CAUCHY-SCHWARZ INEQUALITY IMPLIES HÖLDER'S INEQUALITY

MOHAMED AKKOUCHI

Abstract

The aim of this note is a to give a direct proof that Hölder inequality is directly implied by the Cauchy-Schwarz inequality.

1. Introduction

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space (μ is a positive measure). For all mesurable functions $f, g: \Omega \mapsto \mathbb{C}$ on Ω, we recall the Hölder's inequality:

$$
\begin{equation*}
\int_{\Omega}|f g| d \mu \leq\left(\int_{\Omega}|f|^{p} d \mu\right)^{\frac{1}{p}}\left(\int_{\Omega}|f|^{q} d \mu\right)^{\frac{1}{q}}, \forall p, q \geq 1 \text { with } \frac{1}{p}+\frac{1}{q}=1 . \tag{H}
\end{equation*}
$$

If $p=q=2$ then we obtain the cauchy-Schwarz inequality:

$$
\begin{equation*}
\int_{\Omega}|f g| d \mu \leq\left(\int_{\Omega}|f|^{2} d \mu\right)^{\frac{1}{2}}\left(\int_{\Omega}|f|^{2} d \mu\right)^{\frac{1}{2}} \tag{C.S}
\end{equation*}
$$

Their discrete versions are respectively, given by:

$$
\begin{equation*}
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{\frac{1}{p}}\left[\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right]^{\frac{1}{q}}:=\|x\|_{p}\|y\|_{q}, \tag{H}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left[\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right]^{\frac{1}{2}}\left[\sum_{i=1}^{n}\left|y_{i}\right|^{2}\right]^{\frac{1}{2}}:=\|x\|_{2}\|y\|_{2} \tag{C.S}
\end{equation*}
$$

for all positive integer n and all vectors $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{K}^{n}$, where the field \mathbb{K} is real or complex.

Easily, we have $(H) \Longrightarrow(C . S)$.
It is natural to raise the question: is the converse true?.
There is a positive answer to this question but, in general, not showed by a direct proof. Indeed, the converse was already known in the literature but through indirect implications. See for instance, [3], [5], [6], [4], and [2].

Many connections between classical discrete inequalities were studied in the book [6], where in particular the equivalence $(H)_{d} \Longleftrightarrow(C . S)_{d}$ was deducted through several intermidiate results.

[^0]A. W. Marshall and I. Olkin pointed out in their book [5] that the CauchySchwarz inequality implies Lyapunov's inequality which itself implies the arithmeticgeometric mean inequality. The conclusions are that, in a sense, the arithmeticgeometric mean inequality, Hölder's inequality, the Cauchy-Schwarz inequality, and Lyapunov's inequality are all equivalent [[5], p. 457].

In 2006, Y-C Li and S-Y Shaw [4] gave a proof of Hölder's inequality by using the Cauchy-Schwarz inequality. Their method lies on the fact that the convexity of a function on an open and finite interval is equivalent to continuity and midconvexity.

In 2007, the equivalence between the integral inequalities (H) and $(C-S)$ was studied by C. Finol and M. Wójtowicz in [2]. They gave a proof $(C-S)$ implies (H) by using density arguments, induction and the conclusions were obtained after three steps of proof.

The aim of this paper is to provide a direct proof that $(C-S)$ implies (H). Our method is quite different from those made in [4] and [2].

Our method of proof is based on a direct consequence of Young's inequality.
Let a, b be two positive numbers and let $\alpha \in[0,1]$. We denote by $Y(\alpha)$ the Young's inequality:

$$
a^{\alpha} b^{1-\alpha} \leq \alpha a+(1-\alpha) b
$$

2. Proof of the implication: $(C-S) \Longrightarrow(H)$

We avoid the trivial cases, so we suppose that $1<p, q$ with $1 / p+1 / q=1$. We suppose also that $\|f\|_{p} \neq 0$ and $\|g\|_{q} \neq 0$.

By using Young's inequality $\left(Y\left(\frac{1}{p}\right)\right)$, for all positive numbers a and b, we have:

$$
\begin{equation*}
a b=\left[\left(\sqrt{a}^{p}\right)^{\frac{1}{p}}\left(\sqrt{b}^{q}\right)^{\frac{1}{q}}\right]^{2} \leq\left[\frac{1}{p} \sqrt{a}^{p}+\frac{1}{q} \sqrt{b}^{q}\right]^{2}=\frac{1}{p^{2}} a^{p}+\frac{1}{q^{2}} q^{q}+\frac{2}{p q} a^{\frac{p}{2}} b^{\frac{q}{2}} . \tag{2.1}
\end{equation*}
$$

In the inequalty (2.1), we set $a=\frac{|f(x)|}{\|f\|_{p}}$ and $b=\frac{|g(x)|}{\|g\|_{q}}$ then

$$
\begin{equation*}
\frac{|f(x) g(x)|}{\|f\|_{p}\|g\|_{q}} \leq \frac{|f(x)|^{p}}{p^{2}\|f\|_{p}^{p}}+\frac{|g(x)|^{q}}{q^{2}\|g\|_{q}^{q}}+\frac{2}{p q} \frac{|f(x)|^{p / 2}}{\|f\|_{p}^{p / 2}} \frac{|g(x)|^{q / 2}}{\|g\|_{q}^{q / 2}} . \tag{2.2}
\end{equation*}
$$

By integrating both sides of (2.2), we get

$$
\int_{\Omega} \frac{|f(x) g(x)|}{\|f\|_{p}\|g\|_{q}} d \mu(x) \leq \frac{1}{p^{2}}+\frac{1}{q^{2}}+\frac{2}{p q\|f\|_{p}^{p / 2}\|g\|_{q}^{q / 2}} \int_{\Omega}|f|^{p / 2}|g|^{q / 2} d \mu
$$

Therefore, we have

$$
\begin{equation*}
\int_{\Omega}|f g| d \mu \leq\left(\frac{1}{p^{2}}+\frac{1}{q^{2}}\right)\|f\|_{p}\|g\|_{q}+\frac{2}{p q}\|f\|_{p}^{1-\frac{p}{2}}\|g\|_{q}^{1-\frac{q}{2}} \int_{\Omega}|f|^{p / 2}|g|^{q / 2} d \mu . \tag{2.3}
\end{equation*}
$$

Now, by using the Cauchy-Schwarz, we obtain the following

$$
\begin{equation*}
\int_{\Omega}|f|^{p / 2}|g|^{q / 2} d \mu \leq\left[\int_{\Omega}|f|^{p} d \mu\right]^{\frac{1}{2}}\left[\int_{\Omega}|g|^{q} d \mu\right]^{\frac{1}{2}}=\|f\|_{p}^{\frac{p}{2}}\|g\|_{q}^{\frac{q}{2}} . \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4), we deduce that

$$
\int_{\Omega}|f g| d \mu \leq\left(\frac{1}{p^{2}}+\frac{1}{q^{2}}+\frac{2}{p q}\right)\|f\|_{p}\|g\|_{q}=\left(\frac{1}{p}+\frac{1}{q}\right)^{2}\|f\|_{p}\|g\|_{q}=\|f\|_{p}\|g\|_{q}
$$

This end the proof.
Remark. The inequality (2.3) implies the following improvement to Hölder's inequality.

$$
\begin{equation*}
\int_{\Omega}|f g| d \mu \leq\|f\|_{p}\|g\|_{q}\left(1-\frac{1}{p q}\left\|\frac{|f|^{\frac{p}{2}}}{\|f\|_{p}^{\frac{p}{2}}}-\frac{|g|^{\frac{q}{2}}}{\|g\|_{q}^{\frac{q}{2}} \|_{2}^{2}}\right\|^{2}\right), \tag{2.5}
\end{equation*}
$$

for all $f \in L_{p} \backslash\{0\}$ and all $g \in L_{q} \backslash\{0\}$.
The inequality (2.5) above was obtained by J. M. Aldaz [1] in a different manner.

References

[1] J. M. Aldaz, Self improvement of the inequality between arithmetic and geometric means, Journal of Mathematical Inequalities, Vol. 3, Number 2, (2009), 213-216.
[2] C. Finol and M. Wojtowicz. Cauchy-Schwarz and Hölder's inequalities are equivalent, Divulgaciones Matematicas. Vol. 15 No. 2 (2007), 143-147.
[3] C. A. Infantozzi, An introduction to relations among inequalities, Amer. Math. Soc. Meeting 700, Cleveland, Ohio 1972; Notices Amer. Math. Soc. 14 (1972), A819-A820, pp. 121-122
[4] Yuan-Chuan Li and Sen-Yen Shaw, A proof of Hölder's inequality using the cauchy-Schwarz inequality, J. Inequal. Pure and Appl. Math., 7(2) Art. 62, 2006.
[5] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, New York-London, 1979.
[6] D. S. Mtirinovic, J. E. Picaric and A. M. Fink, Classical and New Inequalities in Analysis. Kluwer Academic Publishers, 1993.

Department of Mathematics, Cadi Ayyad University,
Faculty of Sciences-Semlalia, Av. Prince my Abdellah, B.P. 2390.
Marrakech - Maroc (Morocco).
E-mail address: akkouchimo@yahoo.fr

[^0]: 2000 Mathematics Subject Classification. 26D15.
 Key words and phrases. Young's inequality. Cauchy-Schwarz inequality. Hölder's inequality.

