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CAUCHY-SCHWARZ INEQUALITY IMPLIES HOLDER’S
INEQUALITY

MOHAMED AKKOUCHI

ABSTRACT. The aim of this note is a to give a direct proof that Holder inequality
is directly implied by the Cauchy-Schwarz inequality.

1. INTRODUCTION

Let (92, F, ) be a measure space (i is a positive measure). For all mesurable
functions f, g : Q +— C on 2, we recall the Holder’s inequality:
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If p = ¢ = 2 then we obtain the cauchy-Schwarz inequality:
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Their discrete versions are respectively, given by:
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for all positive integer n and all vectors (x1,...,2,), (Y1, ..,Yyn) € K", where the
field K is real or complex.
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Easily, we have (H) = (C.95).
It is natural to raise the question: is the converse true 7.

There is a positive answer to this question but, in general, not showed by a direct
proof. Indeed, the converse was already known in the literature but through indirect
implications. See for instance, [3], [5], [6], [4], and [2].

Many connections between classical discrete inequalities were studied in the book
[6], where in particular the equivalence (H); <= (C.S), was deducted through
several intermidiate results.
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A. W. Marshall and I. Olkin pointed out in their book [5] that the Cauchy-
Schwarz inequality implies Lyapunov’s inequality which itself implies the arithmetic-
geometric mean inequality. The conclusions are that, in a sense, the arithmetic-
geometric mean inequality, Holder’s inequality, the Cauchy-Schwarz inequality, and
Lyapunov’s inequality are all equivalent [[5], p. 457].

In 2006, Y-C Li and S-Y Shaw [4] gave a proof of Holder’s inequality by using the
Cauchy-Schwarz inequality. Their method lies on the fact that the convexity of a
function on an open and finite interval is equivalent to continuity and midconvexity.

In 2007, the equivalence between the integral inequalities (H) and (C' — S) was
studied by C. Finol and M. Wéjtowicz in [2]. They gave a proof (C' — S) implies
(H) by using density arguments, induction and the conclusions were obtained after
three steps of proof.

The aim of this paper is to provide a direct proof that (C'— S) implies (H). Our
method is quite different from those made in [4] and [2].

Our method of proof is based on a direct consequence of Young’s inequality.

Let a,b be two positive numbers and let o« € [0,1]. We denote by Y («) the
Young’s inequality:
a®b'™* < aa+ (1 — a)b. (Y(w))

2. PROOF OF THE IMPLICATION: (C' —S) = (H)

We avoid the trivial cases, so we suppose that 1 < p,q with 1/p+1/¢ = 1. We
suppose also that || f||, # 0 and ||g||q # 0.
By using Young’s inequality (Y( )), for all positive numbers a and b, we have:

ab — [(\/ap);(\/l—)q);r < [1\/517 \/’q] :p_aerlqurEa;’b; (2.1)

q Pq

In the inequalty (2.1), we set a = H and b= ||qu| then
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By integrating both sides of (2.2), we get
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Therefore, we have
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Now, by using the Cauchy-Schwarz, we obtain the following
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From (2.3) and (2.4), we deduce that
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This end the proof.

Remark. The inequality (2.3) implies the following improvement to Hélder’s in-
equality.
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for all f € L,\ {0} and all g € L, \ {0}.

The inequality (2.5) above was obtained by J. M. Aldaz [1] in a different manner.
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