Received 08/05/18

WEIGHTED INTEGRAL INEQUALITIES OF OSTROWSKI,
CEBYSEV AND LUPAS TYPE WITH APPLICATIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some weighted integral inequalities of
Ostrowski, Cebysev and Lupag type. Applications for continuous probability
density functions supported on infinite intervals with two examples are also
given.

1. INTRODUCTION

For two Lebesgue integrable functions f, g : [a,b] — R, consider the Cebysev
functional:

1 b 1 b b
L) Oy [ T0ewd - o= [ e [ gt
b—a a (b — a) a a
In 1935, Griiss [17] showed that
1
(1.2) IC(f,9)l = 7 (M =m) (N —n),
provided that there exists the real numbers m, M, n, N such that

(1.3) m<f@#)<M and n<g(t)<N forae. t€/alb].

The constant i is best possible in (1.1) in the sense that it cannot be replaced by
a smaller quantity. .

Another, however less known result, even though it was obtained by Cebysev in
1882, [4], states that
(1.4) IC(f,9)] < %\\f’llw\lg'llw(b—a)Q,
provided that f’, ¢’ exist and are continuous on [a, b] and || f'|| , = sup,e(q4 [f' ()] -
The constant 1—12 cannot be improved in the general case.

The Cebysev inequality (1.4) also holds if f, g : [a,b] — R are assumed to be
absolutely continuous and f', g € Lo [a,b] while ||f'[| = essup,e(q 4 [ ()] -

A mixture between Griiss’ result (1.2) and Cebysev’s one (1.4) is the following
inequality obtained by Ostrowski in 1970, [24]:

(15) C9)l < 5 (b—a) (M —m) ],

provided that f is Lebesgue integrable and satisfies (1.3) while g is absolutely con-
tinuous and ¢’ € L [a,b]. The constant 3 is best possible in (1.5).
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The case of euclidean norms of the derivative was considered by A. Lupasg in [21]
in which he proved that

(16) CUa < 25 109N (b~ a),

provided that f, g are absolutely continuous and f’, ¢’ € La [a,b] . The constant %
is the best possible.
Consider now the weighted Cebysev functional

1 b
0D Culf) = / w(t) f(t)g (1) dt

Ja
b b
Sy R v RCACTICEL

where f, g, w: [a,b] — R and w (t) > 0 for a.e. t € [a, ] are measurable functions

such that the involved integrals exist and f; w(t)dt > 0.
In [6], Cerone and Dragomir obtained, among others, the following inequalities:

(18) [Cu(f.0)]
< 5 (M —m) f;wl@dt/abw(” g(t)—fbwl(s)ds /abw<s>g<s>ds dt
<2 (M —m) [f;wl(t)dt/ab (0 gm_f;wts)ds/:w@g@dspdt];
<;(M—m)f:[sig g(t)—Mwa(S)g(S)ds

for p > 1, provided —co < m < f(t) < M < oo for ae. t € [a,b] and the
corresponding integrals are finite. The constant % is sharp in all the inequalities in
(1.8) in the sense that it cannot be replaced by a smaller constant.

In addition, if —oco <n < g(t) < N < oo for a.e. t € [a,b], then the following
refinement of the celebrated Griiss inequality is obtained:

(1.9)  [Cu (f,9)]

1 1 b 1 b
<5 (M —m) f;w(t)dt/a w (1) g(t)—fbw(s)ds/a w(s) g (s)ds| dt
1 1 b 1 b > ]°
<3 (M —m) fbw(t)dt/a w(t) g(t)ffw(s)ds/a w(s)g(s)ds| dt

1
< Z(M—m)(N—n).
Here, the constants % and i are also sharp in the sense mentioned above.
For other inequality of Griiss’ type see [1]-[5], [7]-[16], [18]-[23] and [25]-[28].
Motivated by the above results, in this paper we establish some weighted integral
inequalities of Ostrowski, CebySev and Lupas type. Applications for continuous
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probability density functions supported on infinite intervals with two examples are
also given.

2. WEIGHTED GRUSS’ TYPE INEQUALITIES

We can define, as above

1 b
(2.1) cmu@>ffww_h60/fﬂwgmh%wa

1 b , 1 b )
- =i L TN Wl [0 @

where h is absolutely continuous and f, g are Lebesgue measurable on [a, ] and
such that the above integrals exist.
The following weighted version of Ostrowski’s inequality holds:

Theorem 1. Let h: [a,b] — [h(a),h ()] be a continuous strictly increasing func-
tion that is differentiable on (a,b). If f is Lebesgue integrable and satisfies the
condition m < f(t) < M fort € [a,b] and g : [a,b] — R is absolutely continuous
on [a,b] and ¥ is essentially bounded, namely i € Lo [a,b], then we have

1
(2:2) e (£.9) < § 10) = 1 (@] O )|

/

9

h/

[a,b],00
The constant % is best possible.
Proof. Assume that [c,d] C [a,b].If g : [¢,d] — C is absolutely continuous on [¢,d] ,

then goh™! : [h(c),h(d)] — C is absolutely continuous on [k (c),h (d)] and using
the chain rule and the derivative of inverse functions we have

—1\/ o / _ — _ (gloh’il) (Z)
for almost every (a.e.) z € [h(c),h(d)].
If « € [¢,d], then by taking z = h(x), we get

oY (= Weh ) (h(@) g ()
(9oh™) &) = o (h@) ~ W)

(
Therefore, since % € Lo [c,d], hence (goh™')" € Lo [h(c),h(d)]. Also

e
H(go ) [h(c),h(d)],00

/

g

h

/
/

le,d], 00

Now, if we use the Ostrowski’s inequality (1.5) for the functions f o h=! and
goh~! on the interval [h (a),h (b)], then we get

h(b)
(2.4) m /h foh ™ u)goh™(u)du

(a)

B R CCOU I
_[h(b)—h(a)}2 /h(a) foh (u)du/h(a) goh ™ (u)du

1

< S ®) = h@) (M =m) |[(gon)

[h(a),h(b)],00
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since m < foh ™ (u) < M for all u € [h(a),h (b)].
Observe also that, by the change of variable t = h™! (u), u € [g(a),g(b)], we
have u = h (t) that gives du = A/ (t) dt and

h(b) b
[ Gen ) @du= [ ron
h(a) a

b

h(b)
[ gentwdu= [g@n @,
h(a) a

h(b) b
/ fohfl(u)gohfl(u)du:/ £ g &) (¢)dt
h(a) a

and
/

—1\/ g
[taor) W
By making use of (2.4) we then get the desired result (2.2).

The best constant follows by Ostrowski’s inequality (1.5). O

[A(a),h(B)]s00 ‘

[a,b],00

If w : [a,b] — R is continuous and positive on the interval [a, b] , then the function
W : [a,b] — [0,00), W (z) := [ w(s)ds is strictly increasing and differentiable on
(a,b) . We have W' (z) = w (x) for any z € (a,b).

Corollary 1. Assume that w : [a,b] — (0,00) is continuous on [a,b], f is Lebesgue
integrable and satisfies the condition m < f(t) < M fort € [a,b] and g : [a,b] —

’

R is absolutely continuous on [a,b] with % is essentially bounded, namely % &
Lo [a,b], then we have

/

9

(25) Cu(r9)l < § 01 = m) £

b
/w(s)ds.
la,b],00 Y a

The constant % 18 best possible.

Remark 1. Under the assumptions of Corollary 1 and if there exists a constant
K > 0 such that |¢' (t)] < Kw (t) for a.e. t € [a,b], then by (2.5) we get

b
(2.6) Co (f.0) < S (M —m) K / w(s) ds.

| =

We have the following weighted version of Cebysev inequality:

Theorem 2. Let h: [a,b] — [h(a),h (D)] be a continuous strictly increasing func-
tion that is differentiable on (a,b). If f, g : [a,b] — R are absolutely continuous on

[a,b] and {T:’ Z—: € Lo [a,b], then we have

(2.7) Cw (£,9)] < % [ (8) = b (a)]* % %

la,b],00 ' la,b],00

The constant % is best possible.

The proof follows by the use of Cebysev inequality (1.4) for the functions foh ™"
and g o h™! on the interval [k (a),h (b)].
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Corollary 2. Assume that w : [a,b] — (0,00) is continuous on la,b]. If f, g
[a,b] — R are absolutely continuous on [a,b] and L =, % ¢ Ly [a,b], then we have

PRIEED

f J

(2.8) |Cw (f, ‘
[a,b],00 w

|—12’

The constant % is best possible.

Remark 2. Under the assumptions of Corollary 2 and if there exists the constants
K, L > 0 such that |f' (t)] < Lw (t), |¢' (t)| < Kw (t) for a.e. t € [a,b], then by
(2.8) we get

b 2
(2.9) Cu (F0)| < S LK ( / w(s)ds> .

We also have the following version of Lupag inequality:

Theorem 3. Let h: [a,b] — [h(a),h ()] be a continuous strictly increasing func-
tion that is dzﬁerentzable on (a,b). If f, g : [a,b] — R are absolutely continuous on
[a,b] and (h/)1/2’ % 1/2 € L [a,b], then we have

Ly f g
(2.10) Cn (9 < = ||—37% — 7 [ (b) = h(a)].

/2 1/2

T (hl) [a,b],2 (h/) [a,b],2
The constant 2 18 best possible.
Proof. Using the identity (2.3) above, we have

2

(g oh™") ()

(o h 1) ()| ™

h(b) , 2 h(b)
[ lery ol a |
h(a) h(a)

By the change of variable t = h™! (u), u € [h(a),h (b)], we have u = h(t) that
gives du = R’ (t) dt. Therefore

2

h®) | (o o p1 2 by
/ (g/ o _1) (U) d'LL — / g/ (t) h/ (t) dt

ha |(h oh™)(u) b | (E)

b ! 2 ! 2
_ / g (t) |9 _
o [ ()" GRS T
In a similar way, we also have
/h(b) (f/ o h—l) ('LL) 2 /
(@) | (W oh™1)(u) (h)'/? (a b2
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By making use of Lupas inequality (1.6) for the functions foh™! and go h™! on
the interval [k (a), h (b)] we get

1 h(b) ) B
T {1 o

1 /h(b) 1( ) h(b) 1( )
- foh™ udu/ goh™ (u)du
A (5) = B (a)]* Jna) h(a)

< |ony [tgony

which together with the above calculations produces the desired result (2.10). O

[h(b) = h(a)],

[h(a),h(b)],2 [h(a),h(b)];2

Corollary 3. Assume that w : [a,b] — (0,00) is continuous on [a,b]. If f, g :
[a,b] — R are absolutely continuous on [a,b] and #, 45 € Lafa,b], then we
have

/

9
wl/2

f/

wl/2

1
2

(2.11) Cw (f,9)] <

b
/ w (s)ds.
[a,b],2 Ya

[a,b],2

The constant # is best possible.

We can give some examples of interest for several function h : [a,b] — [h (a), h (b)]
that are continuous strictly increasing functions and differentiable on (a,b).

a). If we take h : [a,b] C (0,00) — R, h(t) = Int, in (2.2), then we get for
((t) == t, that

ool —

b
.12 G (190 < 3 O = m) 6y 10 ()

where

L ["re® 1 /bf(t> 1 /*’g(t)
2.13) Cpi (f,9) == dt — dt dt,
@13) O ()= oy [Py [
and provided that f is Lebesgue integrable and satisfies the condition m < f (t) < M
for ¢ € [a,b] and ¢ : [a,b] — R is absolutely continuous on [a,b] and g’ € L [a,b] .
If f, g:[a,b] — R are absolutely continuous on [a,b] and ¢f', {g’ € Ly [a,b],
then by (2.7) we have

b

1 2
@10 10 (0l < 1 e 1 [ ()]

Also, if f, g : [a,b] — R are absolutely continuous on [a,b] and /2, (Y/2g €
Ly [a,b], then we have by (2.10)
In (b) .
la,b],2 a

b). If we take h: [a,b] CR — (0,00), h(t) = expt, in (2.2), then we get

215) 10 (fg) < 5 |0

Hzl/Qg/

la,b],2

/

g
exp

(216)  |Conp (fr0)| < 5 (M =) (expb — expa)

[a,b],00
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where

(217) Cexp (f, g) = m/ f eXp tdt

1 1 b
- t tdt—— t tdt
epr—expa/a F(#) exp epr—expa/a g () exptdt,
and provided that f is Lebesgue integrable and satisfies the condition m <f@)y<™m
for ¢ € [a,b] and ¢ : [a,b] — R is absolutely continuous on [a, b] and 9 Lo [a,b].
b]

cxp
If f, g:[a,b] — R are absolutely continuous on [a,b] and - € Ly [a,

then by (2.7) we have

exp ? exp

/

g
exp

f/

exp

(expb — expa)®.
la,b],00

1
218 [Con(f9)l <35

la,b],00

Also, if f, g : [a,b] — R are absolutely continuous on [a,b] and
Lo [a,b], then we have by (2.10) that

1/2 €

ox p1/2 ’ exp

L f g
2.19 Cexp (f,9)] < = —_— expb—expa).
( ) | p ( )| 772 eXp1/2 fa.b],2 eXp1/2 (a.8],2 ( )

c). If we take h : [a,b] C (0,00) — R, h(t) =¢", r > 0 in (2.2), then we get
1 -Tr
(220) |CTZT 1 (f, )| 87 (br - ar) (M - m) ||£1 g/”[a,b],oo ;
where
r b 1

221) Cos (f9) = 5o [ FO)g ¢ e

r b 1 r b 1
- — t)t" N dt )" dt
e [ttt [gw e

and provided that f is Lebesgue integrable and satisfies the condition m < f (t) < M
for t € [a,b] and g : [a,b] — R is absolutely continuous on [a,b] and ('7"¢' €
Lo [a,b].

If f, g: la,b] — R are absolutely continuous on [a,b] and (=" f" (1="¢' €
L [a,b], then by (2.7) we have

(2.22) |Chopr—1 (f,9) 1877 F o0 19779 g by (b —a")?.

- 12 |
Also, if f, g : [a,b] — R are absolutely continuous on [a,b] and =" 1, él_TTg’ €
Ly [a,b], then we have by (2.10) that

1—7r

{2 g

/

(223) |Or27‘*1 (f7 g) = (br - ar) .

[a,b],2

[a,b],2 ‘

3. APPLICATIONS FOR PROBABILITY DENSITY FUNCTIONS

The above result can be extended for infinite intervals I by assuming that the
function f : I — C is locally absolutely continuous on I.

For instance, if I = [a,00), w (s) > 0 for s € [a,00) with [ w (s) ds = 1, namely
w is a probability density function on [a, ), f is Lebesgue measurable and satisfies



8 S.S. DRAGOMIR

the condition m < f (t) < M for ¢ € [a,00) and ¢ : [a,00) — R is locally absolutely
continuous on [a,c0) with £ € L [a,00), then

e |[Twormama- [Tuwroa [ wos0a
1 q'
= g (M - m) ‘ E la,00),00
Moreover, if ’% € Ly [a,0) then also
(3.2) / w(t) f (t) g () di — / wt)fdt [ wtyg(t) dt\
AT
12w [a,00),00 la,00),00
If w’f—;z, wgl—//z € Ly [a,), then we have
(3.3) / w(t) f (t) g (t) di — / w(t) f (1) de / w(t)g(t) dt\
A g
- 7T2 w1/2 la,00),2 ’LUl/2 la,00),2

In probability theory and statistics, the beta prime distribution (also known as
inverted beta distribution or beta distribution of the second kind) is an absolutely
continuous probability distribution defined for x > 0 with two parameters « and
B, having the probability density function:

o (14 x)_a_’g
B (e, B)

Wa g () 1=
where B is Beta function
1
B(a, ) ;:/ 1=, o, B>0.
0
The cumulative distribution function is

Waﬁ (ZE):I = (0576)7

14z

where I is the regularized incomplete beta function defined by

I (a,8) == W.

Here B (+; , 8) is the incomplete beta function defined by

B(z;a,0) := /zto‘_l (1—t)571, a, B, 2> 0.

0
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Therefore, by (3.1)-(3.3) we have for ¢ (t) = ¢, that
(3.4) )B (a, B) /0 T 1+ f@t)gt)dt
- /Oota—l 1+t P 1) dt/oot"“l 1+t Pg@) dt’
0

0
1

< g —m) B (. 9)|

/gl—oz 1_|_£ a+ﬁH
g (1+20) 000

provided m < f (t) < M for t € [0,00) and ¢'¢'=* (14 £)*F € L [0,00),
(3.5) 'B / T A4+ @) g () dt
[T e [Tet o g g0 a

0 0

< LB (0,0 e e

g/ﬁlfa (1 +€)a+6H

[0,00),00 ‘ [0,00),00

provided f/02= (1+ )™ g0t~ (140" € Ly [0,00) and
36 [Bas) [ e a0 o0
0
f/oozt“*1 (L+8)" P f(t) dt/oot‘kl 1+ Pg(t)dt
0

0

(1+£) U (1+£)

§1—12B (a B)ﬂ

[0,00),2 ‘ [0,00),2

provided f/¢* =% (1+ E) g (14 E) ® e L2 [0,00).

Similar results may be stated for the probability distributions that are supported
on the whole axis R = (—o00,00). Namely, if I = (—o0,0), f : R — C is locally
absolutely continuous on R and w (s) > 0 for s € R with [ w (s) ds = 1, namely
w is a probability density function on (—oo,0), f is Lebesgue measurable and
satisfies the condition m < f(t) < M for t € (—00,00) and ¢ : (—00,00) — R is
locally absolutely continuous on (—o0, c0) with % € Lo (—00,00), then

@n}/mwwfwgww—/mwwfmﬁ/mwmg@ﬁ

/
< g0r-m|
w
(—00,00),00
Moreover, if {T: € Loo (—00,00) then also
(3.8) '/ ()dtf/ w(t)f(t)dt/ w(t)g(t)dt'
! /
Sl‘f ‘9
12 Jlw (—00,00), w (—00,00),00
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If w{il/2a wgil/2 € Ly (—00,00), then we have

39 |[ woswewa- [ w(t)f(t)dt/oo w(vg(0dl

— 00 — 00 — 00
f/

wi/2

/

g

= 71'2 wl/2

(—00,00),2 (—00,00),2

In what follows we give an example.
The probability density of the normal distribution on (—oo,00) is

1 T— [ 2
’wmg2 (.’L‘) = ﬁ exp <_(20-2)> , T c R,

where 1 is the mean or expectation of the distribution (and also its median and
mode), o is the standard deviation, and o? is the variance.
The cumulative distribution function is

1 1 T— U
WW,z(gc):2-1—Qerf(0\/§>7

where the error function erf is defined by

/
f
EE:E?:}(?))(EE) c lave

(3.10) \/ﬂa/jo exp ((t’;) )f(t)g(t) dt
[ ew (—(t;oﬁ) )f(t)dt/O;eXp (—“;Ué‘) )g(t)dt
(M )( M) g'exp <(€2_g§) )

provided m < f (t) < M for t € (—o0,0) and ¢’ exp(((Z “))GL (—00,00).

OO\»—~

(—00,00),00

Moreover, if f’exp (( ”) ) € Ly, (—00,00) then also

) (t)g(t)dt
-[ exp< 0 s wyar [ exp<—“;a’;‘> >g<t>dt

e ((6 — 1 ) S exp ((f — 1 )

(3.11) ‘WU exp(
(t—

(—00,00),00 (—00,00),00
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If f/exp ((Z_”)2> , g’ exp ((g_“)2> € Ly (—00,00), then we have

202 202

(3.12) ‘\/ﬂo—/m exp —% Ft) g () dt

(1]

[16]
[17]
18]

[19]

[20]

—/Ooexp —@ f(t)dt/ooexp —% g (t)dt

oo 20 oo 2
L, (€ - p)? / (€ - p)?
= T2 Jrexp 202 g exp 202
(—00,00),2 (—00,00),2
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