

t��1 (1 + t)
����

f (t) dt

Z 1

0

t��1 (1 + t)
����

g (t) dt

����
� 1

12
B3 (�; �)




f 0` 1��2 (1 + `)
�+�
2





[0;1);2




g0` 1��2 (1 + `)
�+�
2





[0;1);2

;

provided f 0`
1��
2 (1 + `)

�+�
2 ; g0`

1��
2 (1 + `)

�+�
2 2 L2 [0;1) :

Similar results may be stated for the probability distributions that are supported
on the whole axis R =(�1;1). Namely, if I = (�1;1), f : R ! C is locally
absolutely continuous on R and w (s) > 0 for s 2 R with

R1
�1 w (s) ds = 1; namely

w is a probability density function on (�1;1), f is Lebesgue measurable and
satis�es the condition m � f (t) � M for t 2 (�1;1) and g : (�1;1) ! R is
locally absolutely continuous on (�1;1) with g0

w 2 L1 (�1;1) ; then

(3.7)

����Z 1

�1
w (t) f (t) g (t) dt�

Z 1

�1
w (t) f (t) dt

Z 1

�1
w (t) g (t) dt

����
� 1

8
(M �m)





g0w





(�1;1);1

:

Moreover, if f
0

w 2 L1 (�1;1) then also

(3.8)

����Z 1

�1
w (t) f (t) g (t) dt�

Z 1

�1
w (t) f (t) dt

Z 1

�1
w (t) g (t) dt

����
� 1

12





f 0w





(�1;1);1





g0w





(�1;1);1

:
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If f 0

w1=2
; g0

w1=2
2 L2 (�1;1) ; then we have

(3.9)

����Z 1

�1
w (t) f (t) g (t) dt�

Z 1

�1
w (t) f (t) dt

Z 1

�1
w (t) g (t) dt

����
� 1

�2





 f 0

w1=2






(�1;1);2





 g0

w1=2






(�1;1);2

:

In what follows we give an example.
The probability density of the normal distribution on (�1;1) is

w�;�2 (x) :=
1p
2��

exp

 
� (x� �)

2

2�2

!
; x 2 R,

where � is the mean or expectation of the distribution (and also its median and
mode), � is the standard deviation, and �2 is the variance.
The cumulative distribution function is

W�;�2 (x) =
1

2
+
1

2
erf

�
x� �
�
p
2

�
;

where the error function erf is de�ned by

erf (x) =
2p
�

Z x

0

exp
�
�t2

�
dt:

Therefore, by (3.7)-(3.9) we have

(3.10)

�����p2��
Z 1

�1
exp

 
� (t� �)

2

2�2

!
f (t) g (t) dt

�
Z 1

�1
exp

 
� (t� �)

2

2�2

!
f (t) dt

Z 1

�1
exp

 
� (t� �)

2

2�2

!
g (t) dt

�����
� 1

8
(M �m)

�p
2��

�3 




g0 exp
 
(`� �)2

2�2

!





(�1;1);1

provided m � f (t) �M for t 2 (�1;1) and g0 exp
�
(`��)2
2�2

�
2 L1 (�1;1) :

Moreover, if f 0 exp
�
(`��)2
2�2

�
2 L1 (�1;1) then also

(3.11)

�����p2��
Z 1

�1
exp

 
� (t� �)

2

2�2

!
f (t) g (t) dt

�
Z 1

�1
exp

 
� (t� �)

2

2�2

!
f (t) dt

Z 1

�1
exp

 
� (t� �)

2

2�2

!
g (t) dt

�����
� 1

12

�p
2��

�4 




f 0 exp
 
(`� �)2

2�2

!





(�1;1);1






g0 exp
 
(`� �)2

2�2

!





(�1;1);1

:
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If f 0 exp
�
(`��)2
2�2

�
; g0 exp

�
(`��)2
2�2

�
2 L2 (�1;1) ; then we have

(3.12)

�����p2��
Z 1

�1
exp

 
� (t� �)

2

2�2

!
f (t) g (t) dt

�
Z 1

�1
exp

 
� (t� �)

2

2�2

!
f (t) dt

Z 1

�1
exp

 
� (t� �)

2

2�2

!
g (t) dt

�����
� 1

�2






f 0 exp
 
(`� �)2

2�2

!





(�1;1);2






g0 exp
 
(`� �)2

2�2

!





(�1;1);2

:
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