REVERSES OF JENSEN'S INTEGRAL INEQUALITY VIA A WEIGHTED OSTROWSKI TYPE RESULT WITH APPLICATIONS FOR COMPOSITE CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

In this paper we obtain some reverses of Jensen's integral inequality by employing a new weighted integral inequality of Ostrowski type. Applications for general composite convex functions with examples for $A G, G A$ convex functions and $H A, A H$-convex function are also given.

1. Introduction

Let $(\Omega, \mathcal{A}, \mu)$ be a measurable space consisting of a set Ω, a σ-algebra \mathcal{A} of parts of Ω and a countably additive and positive measure μ on \mathcal{A} with values in $\mathbb{R} \cup\{\infty\}$. For a μ-measurable function $w: \Omega \rightarrow \mathbb{R}$, with $w(x) \geq 0$ for μ-a.e. (almost every) $x \in \Omega$, consider the Lebesgue space

$$
L_{w}(\Omega, \mu):=\left\{f: \Omega \rightarrow \mathbb{R}, f \text { is } \mu \text {-measurable and } \int_{\Omega} w(x)|f(x)| d \mu(x)<\infty\right\}
$$

For simplicity of notation we write everywhere in the sequel $\int_{\Omega} w d \mu$ instead of $\int_{\Omega} w(x) d \mu(x)$.

In order to provide a reverse of the celebrated Jensen's integral inequality for convex functions, S. S. Dragomir obtained in 2002 [4] the following result:

Theorem 1. Let $\Phi:[m, M] \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable convex function on (m, M) and $f: \Omega \rightarrow[m, M]$ so that $\Phi \circ f, f, \Phi^{\prime} \circ f,\left(\Phi^{\prime} \circ f\right) f \in L_{w}(\Omega, \mu)$, where $w \geq 0$ μ-a.e. (almost everywhere) on Ω with $\int_{\Omega} w d \mu=1$. Then we have the inequality:

$$
\begin{align*}
0 & \leq \int_{\Omega} w(\Phi \circ f) d \mu-\Phi\left(\int_{\Omega} w f d \mu\right) \tag{1.1}\\
& \leq \int_{\Omega} w\left(\Phi^{\prime} \circ f\right) f d \mu-\int_{\Omega} w\left(\Phi^{\prime} \circ f\right) d \mu \int_{\Omega} w f d \mu
\end{align*}
$$

Let $\Phi:[m, M] \rightarrow \mathbb{R}$ be a differentiable convex function on (m, M). If $x_{i} \in[m, M]$ and $w_{i} \geq 0 \quad(i=1, \ldots, n)$ with $W_{n}:=\sum_{i=1}^{n} w_{i}=1$, then one has the reverse of

[^0]Jensen's weighted discrete inequality:

$$
\begin{align*}
0 & \leq \sum_{i=1}^{n} w_{i} \Phi\left(x_{i}\right)-\Phi\left(\sum_{i=1}^{n} w_{i} x_{i}\right) \tag{1.2}\\
& \leq \sum_{i=1}^{n} w_{i} \Phi^{\prime}\left(x_{i}\right) x_{i}-\sum_{i=1}^{n} w_{i} \Phi^{\prime}\left(x_{i}\right) \sum_{i=1}^{n} w_{i} x_{i}
\end{align*}
$$

The inequality (1.2) was obtained in 1994 by Dragomir \& Ionescu, see [17].
If $h, g: \Omega \rightarrow \mathbb{R}$ are μ-measurable functions and $h, g, h g \in L_{w}(\Omega, \mu)$, then we may consider the Čebyšev functional

$$
\begin{equation*}
T_{w}(h, g):=\int_{\Omega} w h g d \mu-\int_{\Omega} w h d \mu \int_{\Omega} w g d \mu \tag{1.3}
\end{equation*}
$$

The following result is known in the literature as the Grüss inequality

$$
\begin{equation*}
\left|T_{w}(h, g)\right| \leq \frac{1}{4}(\Gamma-\gamma)(\Delta-\delta) \tag{1.4}
\end{equation*}
$$

provided

$$
\begin{equation*}
-\infty<\gamma \leq h(x) \leq \Gamma<\infty, \quad-\infty<\delta \leq g(x) \leq \Delta<\infty \tag{1.5}
\end{equation*}
$$

for μ-a.e. $x \in \Omega$. The constant $\frac{1}{4}$ is sharp in the sense that it cannot be replaced by a smaller quantity.

With the above assumptions, if $h \in L_{w, 2}(\Omega, \mu)$ then we may define

$$
\begin{equation*}
D_{w}(h):=D_{w, 1}(h):=\int_{\Omega} w\left|h-\int_{\Omega} w h d \mu\right| d \mu \tag{1.6}
\end{equation*}
$$

and

$$
D_{w, 2}(h):=\left[\int_{\Omega} w h^{2} d \mu-\left(\int_{\Omega} w h d \mu\right)^{2}\right]^{\frac{1}{2}}
$$

In 2002, Cerone \& Dragomir [3] obtained the following refinement of the Grüss inequality (1.4):

Theorem 2. Let $w, h, g: \Omega \rightarrow \mathbb{R}$ be μ-measurable functions with $w \geq 0 \mu$-a.e. (almost everywhere) on Ω and $\int_{\Omega} w d \mu=1$. If $h, g, h g \in L_{w}(\Omega, \mu)$ and there exists the constants δ, Δ such that the condition (1.5) holds,

$$
\begin{equation*}
\left|T_{w}(h, g)\right| \leq \frac{1}{2}(\Delta-\delta) D_{w}(h) \leq \frac{1}{2}(\Delta-\delta) D_{w, 2}(h) \tag{1.7}
\end{equation*}
$$

The constant $\frac{1}{2}$ is sharp in the sense that it cannot be replaced by a smaller quantity.
Moreover, if h satisfies the condition (1.5), then

$$
\begin{equation*}
\left|T_{w}(h, g)\right| \leq \frac{1}{2}(\Delta-\delta) D_{w}(h) \leq \frac{1}{2}(\Delta-\delta) D_{w, 2}(h) \leq \frac{1}{4}(\Gamma-\gamma)(\Delta-\delta) \tag{1.8}
\end{equation*}
$$

On making use of Theorems 1 and 2 we can state the following result providing a sequence of bounds for the Jensen's gap, see also [4]:

Theorem 3. Let $\Phi:[m, M] \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable convex function on (m, M) and $f: \Omega \rightarrow[m, M]$ so that $\Phi \circ f, f, \Phi^{\prime} \circ f,\left(\Phi^{\prime} \circ f\right) f \in L_{w}(\Omega, \mu)$, where $w \geq 0$
μ-a.e. (almost everywhere) on Ω with $\int_{\Omega} w d \mu=1$. Then we have the sequence of inequalities:

$$
\begin{align*}
0 & \leq \int_{\Omega} w(\Phi \circ f) d \mu-\Phi\left(\int_{\Omega} w f d \mu\right) \tag{1.9}\\
& \leq \int_{\Omega} w\left(\Phi^{\prime} \circ f\right) f d \mu-\int_{\Omega} w\left(\Phi^{\prime} \circ f\right) d \mu \int_{\Omega} w f d \mu \\
& \leq \frac{1}{2}\left\{\begin{array}{l}
{\left[\Phi_{-}^{\prime}(M)-\Phi_{+}^{\prime}(m)\right] \int_{\Omega} w\left|f-\int_{\Omega} w f d \mu\right| d \mu} \\
(M-m) \int_{\Omega} w\left|\Phi^{\prime} \circ f-\int_{\Omega} w\left(\Phi^{\prime} \circ f\right) d \mu\right| d \mu
\end{array}\right. \\
& \leq \frac{1}{2}\left\{\begin{array}{l}
{\left[\Phi_{-}^{\prime}(M)-\Phi_{+}^{\prime}(m)\right]\left[\int_{\Omega} w f^{2} d \mu-\left(\int_{\Omega} w f d \mu\right)^{2}\right]^{\frac{1}{2}}} \\
(M-m)\left[\int_{\Omega} w\left(\Phi^{\prime} \circ f\right)^{2} d \mu-\left(\int_{\Omega} w\left(\Phi^{\prime} \circ f\right) d \mu\right)^{2}\right]^{\frac{1}{2}}
\end{array}\right. \\
& \leq \frac{1}{4}(M-m)\left[\Phi_{-}^{\prime}(M)-\Phi_{+}^{\prime}(m)\right] .
\end{align*}
$$

For other similar reverses of Jensen's integral inequality in the general setting of Lebesgue integral on measurable spaces, see [6]-[8].

If $\Omega=I$ is a finite or infinite interval of real numbers, $w \geq 0$ a.e. on I with $\int_{I} w(t) d t=1, \Phi:[m, M] \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable convex function on (m, M) and $f: I \rightarrow[m, M]$ so that $\Phi \circ f, f, \Phi^{\prime} \circ f,\left(\Phi^{\prime} \circ f\right) f \in L_{w}(I)$, then we have the inequalities

$$
\begin{align*}
0 & \leq \int_{I} w(t)(\Phi \circ f)(t) d t-\Phi\left(\int_{I} w(t) f(t) d t\right) \tag{1.10}\\
& \leq \int_{I} w(t)\left(\Phi^{\prime} \circ f\right)(t) f(t) d t-\int_{I} w(t)\left(\Phi^{\prime} \circ f\right)(t) d t \int_{I} w(t) f(t) d t \\
& \leq \frac{1}{2}\left\{\begin{array}{l}
{\left[\Phi_{-}^{\prime}(M)-\Phi_{+}^{\prime}(m)\right] \int_{I} w(t)\left|f(t)-\int_{I} w(s) f(s) d s\right| d t} \\
(M-m) \int_{I} w(t)\left|\left(\Phi^{\prime} \circ f\right)(t)-\int_{I} w(s)\left(\Phi^{\prime} \circ f\right)(s) d s\right| d t
\end{array}\right. \\
& \leq \frac{1}{2}\left\{\begin{array}{l}
{\left[\Phi_{-}^{\prime}(M)-\Phi_{+}^{\prime}(m)\right]\left[\int_{I} w(t) f^{2}(t) d t-\left(\int_{I} w(t) f(t) d t\right)^{2}\right]^{\frac{1}{2}}} \\
(M-m)\left[\int_{I} w(t)\left(\Phi^{\prime} \circ f\right)^{2}(t) d t-\left(\int_{I} w(t)\left(\Phi^{\prime} \circ f\right)(t) d t\right)^{2}\right]^{\frac{1}{2}}
\end{array}\right. \\
& \leq \frac{1}{4}(M-m)\left[\Phi_{-}^{\prime}(M)-\Phi_{+}^{\prime}(m)\right]
\end{align*}
$$

In probability theory and statistics, the beta prime distribution (also known as inverted beta distribution or beta distribution of the second kind) is an absolutely continuous probability distribution defined for $x>0$ with two parameters α and β, having the probability density function:

$$
w_{\alpha, \beta}(x):=\frac{x^{\alpha-1}(1+x)^{-\alpha-\beta}}{B(\alpha, \beta)}
$$

where B is Beta function

$$
B(\alpha, \beta):=\int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1}, \alpha, \beta>0
$$

The cumulative distribution function is

$$
W_{\alpha, \beta}(x)=I_{\frac{x}{1+x}}(\alpha, \beta),
$$

where I is the regularized incomplete beta function defined by

$$
I_{z}(\alpha, \beta):=\frac{B(z ; \alpha, \beta)}{B(\alpha, \beta)}
$$

Here $B(\cdot ; \alpha, \beta)$ is the incomplete beta function defined by

$$
B(z ; \alpha, \beta):=\int_{0}^{z} t^{\alpha-1}(1-t)^{\beta-1}, \alpha, \beta, z>0
$$

If we take $I=(0, \infty)$ and $w=w_{\alpha, \beta}(x)$ and assume that $\Phi:[m, M] \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable convex function on (m, M) and $f:(0, \infty) \rightarrow[m, M]$ so that $\Phi \circ f, f, \Phi^{\prime} \circ f,\left(\Phi^{\prime} \circ f\right) f \in L_{w_{\alpha, \beta}}(0, \infty)$, then (1.10) holds for the infinite interval $I=(0, \infty)$ and for the probability distribution $w=w_{\alpha, \beta}(x)$.

The probability density of the normal distribution on $(-\infty, \infty)$ is

$$
w_{\mu, \sigma^{2}}(x):=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right), x \in \mathbb{R}
$$

where μ is the mean or expectation of the distribution (and also its median and mode), σ is the standard deviation, and σ^{2} is the variance.

The cumulative distribution function is

$$
W_{\mu, \sigma^{2}}(x)=\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{x-\mu}{\sigma \sqrt{2}}\right)
$$

where the error function erf is defined by

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp \left(-t^{2}\right) d t
$$

If we take $I=(-\infty, \infty)$ and $w=w_{\mu, \sigma^{2}}(x)$ and assume that $\Phi:[m, M] \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable convex function on (m, M) and $f:(-\infty, \infty) \rightarrow[m, M]$ so that $\Phi \circ f, f, \Phi^{\prime} \circ f,\left(\Phi^{\prime} \circ f\right) f \in L_{w_{\mu, \sigma^{2}}}(-\infty, \infty)$, then (1.10) holds for the infinite interval $I=(-\infty, \infty)$ and for the probability distribution $w=w_{\mu, \sigma^{2}}$.

Motivated by the above results, in this paper we obtain some reverses of Jensen's integral inequality by employing a new weighted integral inequality of Ostrowski type. Applications for general composite convex functions with examples for $A G$, $G A$-convex functions and $H A, A H$-convex function are also given.

2. Reverses of Jensen's Inequality Via Ostrowski's Result

For two Lebesgue integrable functions $f, g:[a, b] \rightarrow \mathbb{R}$, consider the Čebyšev functional:

$$
\begin{equation*}
C(f, g):=\frac{1}{b-a} \int_{a}^{b} f(t) g(t) d t-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(t) d t \int_{a}^{b} g(t) d t \tag{2.1}
\end{equation*}
$$

In 1935, Grüss [19] showed that

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{4}(M-m)(N-n) \tag{2.2}
\end{equation*}
$$

provided that there exists the real numbers m, M, n, N such that

$$
\begin{equation*}
m \leq f(t) \leq M \quad \text { and } \quad n \leq g(t) \leq N \quad \text { for a.e. } t \in[a, b] \tag{2.3}
\end{equation*}
$$

The constant $\frac{1}{4}$ is best possible in (2.1) in the sense that it cannot be replaced by a smaller quantity.

The following inequality was obtained by Ostrowski in 1970, [24]:

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{8}(b-a)(M-m)\left\|g^{\prime}\right\|_{\infty} \tag{2.4}
\end{equation*}
$$

provided that f is Lebesgue integrable and satisfies (2.3) while g is absolutely continuous and $g^{\prime} \in L_{\infty}[a, b]$. The constant $\frac{1}{8}$ is best possible in (2.4).

Consider now the weighted Čebyšev functional

$$
\begin{align*}
C_{w}(f, g):= & \frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t) f(t) g(t) d t \tag{2.5}\\
& \quad-\frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t) f(t) d t \frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t) g(t) d t
\end{align*}
$$

where $f, g, w:[a, b] \rightarrow \mathbb{R}$ and $w(t) \geq 0$ for a.e. $t \in[a, b]$ are measurable functions such that the involved integrals exist and $\int_{a}^{b} w(t) d t>0$.

We can also define, as above,

$$
\begin{align*}
C_{h^{\prime}}(f, g):= & \frac{1}{h(b)-h(a)} \int_{a}^{b} f(t) g(t) h^{\prime}(t) d t \tag{2.6}\\
& -\frac{1}{h(b)-h(a)} \int_{a}^{b} f(t) h^{\prime}(t) d t \frac{1}{h(b)-h(a)} \int_{a}^{b} g(t) h^{\prime}(t) d t
\end{align*}
$$

where h is absolutely continuous and f, g are Lebesgue measurable on $[a, b]$ and such that the above integrals exist.

The following weighted version of Ostrowski's inequality holds:
Lemma 1. Let $h:[a, b] \rightarrow[h(a), h(b)]$ be a continuous strictly increasing function that is differentiable on (a, b). If f is Lebesgue integrable and satisfies the condition $m \leq f(t) \leq M$ for $t \in[a, b]$ and $g:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous on $[a, b]$ and $\frac{g^{\prime}}{h^{\prime}}$ is essentially bounded, namely $\frac{g^{\prime}}{h^{\prime}} \in L_{\infty}[a, b]$, then we have

$$
\begin{equation*}
\left|C_{h^{\prime}}(f, g)\right| \leq \frac{1}{8}[h(b)-h(a)](M-m)\left\|\frac{g^{\prime}}{h^{\prime}}\right\|_{[a, b], \infty} \tag{2.7}
\end{equation*}
$$

The constant $\frac{1}{8}$ is best possible.
Proof. Assume that $[c, d] \subset[a, b]$. If $g:[c, d] \rightarrow \mathbb{C}$ is absolutely continuous on $[c, d]$, then $g \circ h^{-1}:[h(c), h(d)] \rightarrow \mathbb{C}$ is absolutely continuous on $[h(c), h(d)]$ and using the chain rule and the derivative of inverse functions we have

$$
\begin{equation*}
\left(g \circ h^{-1}\right)^{\prime}(z)=\left(g^{\prime} \circ h^{-1}\right)(z)\left(h^{-1}\right)^{\prime}(z)=\frac{\left(g^{\prime} \circ h^{-1}\right)(z)}{\left(h^{\prime} \circ h^{-1}\right)(z)} \tag{2.8}
\end{equation*}
$$

for almost every (a.e.) $z \in[h(c), h(d)]$.
If $x \in[c, d]$, then by taking $z=h(x)$, we get

$$
\left(g \circ h^{-1}\right)^{\prime}(z)=\frac{\left(g^{\prime} \circ h^{-1}\right)(h(x))}{\left(h^{\prime} \circ h^{-1}\right)(h(x))}=\frac{g^{\prime}(x)}{h^{\prime}(x)} .
$$

Therefore, since $\frac{g^{\prime}}{h^{\prime}} \in L_{\infty}[c, d]$, hence $\left(g \circ h^{-1}\right)^{\prime} \in L_{\infty}[h(c), h(d)]$. Also

$$
\left\|\left(g \circ h^{-1}\right)^{\prime}\right\|_{[h(c), h(d)], \infty}=\left\|\frac{g^{\prime}}{h^{\prime}}\right\|_{[c, d], \infty}
$$

Now, if we use the Ostrowski's inequality (2.4) for the functions $f \circ h^{-1}$ and $g \circ h^{-1}$ on the interval $[h(a), h(b)]$, then we get

$$
\begin{align*}
& \left\lvert\, \frac{1}{h(b)-h(a)} \int_{h(a)}^{h(b)} f \circ h^{-1}(u) g \circ h^{-1}(u) d u\right. \tag{2.9}\\
& \left.-\frac{1}{[h(b)-h(a)]^{2}} \int_{h(a)}^{h(b)} f \circ h^{-1}(u) d u \int_{h(a)}^{h(b)} g \circ h^{-1}(u) d u \right\rvert\, \\
& \quad \leq \frac{1}{8}[h(b)-h(a)](M-m)\left\|\left(g \circ h^{-1}\right)^{\prime}\right\|_{[h(a), h(b)], \infty}
\end{align*}
$$

since $m \leq f \circ h^{-1}(u) \leq M$ for all $u \in[h(a), h(b)]$.
Observe also that, by the change of variable $t=h^{-1}(u), u \in[g(a), g(b)]$, we have $u=h(t)$ that gives $d u=h^{\prime}(t) d t$ and

$$
\begin{aligned}
\int_{h(a)}^{h(b)}\left(f \circ h^{-1}\right)(u) d u & =\int_{a}^{b} f(t) h^{\prime}(t) d t \\
\int_{h(a)}^{h(b)} g \circ h^{-1}(u) d u & =\int_{a}^{b} g(t) h^{\prime}(t) d t \\
\int_{h(a)}^{h(b)} f \circ h^{-1}(u) g \circ h^{-1}(u) d u & =\int_{a}^{b} f(t) g(t) h^{\prime}(t) d t
\end{aligned}
$$

and

$$
\left\|\left(g \circ h^{-1}\right)^{\prime}\right\|_{[h(a), h(b)], \infty}=\left\|\frac{g^{\prime}}{h^{\prime}}\right\|_{[a, b], \infty}
$$

By making use of (2.9) we then get the desired result (2.7).
The best constant follows by Ostrowski's inequality (2.4).
If $w:[a, b] \rightarrow \mathbb{R}$ is continuous and positive on the interval $[a, b]$, then the function $W:[a, b] \rightarrow[0, \infty), W(x):=\int_{a}^{x} w(s) d s$ is strictly increasing and differentiable on (a, b). We have $W^{\prime}(x)=w(x)$ for any $x \in(a, b)$.

Corollary 1. Assume that $w:[a, b] \rightarrow(0, \infty)$ is continuous on $[a, b], f$ is Lebesgue integrable and satisfies the condition $m \leq f(t) \leq M$ for $t \in[a, b]$ and $g:[a, b] \rightarrow$ \mathbb{R} is absolutely continuous on $[a, b]$ with $\frac{g^{\prime}}{w}$ is essentially bounded, namely $\frac{g^{\prime}}{w} \in$ $L_{\infty}[a, b]$, then we have

$$
\begin{equation*}
\left|C_{w}(f, g)\right| \leq \frac{1}{8}(M-m)\left\|\frac{g^{\prime}}{w}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s \tag{2.10}
\end{equation*}
$$

The constant $\frac{1}{8}$ is best possible.
Remark 1. Under the assumptions of Corollary 1 and if there exists a constant $K>0$ such that $\left|g^{\prime}(t)\right| \leq K w(t)$ for a.e. $t \in[a, b]$, then by (2.10) we get

$$
\begin{equation*}
\left|C_{w}(f, g)\right| \leq \frac{1}{8}(M-m) K \int_{a}^{b} w(s) d s \tag{2.11}
\end{equation*}
$$

We have the following reverse of Jensen's inequality:
Theorem 4. Let $\Phi:[m, M] \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable convex function on $(m, M), w:[a, b] \rightarrow(0, \infty)$ be continuous on $[a, b]$ and $f:[a, b] \rightarrow[m, M]$ is absolutely continuous so that $\Phi \circ f, f, \Phi^{\prime} \circ f,\left(\Phi^{\prime} \circ f\right) f \in L_{w}[a, b]$.
(i) If $\frac{f^{\prime}}{w} \in L_{\infty}[a, b]$, then we have the inequality

$$
\begin{align*}
0 & \leq \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t)(\Phi \circ f)(t) d t-\Phi\left(\frac{\int_{a}^{b} w(t) f(t) d t}{\int_{a}^{b} w(s) d s}\right) \tag{2.12}\\
& \leq \frac{1}{8}\left[\Phi_{-}^{\prime}(M)-\Phi_{+}^{\prime}(m)\right]\left\|\frac{f^{\prime}}{w}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s
\end{align*}
$$

(ii) If Φ is twice differentiable on (m, M) and $\frac{\left(\Phi^{\prime \prime} \circ f\right) f^{\prime}}{w} \in L_{\infty}[a, b]$, then

$$
\begin{align*}
0 & \leq \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t)(\Phi \circ f)(t) d t-\Phi\left(\frac{\int_{a}^{b} w(t) f(t) d t}{\int_{a}^{b} w(s) d s}\right) \tag{2.13}\\
& \leq \frac{1}{8}(M-m)\left\|\frac{\left(\Phi^{\prime \prime} \circ f\right) f^{\prime}}{w}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s
\end{align*}
$$

Proof. (i) By (4.14) we have

$$
\begin{align*}
0 & \leq \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t)(\Phi \circ f)(t) d t-\Phi\left(\frac{\int_{a}^{b} w(t) f(t) d t}{\int_{a}^{b} w(s) d s}\right) \tag{2.14}\\
& \leq \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t)\left(\Phi^{\prime} \circ f\right)(t) f(t) d t \\
& -\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t)\left(\Phi^{\prime} \circ f\right)(t) d t \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t) f(t) d t
\end{align*}
$$

Since Φ is differentiable convex on (m, M), hence

$$
\Phi_{+}^{\prime}(m) \leq\left(\Phi^{\prime} \circ f\right)(t) \leq \Phi_{-}^{\prime}(M)
$$

for $t \in[a, b]$.
If we use the inequality (2.10), then we get

$$
\begin{aligned}
& \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t)(\Phi \circ f)(t) f(t) d t \\
& -\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t)\left(\Phi^{\prime} \circ f\right)(t) d t \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t) f(t) d t \\
& \leq \frac{1}{8}\left[\Phi_{-}^{\prime}(M)-\Phi_{+}^{\prime}(m)\right]\left\|\frac{f^{\prime}}{w}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s
\end{aligned}
$$

which, together with (2.14), proves the required inequality (2.12).
(ii) If Φ is twice differentiable on (a, b), then

$$
\left(\Phi^{\prime} \circ f\right)^{\prime}(t)=\left(\Phi^{\prime \prime} \circ f\right)(t) f^{\prime}(t)
$$

for $t \in(a, b)$.

Since $m \leq f(t) \leq M$ for $t \in[a, b]$ and

$$
\frac{\left(\Phi^{\prime \prime} \circ f\right) f^{\prime}}{w} \in L_{\infty}[a, b]
$$

then by using the inequality (2.10) we also have

$$
\begin{aligned}
& \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t)(\Phi \circ f)(t) f(t) d t \\
& -\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t)\left(\Phi^{\prime} \circ f\right)(t) d t \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t) f(t) d t \\
& \leq \frac{1}{8}(M-m)\left\|\frac{\left(\Phi^{\prime \prime} \circ f\right) f^{\prime}}{w}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s
\end{aligned}
$$

which, together with (2.14), proves (2.13).
Corollary 2. Let $\Phi:[m, M] \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable convex function on (m, M) and $f:[a, b] \rightarrow[m, M]$ be absolutely continuous so that $\Phi \circ f, f, \Phi^{\prime} \circ$ $f,\left(\Phi^{\prime} \circ f\right) f \in L[a, b]$.
(i) If $f^{\prime} \in L_{\infty}[a, b]$, then we have the inequality

$$
\begin{align*}
0 & \leq \frac{1}{b-a} \int_{a}^{b}(\Phi \circ f)(t) d t-\Phi\left(\frac{1}{b-a} \int_{a}^{b} f(t) d t\right) \tag{2.15}\\
& \leq \frac{1}{8}(b-a)\left[\Phi_{-}^{\prime}(M)-\Phi_{+}^{\prime}(m)\right]\left\|f^{\prime}\right\|_{[a, b], \infty}
\end{align*}
$$

(ii) If Φ is twice differentiable on (m, M) and $\left(\Phi^{\prime \prime} \circ f\right) f^{\prime} \in L_{\infty}[a, b]$, then

$$
\begin{align*}
0 & \leq \frac{1}{b-a} \int_{a}^{b}(\Phi \circ f)(t) d t-\Phi\left(\frac{1}{b-a} \int_{a}^{b} f(t) d t\right) \tag{2.16}\\
& \leq \frac{1}{8}(b-a)(M-m)\left\|\left(\Phi^{\prime \prime} \circ f\right) f^{\prime}\right\|_{[a, b], \infty}
\end{align*}
$$

Corollary 3. Let $\Phi:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable convex function on (a, b), $w:[a, b] \rightarrow(0, \infty)$ be continuous on $[a, b]$ and $\Phi, \Phi^{\prime} \in L_{w}[a, b]$.
(i) If $\frac{1}{w} \in L_{\infty}[a, b]$, then we have the inequality

$$
\begin{align*}
0 & \leq \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t) \Phi(t) d t-\Phi\left(\frac{\int_{a}^{b} t w(t) d t}{\int_{a}^{b} w(s) d s}\right) \tag{2.17}\\
& \leq \frac{1}{8}\left[\Phi_{-}^{\prime}(b)-\Phi_{+}^{\prime}(a)\right]\left\|\frac{1}{w}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s
\end{align*}
$$

(ii) If $f \Phi$ is twice differentiable on (m, M) and $\frac{\Phi^{\prime \prime}}{w} \in L_{\infty}[a, b]$, then

$$
\begin{align*}
0 & \leq \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t) \Phi(t) d t-\Phi\left(\frac{\int_{a}^{b} t w(t) d t}{\int_{a}^{b} w(s) d s}\right) \tag{2.18}\\
& \leq \frac{1}{8}(b-a)\left\|\frac{\Phi^{\prime \prime}}{w}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s
\end{align*}
$$

We observe that, if either in Corollary 2 or 3 we take the weight $w \equiv 1$, then we get the known result

$$
\begin{equation*}
0 \leq \frac{1}{b-a} \int_{a}^{b} \Phi(t) d t-\Phi\left(\frac{a+b}{2}\right) \leq \frac{1}{8}(b-a)\left[\Phi_{-}^{\prime}(b)-\Phi_{+}^{\prime}(a)\right] \tag{2.19}
\end{equation*}
$$

with $\frac{1}{8}$ as the best possible constant.
Define the function $\ell(t):=t, t \in \mathbb{R}$.
a). Let $\Phi:[m, M] \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable convex function on (m, M) and $f:[a, b] \subset(0, \infty) \rightarrow[m, M]$ be absolutely continuous and so that $\Phi \circ f, f$, $\Phi^{\prime} \circ f,\left(\Phi^{\prime} \circ f\right) f \in L_{\ell^{-1}}[a, b]$. If $f^{\prime} \ell \in L_{\infty}[a, b]$, then by the statement (i) of Theorem 4 we have the inequality

$$
\begin{align*}
0 & \leq \frac{1}{\ln \left(\frac{b}{a}\right)} \int_{a}^{b} \frac{(\Phi \circ f)(t)}{t} d t-\Phi\left(\frac{\int_{a}^{b} \frac{f(t)}{t} d t}{\ln \left(\frac{b}{a}\right)}\right) \tag{2.20}\\
& \leq \frac{1}{8}\left[\Phi_{-}^{\prime}(M)-\Phi_{+}^{\prime}(m)\right] \ln \left(\frac{b}{a}\right)\left\|\ell f^{\prime}\right\|_{[a, b], \infty}
\end{align*}
$$

If Φ is twice differentiable on (m, M) and $\left(\Phi^{\prime \prime} \circ f\right) f^{\prime} \ell \in L_{\infty}[a, b]$, then by the statement (ii) of Theorem 4 we have the inequality

$$
\begin{align*}
0 & \leq \frac{1}{\ln \left(\frac{b}{a}\right)} \int_{a}^{b} \frac{(\Phi \circ f)(t)}{t} d t-\Phi\left(\frac{\int_{a}^{b} \frac{f(t)}{t} d t}{\ln \left(\frac{b}{a}\right)}\right) \tag{2.21}\\
& \leq \frac{1}{8}(M-m)\left\|\left(\Phi^{\prime \prime} \circ f\right) f^{\prime} \ell\right\|_{[a, b], \infty} \ln \left(\frac{b}{a}\right)
\end{align*}
$$

b). Let $\Phi:[m, M] \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable convex function on (m, M) and $f:[a, b] \rightarrow[m, M]$ be absolutely continuous and so that $\Phi \circ f, f, \Phi^{\prime} \circ f,\left(\Phi^{\prime} \circ f\right) f \in$ $L_{\exp }[a, b]$. If $\frac{f^{\prime}}{\exp } \in L_{\infty}[a, b]$, then by the statement (i) of Theorem 4 we have the inequality

$$
\begin{align*}
0 & \leq \frac{1}{\exp b-\exp a} \int_{a}^{b}(\Phi \circ f)(t) \exp t d t-\Phi\left(\frac{\int_{a}^{b} f(t) \exp t d t}{\exp b-\exp a}\right) \tag{2.22}\\
& \leq \frac{1}{8}\left[\Phi_{-}^{\prime}(M)-\Phi_{+}^{\prime}(m)\right]\left\|\frac{f^{\prime}}{\exp }\right\|_{[a, b], \infty}(\exp b-\exp a)
\end{align*}
$$

If Φ is twice differentiable on (m, M) and $\frac{\left(\Phi^{\prime \prime} \circ f\right) f^{\prime}}{\exp } \in L_{\infty}[a, b]$, then by the statement (ii) of Theorem 4 we have the inequality

$$
\begin{align*}
0 & \leq \frac{1}{\exp b-\exp a} \int_{a}^{b}(\Phi \circ f)(t) \exp t d t-\Phi\left(\frac{\int_{a}^{b} f(t) \exp t d}{\exp b-\exp a} t\right) \tag{2.23}\\
& \leq \frac{1}{8}(M-m)\left\|\frac{\left(\Phi^{\prime \prime} \circ f\right) f^{\prime}}{\exp }\right\|_{[a, b], \infty}(\exp b-\exp a)
\end{align*}
$$

c). Consider the function $\ell^{p}(t):=t^{p}, t>0, p \in \mathbb{R} \backslash\{-1\}$. Let $\Phi:[m, M] \subset$ $\mathbb{R} \rightarrow \mathbb{R}$ be a differentiable convex function on (m, M) and $f:[a, b] \subset(0, \infty) \rightarrow$ $[m, M]$ be absolutely continuous and so that $\Phi \circ f, f, \Phi^{\prime} \circ f,\left(\Phi^{\prime} \circ f\right) f \in L_{\ell^{p}}[a, b]$.

If $f^{\prime} \ell^{-p} \in L_{\infty}[a, b]$, then by the statement (i) of Theorem 4 we have the inequality

$$
\begin{align*}
0 & \leq \frac{p+1}{b^{p+1}-a^{p+1}} \int_{a}^{b} t^{p}(\Phi \circ f)(t) d t-\Phi\left(\frac{(p+1) \int_{a}^{b} t^{p} f(t) d t}{b^{p+1}-a^{p+1}}\right) \tag{2.24}\\
& \leq \frac{1}{8(p+1)}\left[\Phi_{-}^{\prime}(M)-\Phi_{+}^{\prime}(m)\right]\left(b^{p+1}-a^{p+1}\right)\left\|f^{\prime} \ell^{-p}\right\|_{[a, b], \infty}
\end{align*}
$$

If Φ is twice differentiable on (m, M) and $\left(\Phi^{\prime \prime} \circ f\right) f^{\prime} \ell^{-p} \in L_{\infty}[a, b]$, then by the statement (ii) of Theorem 4 we have the inequality

$$
\begin{align*}
0 & \leq \frac{p+1}{b^{p+1}-a^{p+1}} \int_{a}^{b} t^{p}(\Phi \circ f)(t) d t-\Phi\left(\frac{(p+1) \int_{a}^{b} t^{p} f(t) d t}{b^{p+1}-a^{p+1}}\right) \tag{2.25}\\
& \leq \frac{1}{8(p+1)}(M-m)\left(b^{p+1}-a^{p+1}\right)\left\|\left(\Phi^{\prime \prime} \circ f\right) f^{\prime} \ell^{-p}\right\|_{[a, b], \infty}
\end{align*}
$$

For $p=-2$, we get from (2.24) that

$$
\begin{align*}
0 & \leq \frac{a b}{b-a} \int_{a}^{b} \frac{(\Phi \circ f)(t)}{t^{2}} d t-\Phi\left(\frac{a b}{b-a} \int_{a}^{b} \frac{f(t)}{t^{2}} d t\right) \tag{2.26}\\
& \leq \frac{1}{8}\left[\Phi_{-}^{\prime}(M)-\Phi_{+}^{\prime}(m)\right]\left(\frac{b-a}{a b}\right)\left\|f^{\prime} \ell^{2}\right\|_{[a, b], \infty}
\end{align*}
$$

provided $f^{\prime} \ell^{2} \in L_{\infty}[a, b]$, while from (2.25) we obtain

$$
\begin{align*}
0 & \leq \frac{a b}{b-a} \int_{a}^{b} \frac{(\Phi \circ f)(t)}{t^{2}} d t-\Phi\left(\frac{a b}{b-a} \int_{a}^{b} \frac{f(t)}{t^{2}} d t\right) \tag{2.27}\\
& \leq \frac{1}{8}(M-m)\left(\frac{b-a}{a b}\right)\left\|\left(\Phi^{\prime \prime} \circ f\right) f^{\prime} \ell^{2}\right\|_{[a, b], \infty}
\end{align*}
$$

provided $\left(\Phi^{\prime \prime} \circ f\right) f^{\prime} \ell^{2} \in L_{\infty}[a, b]$.

3. Inequalities for Composite Convexity

We have the following result for composite convexity:
Theorem 5. Let $\Psi:[m, M] \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function on (m, M), $\gamma:[m, M] \rightarrow[\gamma(m), \gamma(M)]$ a strictly increasing, continuous and differentiable function on $(m, M), w:[a, b] \rightarrow(0, \infty)$ a continuous function on $[a, b]$ and $g:$ $[a, b] \rightarrow[m, M]$ an absolutely continuous on $[a, b]$. Assume that $\Psi \circ \gamma^{-1}$ is convex on $[\gamma(m), \gamma(M)]$ and $\Psi \circ g, \gamma \circ g \in L_{w}[a, b]$.
(i) If $\frac{\left(\gamma^{\prime} \circ g\right) g^{\prime}}{w} \in L_{\infty}[a, b]$, then

$$
\begin{align*}
0 & \leq \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t)(\Psi \circ g)(t) d t-\Psi \circ \gamma^{-1}\left(\frac{\int_{a}^{b} w(t)(\gamma \circ g)(t) d t}{\int_{a}^{b} w(s) d s}\right) \tag{3.1}\\
& \leq \frac{1}{8}\left[\frac{\Psi_{-}^{\prime}(M)}{\gamma_{-}^{\prime}(M)}-\frac{\Psi_{+}^{\prime}(m)}{\gamma_{+}^{\prime}(m)}\right]\left\|\frac{\left(\gamma^{\prime} \circ g\right) g^{\prime}}{w}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s
\end{align*}
$$

(ii) If Ψ and γ are twice differentiable, define for $t \in[a, b]$,

$$
\Delta(\Psi, \gamma, g)(t):=\frac{\left(\Psi^{\prime \prime} \circ g\right)(t)\left(\gamma^{\prime} \circ g\right)(t)-\left(\Psi^{\prime} \circ g\right)(t)\left(\gamma^{\prime \prime} \circ g\right)(t)}{\left[\left(\gamma^{\prime} \circ g\right)(t)\right]^{2}}
$$

and assume that $\frac{\Delta(\Psi, \gamma, g)}{w} \in L_{\infty}[a, b]$, then

$$
\begin{align*}
0 & \leq \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t)(\Psi \circ g)(t) d t-\Psi \circ \gamma^{-1}\left(\frac{\int_{a}^{b} w(t)(\gamma \circ g)(t) d t}{\int_{a}^{b} w(s) d s}\right) \tag{3.2}\\
& \leq \frac{1}{8}[\gamma(M)-\gamma(m)]\left\|\frac{\Delta(\Psi, \gamma, g)}{w}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s
\end{align*}
$$

Proof. (i) If we write the inequality (2.12) for the convex function $\Phi=\Psi \circ \gamma^{-1}$ on $[\gamma(m), \gamma(M)]$ and for the function $f=\gamma \circ g$ on $[a, b]$, then we have

$$
\begin{align*}
& 0 \leq \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t)\left(\Psi \circ \gamma^{-1} \circ \gamma \circ g\right)(t) d t \tag{3.3}\\
& -\Psi \circ \gamma^{-1}\left(\frac{\int_{a}^{b} w(t)(\gamma \circ g)(t) d t}{\int_{a}^{b} w(s) d s}\right) \\
& \leq \frac{1}{8}\left[\left(\Psi \circ \gamma^{-1}\right)_{-}^{\prime}(\gamma(M))-\left(\Psi \circ \gamma^{-1}\right)_{+}^{\prime}(\gamma(m))\right]\left\|\frac{(\gamma \circ g)^{\prime}}{w}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s .
\end{align*}
$$

Using the chain rule and the derivative of inverse functions we have

$$
\begin{equation*}
\left(\Psi \circ \gamma^{-1}\right)^{\prime}(z)=\left(\Psi^{\prime} \circ \gamma^{-1}\right)(z)\left(\gamma^{-1}\right)^{\prime}(z)=\frac{\left(\Psi^{\prime} \circ \gamma^{-1}\right)(z)}{\left(\gamma^{\prime} \circ \gamma^{-1}\right)(z)} \tag{3.4}
\end{equation*}
$$

for every $z \in(\gamma(m), \gamma(M))$,

$$
\begin{equation*}
\left(\Psi \circ \gamma^{-1}\right)_{-}^{\prime}(\gamma(M))=\frac{\Psi_{-}^{\prime}(M)}{\gamma_{-}^{\prime}(M)} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\Psi \circ \gamma^{-1}\right)_{+}^{\prime}(m)=\frac{\Psi_{+}^{\prime}(m)}{\gamma_{+}^{\prime}(m)} \tag{3.6}
\end{equation*}
$$

Therefore by (3.3) we obtain the desired result (3.1).
(ii) If we write the inequality (2.13) for the function $\Phi=\Psi \circ \gamma^{-1}$ on $[\gamma(m), \gamma(M)]$ and the function $f=\gamma \circ g$ on $[a, b]$, then we have

$$
\begin{align*}
0 \leq & \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t)\left(\Psi \circ \gamma^{-1} \circ \gamma \circ g\right)(t) d t \tag{3.7}\\
& -\Psi \circ \gamma^{-1}\left(\frac{\int_{a}^{b} w(t)(\gamma \circ g)(t) d t}{\int_{a}^{b} w(s) d s}\right) \\
\leq & \frac{1}{8}[\gamma(M)-\gamma(m)]\left\|\frac{\left(\Psi \circ \gamma^{-1}\right)^{\prime \prime}((\gamma \circ g)) \cdot\left(\gamma^{\prime} \circ g\right)}{w}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s
\end{align*}
$$

We have by (3.4) that

$$
\begin{aligned}
\left(\Psi \circ \gamma^{-1}\right)^{\prime \prime}(z) & =\left(\frac{\left(\Psi^{\prime} \circ \gamma^{-1}\right)(z)}{\left(\gamma^{\prime} \circ \gamma^{-1}\right)(z)}\right)^{\prime} \\
& =\frac{\left(\Psi^{\prime} \circ \gamma^{-1}\right)^{\prime}(z)\left(\gamma^{\prime} \circ \gamma^{-1}\right)(z)-\left(\Psi^{\prime} \circ \gamma^{-1}\right)(z)\left(\gamma^{\prime} \circ \gamma^{-1}\right)^{\prime}(z)}{\left[\left(\gamma^{\prime} \circ \gamma^{-1}\right)(z)\right]^{2}} \\
& =\frac{\frac{\left(\Psi^{\prime \prime} \circ \gamma^{-1}\right)(z)}{\left(\gamma^{\prime} \circ \gamma^{-1}\right)(z)}\left(\gamma^{\prime} \circ \gamma^{-1}\right)(z)-\left(\Psi^{\prime} \circ \gamma^{-1}\right)(z) \frac{\left(\gamma^{\prime \prime} \circ \gamma^{-1}\right)(z)}{\left(\gamma^{\prime} \circ \gamma^{-1}\right)(z)}}{\left[\left(\gamma^{\prime} \circ \gamma^{-1}\right)(z)\right]^{2}} \\
& =\frac{\left(\Psi^{\prime \prime} \circ \gamma^{-1}\right)(z)\left(\gamma^{\prime} \circ \gamma^{-1}\right)(z)-\left(\Psi^{\prime} \circ \gamma^{-1}\right)(z)\left(\gamma^{\prime \prime} \circ \gamma^{-1}\right)(z)}{\left[\left(\gamma^{\prime} \circ \gamma^{-1}\right)(z)\right]^{3}}
\end{aligned}
$$

for every $z \in(\gamma(m), \gamma(M))$.
Therefore, for $f=\gamma \circ g$ we get

$$
\left(\Psi \circ \gamma^{-1}\right)^{\prime \prime}((\gamma \circ g)(t))=\frac{\left(\Psi^{\prime \prime} \circ g\right)(t)\left(\gamma^{\prime} \circ g\right)(t)-\left(\Psi^{\prime} \circ g\right)(t)\left(\gamma^{\prime \prime} \circ g\right)(t)}{\left[\left(\gamma^{\prime} \circ g\right)(t)\right]^{3}}
$$

and

$$
\begin{aligned}
& \left(\Psi \circ \gamma^{-1}\right)^{\prime \prime}((\gamma \circ g)(t))\left(\gamma^{\prime} \circ g\right)(t) \\
& =\frac{\left(\Psi^{\prime \prime} \circ g\right)(t)\left(\gamma^{\prime} \circ g\right)(t)-\left(\Psi^{\prime} \circ g\right)(t)\left(\gamma^{\prime \prime} \circ g\right)(t)}{\left[\left(\gamma^{\prime} \circ g\right)(t)\right]^{2}}=\Delta(\Psi, \gamma, g)(t)
\end{aligned}
$$

for any $t \in(a, b)$.
By employing the inequality (3.7) we then get the desired result (3.2).
Corollary 4. Let $\Psi:[m, M] \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function on (m, M), $\gamma:[m, M] \rightarrow[\gamma(m), \gamma(M)]$ a strictly increasing, continuous and differentiable function on (m, M), and $g:[a, b] \rightarrow[m, M]$ an absolutely continuous function on $[a, b]$. Assume that $\Psi \circ \gamma^{-1}$ is convex on $[\gamma(m), \gamma(M)]$ and $\Psi \circ g, \gamma \circ g \in L[a, b]$.
(i) If $\left(\gamma^{\prime} \circ g\right) g^{\prime} \in L_{\infty}[a, b]$, then

$$
\begin{align*}
0 & \leq \frac{1}{b-a} \int_{a}^{b}(\Psi \circ g)(t) d t-\Psi \circ \gamma^{-1}\left(\frac{1}{b-a} \int_{a}^{b}(\gamma \circ g)(t) d t\right) \tag{3.8}\\
& \leq \frac{1}{8}\left[\frac{\Psi_{-}^{\prime}(M)}{\gamma_{-}^{\prime}(M)}-\frac{\Psi_{+}^{\prime}(m)}{\gamma_{+}^{\prime}(m)}\right](b-a)\left\|\left(\gamma^{\prime} \circ g\right) g^{\prime}\right\|_{[a, b], \infty} .
\end{align*}
$$

(ii) If Ψ and γ are twice differentiable and $\Delta(\Psi, \gamma, g) \in L_{\infty}[a, b]$, then

$$
\begin{align*}
0 & \leq \frac{1}{b-a} \int_{a}^{b}(\Psi \circ g)(t) d t-\Psi \circ \gamma^{-1}\left(\frac{1}{b-a} \int_{a}^{b}(\gamma \circ g)(t) d t\right) \tag{3.9}\\
& \leq \frac{1}{8}[\gamma(M)-\gamma(m)](b-a)\|\Delta(\Psi, \gamma, g)\|_{[a, b], \infty}
\end{align*}
$$

We also have:
Corollary 5. Let $\Psi:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function on $(a, b), \gamma:$ $[a, b] \rightarrow[\gamma(a), \gamma(b)]$ a strictly increasing, continuous and differentiable function on (a, b), and $w:[a, b] \rightarrow(0, \infty)$ a continuous function on $[a, b]$. Assume that $\Psi \circ \gamma^{-1}$ is convex on $[\gamma(a), \gamma(b)]$ and $\Psi, \gamma \in L_{w}[a, b]$.
(i) If $\frac{\gamma^{\prime}}{w} \in L_{\infty}[a, b]$, then

$$
\begin{align*}
0 & \leq \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t) \Psi(t) d t-\Psi \circ \gamma^{-1}\left(\frac{\int_{a}^{b} w(t) \gamma(t) d t}{\int_{a}^{b} w(s) d s}\right) \tag{3.10}\\
& \leq \frac{1}{8}\left[\frac{\Psi_{-}^{\prime}(b)}{\gamma_{-}^{\prime}(b)}-\frac{\Psi_{+}^{\prime}(a)}{\gamma_{+}^{\prime}(a)}\right]\left\|\frac{\gamma^{\prime}}{w}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s
\end{align*}
$$

(ii) If Ψ and γ are twice differentiable, define for $t \in(a, b)$,

$$
\Delta(\Psi, \gamma)(t):=\frac{\Psi^{\prime \prime}(t) \gamma^{\prime}(t)-\Psi^{\prime}(t) \gamma^{\prime \prime}(t)}{\left[\gamma^{\prime}(t)\right]^{2}}
$$

and assume that $\frac{\Delta(\Psi, \gamma)}{w} \in L_{\infty}[a, b]$, then

$$
\begin{align*}
0 & \leq \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t) \Psi(t) d t-\Psi \circ \gamma^{-1}\left(\frac{\int_{a}^{b} w(t) \gamma(t) d t}{\int_{a}^{b} w(s) d s}\right) \tag{3.11}\\
& \leq \frac{1}{8}[\gamma(b)-\gamma(a)]\left\|\frac{\Delta(\Psi, \gamma)}{w}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s
\end{align*}
$$

Remark 2. Let $\Psi:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function on (a, b) and γ : $[a, b] \rightarrow[\gamma(a), \gamma(b)]$ a strictly increasing, continuous and differentiable function on (a, b). Assume that $\Psi \circ \gamma^{-1}$ is convex on $[\gamma(a), \gamma(b)]$.

If $\gamma^{\prime} \in L_{\infty}[a, b]$, then

$$
\begin{align*}
0 & \leq \frac{1}{b-a} \int_{a}^{b} \Psi(t) d t-\Psi \circ \gamma^{-1}\left(\frac{1}{b-a} \int_{a}^{b} \gamma(t) d t\right) \tag{3.12}\\
& \leq \frac{1}{8}\left[\frac{\Psi_{-}^{\prime}(b)}{\gamma_{-}^{\prime}(b)}-\frac{\Psi_{+}^{\prime}(a)}{\gamma_{+}^{\prime}(a)}\right](b-a)\left\|\gamma^{\prime}\right\|_{[a, b], \infty}
\end{align*}
$$

If Ψ and γ are twice differentiable and $\Delta(\Psi, \gamma) \in L_{\infty}[a, b]$, then

$$
\begin{align*}
0 & \leq \frac{1}{b-a} \int_{a}^{b} \Psi(t) d t-\Psi \circ \gamma^{-1}\left(\frac{1}{b-a} \int_{a}^{b} \gamma(t) d t\right) \tag{3.13}\\
& \leq \frac{1}{8}[\gamma(b)-\gamma(a)](b-a)\|\Delta(\Psi, \gamma)\|_{[a, b], \infty}
\end{align*}
$$

Also, if we take $w=\gamma^{\prime}$ in (3.10), then we get

$$
\begin{align*}
0 & \leq \frac{1}{\gamma(b)-\gamma(a)} \int_{a}^{b} \Psi(t) \gamma^{\prime}(t) d t-\Psi \circ \gamma^{-1}\left(\frac{\gamma(b)+\gamma(a)}{2}\right) \tag{3.14}\\
& \leq \frac{1}{8}\left[\frac{\Psi_{-}^{\prime}(b)}{\gamma_{-}^{\prime}(b)}-\frac{\Psi_{+}^{\prime}(a)}{\gamma_{+}^{\prime}(a)}\right][\gamma(b)-\gamma(a)]\left\|\gamma^{\prime}\right\|_{[a, b], \infty},
\end{align*}
$$

while from (3.11) we get

$$
\begin{align*}
0 & \leq \frac{1}{\gamma(b)-\gamma(a)} \int_{a}^{b} \Psi(t) \gamma^{\prime}(t) d t-\Psi \circ \gamma^{-1}\left(\frac{\gamma(b)+\gamma(a)}{2}\right) \tag{3.15}\\
& \leq \frac{1}{8}[\gamma(b)-\gamma(a)]^{2}\left\|\frac{\Delta(\Psi, \gamma)}{\gamma^{\prime}}\right\|_{[a, b], \infty}
\end{align*}
$$

provided $\frac{\Delta(\Psi, \gamma)}{\gamma^{\prime}} \in L_{\infty}[a, b]$.

4. Applications for Some Particular Convexities

Let $\gamma:[a, b] \rightarrow[\gamma(a), \gamma(b)]$ be a continuous strictly increasing function that is differentiable on (a, b).

Definition 1. A function $\Psi:[a, b] \rightarrow \mathbb{R}$ will be called composite- γ^{-1} convex (concave) on $[a, b]$ if the composite function $\Psi \circ \gamma^{-1}:[\gamma(a), \gamma(b)] \rightarrow \mathbb{R}$ is convex (concave) in the usual sense on $[\gamma(a), \gamma(b)]$.

In this way, any concept of convexity (log-convexity, harmonic convexity, trigonometric convexity, hyperbolic convexity, h-convexity, quasi-convexity, s-convexity, s-Godunova-Levin convexity etc...) can be extended to the corresponding composite $-\gamma^{-1}$ convexity. The details however will not be presented here.

If $\Psi:[a, b] \rightarrow \mathbb{R}$ is composite- γ^{-1} convex on $[a, b]$ then we have the inequality

$$
\begin{equation*}
\Psi \circ \gamma^{-1}((1-\lambda) u+\lambda v) \leq(1-\lambda) \Psi \circ \gamma^{-1}(u)+\lambda \Psi \circ \gamma^{-1}(v) \tag{4.1}
\end{equation*}
$$

for any $u, v \in[\gamma(a), \gamma(b)]$ and $\lambda \in[0,1]$.
This is equivalent to the condition

$$
\begin{equation*}
\Psi \circ \gamma^{-1}((1-\lambda) \gamma(t)+\lambda \gamma(s)) \leq(1-\lambda) \Psi(t)+\lambda \Psi(s) \tag{4.2}
\end{equation*}
$$

for any $t, s \in[a, b]$ and $\lambda \in[0,1]$.
If we take $\gamma(t)=\ln t, t \in[a, b] \subset(0, \infty)$, then the condition (4.2) becomes

$$
\begin{equation*}
\Psi\left(t^{1-\lambda} s^{\lambda}\right) \leq(1-\lambda) \Psi(t)+\lambda \Psi(s) \tag{4.3}
\end{equation*}
$$

for any $t, s \in[a, b]$ and $\lambda \in[0,1]$, which is the concept of $G A$-convexity as considered in [1].

If we take $\gamma(t)=-\frac{1}{t}, t \in[a, b] \subset(0, \infty)$, then (4.2) becomes

$$
\begin{equation*}
\Psi\left(\frac{t s}{(1-\lambda) s+\lambda t}\right) \leq(1-\lambda) \Psi(t)+\lambda \Psi(s) \tag{4.4}
\end{equation*}
$$

for any $t, s \in[a, b]$ and $\lambda \in[0,1]$, which is the concept of $H A$-convexity as considered in [1].

If $p>0$ and we consider $\gamma(t)=t^{p}, t \in[a, b] \subset(0, \infty)$, then the condition (4.2) becomes

$$
\begin{equation*}
\Psi\left[\left((1-\lambda) t^{p}+\lambda s^{p}\right)^{1 / p}\right] \leq(1-\lambda) \Psi(t)+\lambda \Psi(s) \tag{4.5}
\end{equation*}
$$

for any $t, s \in[a, b]$ and $\lambda \in[0,1]$, which is the concept of p-convexity as considered in [26].

If we take $\gamma(t)=\exp t, t \in[a, b]$, then the condition (4.2) becomes

$$
\begin{equation*}
\Psi[\ln ((1-\lambda) \exp (t)+\exp \gamma(s))] \leq(1-\lambda) \Psi(t)+\lambda \Psi(s) \tag{4.6}
\end{equation*}
$$

which is the concept of LogExp convex function on $[a, b]$ as considered in [16].
Further, assume that $\Psi:[a, b] \rightarrow J, J$ an interval of real numbers and $\delta: J \rightarrow \mathbb{R}$ a continuous function on J that is strictly increasing (decreasing) on J.

Definition 2. We say that the function $\Psi:[a, b] \rightarrow J$ is δ-composite convex (concave) on $[a, b]$, if $\delta \circ \Psi$ is convex (concave) on $[a, b]$.

In this way, any concept of convexity as mentioned above can be extended to the corresponding δ-composite convexity. The details however will not be presented here.

With $\gamma:[a, b] \rightarrow[\gamma(a), \gamma(b)]$ a continuous strictly increasing function that is differentiable on $(a, b), \Psi:[a, b] \rightarrow J, J$ an interval of real numbers and $\delta: J \rightarrow \mathbb{R}$ a continuous function on J that is strictly increasing (decreasing) on J, we can also consider the following concept:
Definition 3. We say that the function $\Psi:[a, b] \rightarrow J$ is δ-composite- γ^{-1} convex (concave) on $[a, b]$, if $\delta \circ \Psi \circ \gamma^{-1}$ is convex (concave) on $[\gamma(a), \gamma(b)]$.

This definition is equivalent to the condition

$$
\begin{equation*}
\delta \circ \Psi \circ \gamma^{-1}((1-\lambda) \gamma(t)+\lambda \gamma(s)) \leq(1-\lambda)(\delta \circ \Psi)(t)+\lambda(\delta \circ \Psi)(s) \tag{4.7}
\end{equation*}
$$

for any $t, s \in[a, b]$ and $\lambda \in[0,1]$.
If $\delta: J \rightarrow \mathbb{R}$ is strictly increasing (decreasing) on J, then the condition (4.7) is equivalent to:

$$
\begin{equation*}
\Psi \circ \gamma^{-1}((1-\lambda) \gamma(t)+\lambda \gamma(s)) \leq(\geq) \delta^{-1}[(1-\lambda)(\delta \circ \Psi)(t)+\lambda(\delta \circ \Psi)(s)] \tag{4.8}
\end{equation*}
$$

for any $t, s \in[a, b]$ and $\lambda \in[0,1]$.
If $\delta(t)=\ln t, t>0$ and $\Psi:[a, b] \rightarrow(0, \infty)$, then the fact that Ψ is δ-composite convex on $[a, b]$ is equivalent to the fact that Ψ is log-convex or multiplicatively convex or $A G$-convex, namely, for all $x, y \in I$ and $t \in[0,1]$ one has the inequality:

$$
\begin{equation*}
\Psi(t x+(1-t) y) \leq[\Psi(x)]^{t}[\Psi(y)]^{1-t} \tag{4.9}
\end{equation*}
$$

A function $\Psi: I \rightarrow \mathbb{R} \backslash\{0\}$ is called $A H$-convex (concave) on the interval I if the following inequality holds [1]

$$
\begin{equation*}
\Psi((1-\lambda) x+\lambda y) \leq(\geq) \frac{1}{(1-\lambda) \frac{1}{\Psi(x)}+\lambda \frac{1}{\Psi(y)}}=\frac{\Psi(x) \Psi(y)}{(1-\lambda) \Psi(y)+\lambda \Psi(x)} \tag{4.10}
\end{equation*}
$$

for any $x, y \in I$ and $\lambda \in[0,1]$.
An important case that provides many examples is that one in which the function is assumed to be positive for any $x \in I$. In that situation the inequality (4.10) is equivalent to

$$
(1-\lambda) \frac{1}{\Psi(x)}+\lambda \frac{1}{\Psi(y)} \leq(\geq) \frac{1}{\Psi((1-\lambda) x+\lambda y)}
$$

for any $x, y \in I$ and $\lambda \in[0,1]$.
Taking into account this fact, we can conclude that the function $\Psi: I \rightarrow(0, \infty)$ is $A H$-convex (concave) on I if and only if Ψ is δ-composite concave (convex) on I with $\delta:(0, \infty) \rightarrow(0, \infty), \delta(t)=\frac{1}{t}$.

Following [1], we can introduce the concept of GH-convex (concave) function $\Psi: I \subset(0, \infty) \rightarrow \mathbb{R}$ on an interval of positive numbers I as satisfying the condition

$$
\begin{equation*}
\Psi\left(x^{1-\lambda} y^{\lambda}\right) \leq(\geq) \frac{1}{(1-\lambda) \frac{1}{\Psi(x)}+\lambda \frac{1}{\Psi(y)}}=\frac{\Psi(x) \Psi(y)}{(1-\lambda) \Psi(y)+\lambda \Psi(x)} \tag{4.11}
\end{equation*}
$$

Since

$$
\Psi\left(x^{1-\lambda} y^{\lambda}\right)=\Psi \circ \exp [(1-\lambda) \ln x+\lambda \ln y]
$$

and

$$
\frac{\Psi(x) \Psi(y)}{(1-\lambda) \Psi(y)+\lambda \Psi(x)}=\frac{\Psi \circ \exp (\ln x) \Psi \circ \exp (\ln y)}{(1-\lambda) \Psi \circ \exp (y)+\lambda \Psi \circ \exp (x)}
$$

then $\Psi: I \subset(0, \infty) \rightarrow \mathbb{R}$ is $G H$-convex (concave) on I if and only if $\Psi \circ \exp$ is AH-convex (concave) on $\ln I:=\{x \mid x=\ln t, t \in I\}$. This is equivalent to the
fact that Ψ is δ-composite- γ^{-1} concave (convex) on I with $\delta:(0, \infty) \rightarrow(0, \infty)$, $\delta(t)=\frac{1}{t}$ and $\gamma(t)=\ln t, t \in I$.

Following [1], we say that the function $\Psi: I \subset \mathbb{R} \backslash\{0\} \rightarrow(0, \infty)$ is $H H$-convex if

$$
\begin{equation*}
\Psi\left(\frac{x y}{t x+(1-t) y}\right) \leq \frac{\Psi(x) \Psi(y)}{(1-t) \Psi(y)+t \Psi(x)} \tag{4.12}
\end{equation*}
$$

for all $x, y \in I$ and $t \in[0,1]$. If the inequality in (4.12) is reversed, then Ψ is said to be $H H$-concave.

We observe that the inequality (4.12) is equivalent to

$$
\begin{equation*}
(1-t) \frac{1}{\Psi(x)}+t \frac{1}{\Psi(y)} \leq \frac{1}{\Psi\left(\frac{x y}{t x+(1-t) y}\right)} \tag{4.13}
\end{equation*}
$$

for all $x, y \in I$ and $t \in[0,1]$.
This is equivalent to the fact that Ψ is δ-composite- γ^{-1} concave on $[a, b]$ with $\delta:(0, \infty) \rightarrow(0, \infty), \delta(t)=\frac{1}{t}$ and $\gamma(t)=-\frac{1}{t}, t \in[a, b]$.

The function $\Psi: I \subset(0, \infty) \rightarrow(0, \infty)$ is called $G G$-convex on the interval I of real umbers \mathbb{R} if [1]

$$
\begin{equation*}
\Psi\left(x^{1-\lambda} y^{\lambda}\right) \leq[\Psi(x)]^{1-\lambda}[\Psi(y)]^{\lambda} \tag{4.14}
\end{equation*}
$$

for any $x, y \in I$ and $\lambda \in[0,1]$. If the inequality is reversed in (4.14) then the function is called $G G$-concave.

This concept was introduced in 1928 by P. Montel [22], however, the roots of the research in this area can be traced long before him [23]. It is easy to see that [23], the function $\Psi:[a, b] \subset(0, \infty) \rightarrow(0, \infty)$ is $G G$-convex if and only if the the function $\gamma:[\ln a, \ln b] \rightarrow \mathbb{R}, \gamma=\ln \circ \Psi \circ \exp$ is convex on $[\ln a, \ln b]$. This is equivalent to the fact that Ψ is δ-composite- γ^{-1} convex on $[a, b]$ with $\delta:(0, \infty) \rightarrow \mathbb{R}, \delta(t)=\ln t$ and $\gamma(t)=\ln t, t \in[a, b]$.

Following [1] we say that the function $\Psi: I \subset \mathbb{R} \backslash\{0\} \rightarrow(0, \infty)$ is $H G$-convex if

$$
\begin{equation*}
\Psi\left(\frac{x y}{t x+(1-t) y}\right) \leq[\Psi(x)]^{1-t}[\Psi(y)]^{t} \tag{4.15}
\end{equation*}
$$

for all $x, y \in I$ and $t \in[0,1]$. If the inequality in (4.2) is reversed, then Ψ is said to be $H G$-concave.

Let $\Psi:[a, b] \subset(0, \infty) \rightarrow(0, \infty)$ and define the associated functions G_{Ψ} : $\left[\frac{1}{b}, \frac{1}{a}\right] \rightarrow \mathbb{R}$ defined by $G_{\Psi}(t)=\ln \Psi\left(\frac{1}{t}\right)$. Then Ψ is $H G$-convex on $[a, b]$ iff G_{Ψ} is convex on $\left[\frac{1}{b}, \frac{1}{a}\right]$. This is equivalent to the fact that Ψ is δ-composite- γ^{-1} convex on $[a, b]$ with $\delta:(0, \infty) \rightarrow \mathbb{R}, \delta(t)=\ln t$ and $\gamma(t)=-\frac{1}{t}, t \in[a, b]$.

Following [25], we say that the function $\Psi:[a, b] \rightarrow(0, \infty)$ is r-convex, for $r \neq 0$, if

$$
\begin{equation*}
\Psi((1-\lambda) x+\lambda y) \leq\left[(1-\lambda) \Psi^{r}(y)+\lambda \Psi^{r}(x)\right]^{1 / r} \tag{4.16}
\end{equation*}
$$

for any $x, y \in[a, b]$ and $\lambda \in[0,1]$.
If $r>0$, then the condition (4.16) is equivalent to

$$
\Psi^{r}((1-\lambda) x+\lambda y) \leq(1-\lambda) \Psi^{r}(y)+\lambda \Psi^{r}(x)
$$

namely Ψ is δ-composite convex on $[a, b]$ where $\delta(t)=t^{r}, t \geq 0$.
If $r<0$, then the condition (4.16) is equivalent to

$$
\Psi^{r}((1-\lambda) x+\lambda y) \geq(1-\lambda) \Psi^{r}(y)+\lambda \Psi^{r}(x)
$$

namely Ψ is δ-composite concave on $[a, b]$ where $\delta(t)=t^{r}, t>0$.
For some results related to these concepts of convexity, see [9]-[15].
We assume in the following that $w:[a, b] \rightarrow(0, \infty)$ is a continuous function on $[a, b]$ and $g:[a, b] \rightarrow[m, M]$ is absolutely continuous on $[a, b]$.

If Ψ is \log convex on $[m, M]$, then Ψ is δ-composite- γ^{-1} convex on $[a, b]$ with $\delta:(0, \infty) \rightarrow \mathbb{R}, \delta(t)=\ln t$ and $\gamma(t)=\ell(t)=t, t \in[a, b]$. If we use the inequality (3.1), then we have

$$
\begin{align*}
0 & \leq \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t) \ln (\Psi \circ g)(t) d t-\ln \left[\Psi\left(\frac{\int_{a}^{b} w(t) g(t) d t}{\int_{a}^{b} w(s) d s}\right)\right] \tag{4.17}\\
& \leq \frac{1}{8}\left[\frac{\Psi_{-}^{\prime}(M)}{\Psi(M)}-\frac{\Psi_{+}^{\prime}(m)}{\Psi(m)}\right]\left\|\frac{g^{\prime}}{w}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s
\end{align*}
$$

provided $\frac{g^{\prime}}{w} \in L_{\infty}[a, b]$.
We have

$$
\Delta(\ln \Psi, g)(t)=\frac{\left(\Psi^{\prime \prime} \circ g\right)(t)(\Psi \circ g)(t)-\left(\left(\Psi^{\prime} \circ g\right)(t)\right)^{2}}{((\Psi \circ g)(t))^{2}}, t \in[a, b]
$$

and if we assume that $\frac{\Delta(\ln \Psi, g)}{w} \in L_{\infty}[a, b]$, then by the inequality (3.2)

$$
\begin{align*}
0 & \leq \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t) \ln (\Psi \circ g)(t) d t-\ln \left[\Psi\left(\frac{\int_{a}^{b} w(t) g(t) d t}{\int_{a}^{b} w(s) d s}\right)\right] \tag{4.18}\\
& \leq \frac{1}{8}(M-m)\left\|\frac{\Delta(\ln \Psi, g)}{w}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s
\end{align*}
$$

If Ψ is $G A$-convex on $[a, b] \subset(0, \infty)$, then Ψ is δ-composite- γ^{-1} convex on $[a, b]$ with $\gamma:(0, \infty) \rightarrow \mathbb{R}, \gamma(t)=\ln t$ and $\delta(t)=\ell(t)=t, t \in[a, b]$. If we use the inequality (3.1), then we have

$$
\begin{align*}
0 & \leq \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t)(\Psi \circ g)(t) d t-\Psi\left[\exp \left(\frac{\int_{a}^{b} w(t) \ln g(t) d t}{\int_{a}^{b} w(s) d s}\right)\right] \tag{4.19}\\
& \leq \frac{1}{8}\left(\Psi_{-}^{\prime}(M) M-\Psi_{+}^{\prime}(m) m\right)\left\|\frac{g^{\prime}}{w g}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s
\end{align*}
$$

If Ψ is twice differentiable, define for $t \in[a, b]$,

$$
\Delta(\Psi, \ln , g)(t)=\left(\Psi^{\prime \prime} \circ g\right)(t) g(t)+\left(\Psi^{\prime} \circ g\right)(t)
$$

and assume that $\frac{\Delta(\Psi, \ln , g)}{w} \in L_{\infty}[a, b]$, then

$$
\begin{align*}
0 & \leq \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t)(\Psi \circ g)(t) d t-\Psi\left[\exp \left(\frac{\int_{a}^{b} w(t) \ln g(t) d t}{\int_{a}^{b} w(s) d s}\right)\right] \tag{4.20}\\
& \leq \frac{1}{8} \ln \left(\frac{M}{m}\right)\left\|\frac{\Delta(\Psi, \ln , g)}{w}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s
\end{align*}
$$

The function $\Psi:[a, b] \rightarrow(0, \infty)$ is $A H$-convex on $[a, b]$ if and only if Ψ is δ -composite- γ^{-1} concave on $[a, b]$ with $\delta:(0, \infty) \rightarrow(0, \infty), \delta(t)=\frac{1}{t}$ and $\gamma(t)=$
$\ell(t)=t, t \in[a, b]$. If we use the inequality (3.1) for the convex function $-\Psi^{-1}$, then we have

$$
\begin{align*}
0 & \leq\left[\Psi\left(\frac{\int_{a}^{b} w(t) g(t) d t}{\int_{a}^{b} w(s) d s}\right)\right]^{-1}-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} \frac{w(t)}{(\Psi \circ g)(t)} d t \tag{4.21}\\
& \leq \frac{1}{8}\left[\frac{\Psi_{+}^{\prime}(M)}{\Psi^{2}(M)}-\frac{\Psi_{+}^{\prime}(m)}{\Psi^{2}(m)}\right]\left\|\frac{g^{\prime}}{w}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s
\end{align*}
$$

provided $\frac{g^{\prime}}{w} \in L_{\infty}[a, b]$.
If Ψ is twice differentiable, define for $t \in[a, b]$,

$$
\Delta\left(-\Psi^{-1}, g\right)(t):=\frac{\left(\Psi^{\prime \prime} \circ g\right)(t)(\Psi \circ g)(t)-2\left(\left(\Psi^{\prime} \circ g\right)(t)\right)^{2}}{((\Psi \circ g)(t))^{3}}
$$

If we use the inequality (3.2) for the convex function $-\Psi^{-1}$, then we have

$$
\begin{align*}
0 & \leq\left[\Psi\left(\frac{\int_{a}^{b} w(t) g(t) d t}{\int_{a}^{b} w(s) d s}\right)\right]^{-1}-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} \frac{w(t)}{(\Psi \circ g)(t)} d t \tag{4.22}\\
& \leq \frac{1}{8}(M-m)\left\|\frac{\Delta\left(-\Psi^{-1}, g\right)}{w}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s
\end{align*}
$$

provided that $\frac{\Delta\left(-\Psi^{-1}, g\right)}{w} \in L_{\infty}[a, b]$.
If the function Ψ is $H A$-convex $[a, b]$, this means that Ψ is δ-composite- γ^{-1} convex on $[a, b]$ with $\gamma:(0, \infty) \rightarrow \mathbb{R}, \gamma(t)=-t^{-1}$ and $\delta(t)=\ell(t)=t, t \in[a, b]$. If we use the inequality (3.1), then we have

$$
\begin{align*}
0 & \leq \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t)(\Psi \circ g)(t) d t-\Psi\left(\frac{\int_{a}^{b} w(s) d s}{\int_{a}^{b} \frac{w(t)}{g(t)} d t}\right) \tag{4.23}\\
& \leq \frac{1}{8}\left(\Psi_{-}^{\prime}(M) M^{2}-\Psi_{+}^{\prime}(m) m^{2}\right)\left\|\frac{g^{\prime}}{w g^{2}}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s
\end{align*}
$$

provided $\frac{g^{\prime}}{w g^{2}} \in L_{\infty}[a, b]$.
If Ψ is differentiable, define for $t \in[a, b]$,

$$
\Delta\left(\Psi,-\ell^{-1}, g\right)(t):=\left(\Psi^{\prime \prime} \circ g\right)(t) g^{2}(t)+2 g(t)\left(\Psi^{\prime} \circ g\right)(t)
$$

By using the inequality (3.2) we have

$$
\begin{align*}
0 & \leq \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(t)(\Psi \circ g)(t) d t-\Psi\left(\frac{\int_{a}^{b} w(s) d s}{\int_{a}^{b} \frac{w(t)}{g(t)} d t}\right) \tag{4.24}\\
& \leq \frac{1}{8}(M-m)\left\|\frac{\Delta\left(\Psi,-\ell^{-1}, g\right)}{w}\right\|_{[a, b], \infty} \int_{a}^{b} w(s) d s
\end{align*}
$$

provided $\frac{\Delta\left(\Psi,-\ell^{-1}, g\right)}{w} \in L_{\infty}[a, b]$.
Similar results may be stated for the other concepts of convexity as presented above, however the details are omitted.

References

[1] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl. 335 (2007) 1294-1308.
[2] P. L. Chebyshev, Sur les expressions approximatives des intègrals dèfinis par les outres prises entre les même limites, Proc. Math. Soc. Charkov, 2 (1882), 93-98.
[3] P. Cerone and S. S. Dragomir, A refinement of the Grüss inequality and applications. Tamkang J. Math. 38 (2007), no. 1, 37-49. Preprint RGMIA Res. Rep. Coll. 5 (2002), No. 2, Art. 14. [Online http://rgmia.org/papers/v5n2/RGIApp.pdf].
[4] S. S. Dragomir, A Grüss type inequality for isotonic linear functionals and applications. Demonstratio Math. 36 (2003), no. 3, 551-562. Preprint RGMIA Res. Rep. Coll. 5 (2002), Suplement, Art. 12. [Online http://rgmia.org/papers/v5e/GTIILFApp.pdf].
[5] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14 (2017), no. 1, Art. 1, 283 pp. [Online http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
[6] S. S. Dragomir, Some reverses of the Jensen inequality with applications. Bull. Aust. Math. Soc. 87 (2013), no. 2, 177-194.
[7] S. S. Dragomir, Reverses of the Jensen inequality in terms of first derivative and applications. Acta Math. Vietnam. 38 (2013), no. 3, 429-446.
[8] S. S. Dragomir, A refinement and a divided difference reverse of Jensen's inequality with applications. Rev. Colombiana Mat. 50 (2016), no. 1, 17-39.
[9] S. S. Dragomir, New inequalities of Hermite-Hadamard type for log-convex functions. Khayyam J. Math. 3 (2017), no. 2, 98-115..
[10] S. S. Dragomir, Inequalities of Hermite-Hadamard type for $G A$-convex functions, to appear in Annales Mathematicae Silesianae, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 30. [Online http://rgmia.org/papers/v18/v18a30.pdf].
[11] S. S. Dragomir, Inequalities of Hermite-Hadamard type for $G G$-convex functions, Preprint RGMIA, Research Report Collection, 18 (2015), Art. 71, 15 pp., [Online http://rgmia.org/papers/v18/v18a71.pdf].
[12] S. S. Dragomir, Some integral inequalities of Hermite-Hadamard type for $G G$-convex functions, Mathematica (Cluj), 59 (82), No 1-2, 2017, pp. 47-64. Preprint RGMIA, Research Report Collection, 18 (2015), Art. 74. [Online http://rgmia.org/papers/v18/v18a74.pdf].
[13] S. S. Dragomir, Inequalities of Hermite-Hadamard type for $H A$-convex functions, Maroccan J. Pure 8 Appl. Analysis, Volume 3 (1), 2017, Pages 83-101. Preprint, RGMIA Res. Rep. Coll. 18 (2015), Art. 38. [Online http://rgmia.org/papers/v18/v18a38.pdf].
[14] S. S. Dragomir, Inequalities of Hermite-Hadamard type for $H G$-convex functions, Probl. Anal. Issues Anal. Vol. 6 (24), No. 2, 2017 1-17. Preprint, RGMIA Res. Rep. Coll. 18 (2015), Art. 79. [Online http://rgmia.org/papers/v18/v18a79.pdf].
[15] S. S. Dragomir, Inequalities of Hermite-Hadamard type for $H H$-convex functions, to appear in Acta et Commentationes Universitatis Tartuensis de Mathematica, Preprint, RGMIA Res. Rep. Coll. 18 (2015), Art. 80. [Online http://rgmia.org/papers/v18/v18a80.pdf].
[16] S. S. Dragomir, Inequalities for a generalized finite Hilbert transform of convex functions, Preprint RGMIA Res. Rep. Coll. 21 (2018), Art
[17] S. S. Dragomir and N. M. Ionescu, Some converse of Jensen's inequality and applications. Rev. Anal. Numér. Théor. Approx. 23 (1994), no. 1, 71-78.
[18] L. Fejér, Über die Fourierreihen, II, (In Hungarian) Math. Naturwiss, Anz. Ungar. Akad. Wiss., 24 (1906), 369-390.
[19] G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x$ -$\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x, M a t h . Z$, $\mathbf{3 9}(1935), 215-226$.
[20] A. Lupaş, The best constant in an integral inequality, Mathematica (Cluj, Romania), $15(\mathbf{3 8})(2)(1973), 219-222$.
[21] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985), 229-232.
[22] P. Montel, Sur les functions convexes et les fonctions sousharmoniques, Journal de Math., 9 (1928), 7, 29-60.
[23] C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl., 3, (2000), 2, 155-167.
[24] A. M. Ostrowski, On an integral inequality, Aequat. Math., 4 (1970), 358-373.
[25] C. E. M. Pearce, J. Pečarić and V. Šimić, Stolarsky means and Hadamard's inequality. J. Math. Anal. Appl. 220, 99-109 (1998)
[26] K. S. Zhang and J. P. Wan, p-convex functions and their properties. Pure Appl. Math. 23(1), 130-133 (2007).
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15; 26D10.
 Key words and phrases. Convex functions, Jensen's inequality, Ostrowski's inequality, $A G$, $A H$-convex functions, $G A, G G, G H$-convex functions and $H A, H G, H H$-convex function, Integral inequalities.

