SOME IYENGAR TYPE WEIGHTED INTEGRAL INEQUALITIES

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. In this paper we obtain some weighted integral inequalities related to the celebrated results of Iyengar and Ostrowski. Particular cases for some weights of interest are given as well.

1. INTRODUCTION

In 1938, Iyengar proved the following theorem obtaining bounds for a trapezoidal quadrature rule for functions whose derivative are bounded (see for example [16, p. 471]).

Theorem 1. Let f be a differentiable function on (a,b) and assume that there is a constant M > 0 such that $|f'(x)| \leq M$, for any $x \in (a,b)$. Then we have

(1.1)
$$\left| \int_{a}^{b} f(x) \, dx - (b-a) \, \frac{f(a) + f(b)}{2} \right| \leq \frac{M \left(b-a\right)^{2}}{4} - \frac{1}{4M} \left(f(a) - f(b)\right)^{2}.$$

Using a classical inequality due to Hayashi (see for example, [15, pp. 311-312]), Agarwal and Dragomir proved in [1] the following generalization of Theorem 1.

Theorem 2. Let $f : I \subseteq \mathbb{R} \mapsto \mathbb{R}$ be a differentiable mapping in \mathring{I} , the interior of I, and let $a, b \in \mathring{I}$ with a < b. Let $M = \sup_{x \in [a,b]} f'(x) < \infty$ and $m = \inf_{x \in [a,b]} f'(x) > -\infty$. If m < M, then we have

(1.2)
$$\left| \int_{a}^{b} f(t) dt - (b-a) \frac{f(a) + f(b)}{2} \right|$$
$$\leq \frac{[f(b) - f(a) - m(b-a)] [M(b-a) - f(b) + f(a)]}{2 (M-m)}$$
$$\leq \frac{1}{8} (M-m) (b-a)^{2}.$$

Thus, by placing m = -M in (1.2) the Iyengar's result (1.1) is recovered.

As pointed out in [12], it should be noted that Theorem 1 and Theorem 2 are equivalent, in the sense that we can also obtain Theorem 2 from Theorem 1. Indeed, we can write the condition $m \leq f'(x) \leq M$ for $x \in [a,b]$ as $\left|f'(x) - \frac{m+M}{2}\right| \leq \frac{1}{2}(M-m)$ for $x \in [a,b]$. Let $g(x) := f(x) - \frac{m+M}{2}x$ and $M_1 := \frac{1}{2}(M-m)$ and if we apply Theorem 1 for g and M_1 , then we get Theorem 2.

For some Iyengar type inequalities see [2]-[4], [7]-[10], [12]-[14] and [18]-[21].

Motivated by the above results, in this paper we obtain some weighted integral inequalities related to (1.1), (1.2) and Ostrowski's result from 1970 regarding an

¹⁹⁹¹ Mathematics Subject Classification. 26D15; 26D10.

 $Key\ words\ and\ phrases.$ Iyengar inequality, Ostrowski inequality, Weighted integrals, Čebyšev's functional.

upper bound for the absolute value of Čebyšev's functional. Particular cases for some weights of interest are given as well.

2. Weighted Iyengar Type Inequalities

In [5] we obtained the following inequality:

Lemma 1. Let $h : [a, b] \to \mathbb{R}$ be an integrable function on [a, b] such that

$$-\infty < \gamma \le h(x) \le \Gamma < \infty$$
 for a.e. x on $[a, b]$.

Then we have the inequality

$$(2.1) \qquad \frac{1}{b-a} \int_{a}^{b} \left| \int_{a}^{x} h(t) dt - \frac{x-a}{b-a} \int_{a}^{b} h(u) du \right| dx$$
$$\leq \frac{1}{2} \left(\frac{1}{b-a} \int_{a}^{b} h(u) du - \gamma \right) \left(\Gamma - \frac{1}{b-a} \int_{a}^{b} h(u) du \right) \frac{b-a}{\Gamma - \gamma}$$
$$\leq \frac{1}{8} \left(\Gamma - \gamma \right) \left(b-a \right),$$

with the constants $\frac{1}{2}$ and $\frac{1}{8}$ best possible.

Using this fact, we can improve the Agarwal-Dragomir inequality (1.2) and Iyengar inequality (1.1) as follows:

Theorem 3. If $f : [a,b] \to \mathbb{R}$ is absolutely continuous on [a,b] and there exist the real numbers m, M with $m \leq f'(x) \leq M$ for almost every $(a.e.) \ x \in [a,b]$, then

(2.2)
$$\left| \int_{a}^{b} f(t) dt - (b-a) \frac{f(a) + f(b)}{2} \right|$$
$$\leq \int_{a}^{b} \left| f(x) - \frac{(x-a) f(b) + (b-x) f(a)}{b-a} \right| dx$$
$$\leq \frac{[f(b) - f(a) - m(b-a)] [M(b-a) - f(b) + f(a)]}{2 (M-m)}$$
$$\leq \frac{1}{8} (M-m) (b-a)^{2}.$$

If $|f'(x)| \leq M$ for a.e. $x \in [a, b]$ with M > 0, then

(2.3)
$$\left| \int_{a}^{b} f(t) dt - (b-a) \frac{f(a) + f(b)}{2} \right|$$
$$\leq \int_{a}^{b} \left| f(x) - \frac{(x-a) f(b) + (b-x) f(a)}{b-a} \right| dx$$
$$\leq \frac{M (b-a)^{2}}{4} - \frac{1}{4M} (f(a) - f(b))^{2} \leq \frac{M (b-a)^{2}}{4}.$$

Proof. We observe that, if we take h(t) = f'(t), then

$$\int_{a}^{x} h(t) dt - \frac{x-a}{b-a} \int_{a}^{b} h(u) du = \int_{a}^{x} f'(t) dt - \frac{x-a}{b-a} \int_{a}^{b} f'(u) du$$
$$= f(x) - f(a) - \frac{x-a}{b-a} [f(b) - f(a)]$$
$$= f(x) - \frac{(x-a)f(b) + (b-x)f(a)}{b-a}$$

and by (2.1) we get

(2.4)
$$\frac{1}{b-a} \int_{a}^{b} \left| f(x) - \frac{(x-a)f(b) + (b-x)f(a)}{b-a} \right| dx$$
$$\leq \frac{1}{2} \left(\frac{f(b) - f(a)}{b-a} - m \right) \left(M - \frac{f(b) - f(a)}{b-a} \right) \frac{b-a}{M-m}$$
$$\leq \frac{1}{8} \left(M - m \right) \left(b - a \right),$$

provided $m \leq f'(x) \leq M$ for a.e. $x \in [a, b]$.

By the properties of modulus and integral we also have

(2.5)
$$\int_{a}^{b} \left| f(x) - \frac{(x-a)f(b) + (b-x)f(a)}{b-a} \right| dx$$
$$\geq \left| \int_{a}^{b} f(x) dx - \int_{a}^{b} \frac{(x-a)f(b) + (b-x)f(a)}{b-a} dx \right|$$
$$= \left| \int_{a}^{b} f(x) dx - (b-a) \frac{f(a) + f(b)}{2} \right|,$$

which completes the proof of (2.2).

In order to extend the Iyengar type inequalities presented above for weighted integrals, we need the following result as well:

Lemma 2. Let $h : [a, b] \to [h(a), h(b)]$ be a continuous strictly increasing function that is differentiable on (a, b). If $g : [a, b] \to \mathbb{R}$ are absolutely continuous on [a, b]and there exist the real numbers k < K with

(2.6)
$$k \leq \frac{g'(x)}{h'(x)} \leq K \text{ for a.e. } x \in [a, b],$$

then we have

$$(2.7) \quad \left| \int_{a}^{b} g(t) h'(t) dt - (h(b) - h(a)) \frac{g(a) + g(b)}{2} \right| \\ \leq \int_{a}^{b} \left| g(t) - \frac{(h(t) - h(a)) g(b) + (h(b) - h(t)) g(a)}{h(b) - h(a)} \right| h'(t) dt \\ \leq \frac{1}{2(K-k)} \left[g(b) - g(a) - k(h(b) - h(a)) \right] \left[K(h(b) - h(a)) - g(b) + g(a) \right] \\ \leq \frac{1}{8} (K-k) (h(b) - h(a))^{2}.$$

S. S. DRAGOMIR

$$If \left| \frac{g'(x)}{h'(x)} \right| \le K \text{ for a.e. } x \in [a, b] \text{ with } K > 0, \text{ then we have}$$

$$(2.8) \quad \left| \int_{a}^{b} g(t) h'(t) dt - (h(b) - h(a)) \frac{g(a) + g(b)}{2} \right|$$

$$\le \int_{a}^{b} \left| g(t) - \frac{(h(t) - h(a)) g(b) + (h(b) - h(t)) g(a)}{h(b) - h(a)} \right| h'(t) dt$$

$$\le \frac{1}{4} K (h(b) - h(a))^{2} - \frac{1}{4K} (g(b) - g(a))^{2} \le \frac{1}{4} K (h(b) - h(a))^{2}$$

Proof. We observe that the function $f := g \circ h^{-1}$ is absolutely continuous on [h(a), h(b)] and using the chain rule and the derivative of inverse functions we have

(2.9)
$$(g \circ h^{-1})'(z) = (g' \circ h^{-1})(z)(h^{-1})'(z) = \frac{(g' \circ h^{-1})(z)}{(h' \circ h^{-1})(z)}$$

for almost every (a.e.) $z \in [h(c), h(d)]$.

By the condition (2.6) we have

$$k \leq \left(g \circ h^{-1}\right)'(z) \leq K$$
 for a.e. $z \in \left[h\left(c\right), h\left(d\right)\right]$.

If we use the inequality (2.2) for the function $f := g \circ h^{-1}$ on the interval [h(a), h(b)], then we get

$$\begin{aligned} \left| \int_{h(a)}^{h(b)} \left(g \circ h^{-1} \right) (z) \, dz - (h(b) - h(a)) \, \frac{\left(g \circ h^{-1} \right) (h(a)) + \left(g \circ h^{-1} \right) (h(b)) \right)}{2} \right| \\ &\leq \int_{h(a)}^{h(b)} \left| \left(g \circ h^{-1} \right) (z) - \frac{\left(z - h(a) \right) \left(g \circ h^{-1} \right) (h(b)) + (h(b) - z) \left(g \circ h^{-1} \right) (h(a)) \right)}{h(b) - h(a)} \right| \, dz \\ &\leq \frac{1}{2 \left(K - k \right)} \left[\left(g \circ h^{-1} \right) (h(b)) - \left(g \circ h^{-1} \right) (h(a)) - k \left(h(b) - h(a) \right) \right] \\ &\times \left[K \left(h(b) - h(a) \right) - \left(g \circ h^{-1} \right) (h(b) \right) + \left(g \circ h^{-1} \right) (h(a)) \right] \\ &\leq \frac{1}{8} \left(K - k \right) \left(h(b) - h(a) \right)^{2}, \end{aligned}$$

which is equivalent to

$$(2.10) \quad \left| \int_{h(a)}^{h(b)} \left(g \circ h^{-1} \right) (z) \, dz - (h(b) - h(a)) \frac{g(a) + g(b)}{2} \right| \\ \leq \int_{h(a)}^{h(b)} \left| \left(g \circ h^{-1} \right) (z) - \frac{(z - h(a)) g(b) + (h(b) - z) g(a)}{h(b) - h(a)} \right| \, dz \\ \leq \frac{1}{2(K - k)} \left[g(b) - g(a) - k \left(h(b) - h(a) \right) \right] \left[K \left(h(b) - h(a) \right) - g(b) + g(a) \right] \\ \leq \frac{1}{8} \left(K - k \right) \left(h(b) - h(a) \right)^2 \, dz$$

If we change the variable $t = h^{-1}(z)$, $z \in [h(c), h(d)]$, then we have z = h(t), which gives dz = h'(t) dt,

$$\int_{h(a)}^{h(b)} \left(g \circ h^{-1} \right)(z) \, dz = \int_{a}^{b} g(t) \, h'(t) \, dt,$$

$$\begin{split} &\int_{h(a)}^{h(b)} \left| \left(g \circ h^{-1} \right)(z) - \frac{\left(z - h\left(a \right) \right)g\left(b \right) + \left(h\left(b \right) - z \right)g\left(a \right)}{h\left(b \right) - h\left(a \right)} \right| dz \\ &= \int_{a}^{b} \left| g\left(t \right) - \frac{\left(h\left(t \right) - h\left(a \right) \right)g\left(b \right) + \left(h\left(b \right) - h\left(t \right) \right)g\left(a \right)}{h\left(b \right) - h\left(a \right)} \right| h'\left(t \right) dt \end{split} \right.$$

and by (2.10) we get the desired result (2.7).

The following weighted integral inequality holds:

Theorem 4. Assume that $w : [a, b] \to (0, \infty)$ is continuous on [a, b]. If $g : [a, b] \to (0, \infty)$ \mathbb{R} are absolutely continuous on [a, b] and there exist the real numbers k < K with

$$(2.11) kw(x) \le g'(x) \le w(x) K \text{ for a.e. } x \in [a, b],$$

then we have

$$(2.12) \quad \left| \int_{a}^{b} g(t) w(t) dt - \frac{g(a) + g(b)}{2} \int_{a}^{b} w(t) dt \right| \\ \leq \int_{a}^{b} \left| g(t) - \frac{g(b) \int_{a}^{t} w(s) ds + g(a) \int_{t}^{b} w(s) ds}{\int_{a}^{b} w(t) dt} \right| w(t) dt \\ \leq \frac{1}{2(K-k)} \left[g(b) - g(a) - k \int_{a}^{b} w(t) dt \right] \left[K \int_{a}^{b} w(t) dt - g(b) + g(a) \right] \\ \leq \frac{1}{8} \left(K - k \right) \left(\int_{a}^{b} w(t) dt \right)^{2}.$$

If $|g'(x)| \leq Kw(x)$ for a.e. $x \in [a, b]$ with K > 0, then we have

$$(2.13) \quad \left| \int_{a}^{b} g(t) w(t) dt - \frac{g(a) + g(b)}{2} \int_{a}^{b} w(t) dt \right| \\ \leq \int_{a}^{b} \left| g(t) - \frac{g(b) \int_{a}^{t} w(s) ds + g(a) \int_{t}^{b} w(s) ds}{\int_{a}^{b} w(t) dt} \right| w(t) dt \\ \leq \frac{1}{4} K \left(\int_{a}^{b} w(t) dt \right)^{2} - \frac{1}{4K} \left(g(b) - g(a) \right)^{2} \leq \frac{1}{4} K \left(\int_{a}^{b} w(t) dt \right)^{2}.$$

The proof follows by Lemma 2 for $h(x) := \int_a^x w(s) \, ds$. a). If $g : [a, b] \subset (0, \infty) \to \mathbb{R}$ are absolutely continuous on [a, b] and there exist the real numbers k < K with

(2.14)
$$\frac{k}{x} \le g'(x) \le \frac{K}{x} \text{ for a.e. } x \in [a, b],$$

 $\mathbf{5}$

then

$$(2.15) \quad \left| \int_{a}^{b} \frac{g(t)}{t} dt - \frac{g(a) + g(b)}{2} \ln\left(\frac{b}{a}\right) \right|$$

$$\leq \int_{a}^{b} \left| g(t) - \frac{g(b) \ln\left(\frac{t}{a}\right) + g(a) \ln\left(\frac{b}{t}\right) s}{\ln\left(\frac{b}{a}\right)} \right| \frac{1}{t} dt$$

$$\leq \frac{1}{2(K-k)} \left[g(b) - g(a) - k \ln\left(\frac{b}{a}\right) \right] \left[K \ln\left(\frac{b}{a}\right) - g(b) + g(a) \right]$$

$$\leq \frac{1}{8} \left(K - k \right) \left(\ln\left(\frac{b}{a}\right) \right)^{2}.$$

If $|g'(x)| \leq \frac{K}{x}$ for a.e. $x \in [a, b] \subset (0, \infty)$ with K > 0, then we have

$$(2.16) \quad \left| \int_{a}^{b} \frac{g(t)}{t} dt - \frac{g(a) + g(b)}{2} \ln\left(\frac{b}{a}\right) \right|$$
$$\leq \int_{a}^{b} \left| g(t) - \frac{g(b) \ln\left(\frac{t}{a}\right) + g(a) \ln\left(\frac{b}{t}\right) s}{\ln\left(\frac{b}{a}\right)} \right| \frac{1}{t} dt$$
$$\leq \frac{1}{4} K \left(\ln\left(\frac{b}{a}\right) \right)^{2} - \frac{1}{4K} \left(g(b) - g(a)\right)^{2} \leq \frac{1}{4} K \left(\ln\left(\frac{b}{a}\right) \right)^{2}.$$

b). If $g:[a,b]\to \mathbb{R}$ are absolutely continuous on [a,b] and there exist the real numbers k < K with

(2.17)
$$k \exp x \le g'(x) \le K \exp x \text{ for a.e. } x \in [a, b],$$

$$(2.18) \quad \left| \int_{a}^{b} g(t) \exp t dt - \frac{g(a) + g(b)}{2} (\exp b - \exp a) \right|$$
$$\leq \int_{a}^{b} \left| g(t) - \frac{g(b) (\exp t - \exp a) + g(a) (\exp b - \exp t)}{(\exp b - \exp a)} \right| \exp t dt$$
$$\leq \frac{1}{2(K-k)} \left[g(b) - g(a) - k (\exp b - \exp a) \right] \left[K (\exp b - \exp a) - g(b) + g(a) \right]$$
$$\leq \frac{1}{8} (K-k) (\exp b - \exp a)^{2}.$$

If $|g'(x)| \leq K \exp(x)$ for a.e. $x \in [a, b]$ with K > 0, then we have

$$(2.19) \quad \left| \int_{a}^{b} g(t) \exp t dt - \frac{g(a) + g(b)}{2} (\exp b - \exp a) \right| \\ \leq \int_{a}^{b} \left| g(t) - \frac{g(b) (\exp t - \exp a) + g(a) (\exp b - \exp t)}{(\exp b - \exp a)} \right| \exp t dt \\ \leq \frac{1}{4} K (\exp b - \exp a)^{2} - \frac{1}{4K} (g(b) - g(a))^{2} \leq \frac{1}{4} K (\exp b - \exp a)^{2}.$$

c). If $g:[a,b] \subset (0,\infty) \to \mathbb{R}$ are absolutely continuous on [a,b] and there exist the real numbers k < K and $p \neq -1$ with

(2.20)
$$kx^{p} \leq g'(x) \leq Kx^{p} \text{ for a.e. } x \in [a, b],$$

then

$$(2.21) \quad \left| \int_{a}^{b} g(t) t^{p} dt - \frac{b^{p+1} - a^{p+1}}{p+1} \frac{g(a) + g(b)}{2} \right| \\ \leq \int_{a}^{b} \left| g(t) - \frac{g(b) \left(t^{p+1} - a^{p+1} \right) + g(a) \left(b^{p+1} - t^{p+1} \right)}{b^{p+1} - a^{p+1}} \right| t^{p} dt \\ \leq \frac{1}{2 \left(K - k \right)} \left[g(b) - g(a) - k \frac{b^{p+1} - a^{p+1}}{p+1} \right] \left[K \frac{b^{p+1} - a^{p+1}}{p+1} - g(b) + g(a) \right] \\ \leq \frac{1}{8 \left(p+1 \right)^{2}} \left(K - k \right) \left(b^{p+1} - a^{p+1} \right)^{2}.$$

If $|g'(x)| \leq Kx^p$ for a.e. $x \in [a,b] \subset (0,\infty)$ with K > 0, then we have

$$(2.22) \quad \left| \int_{a}^{b} g(t) t^{p} dt - \frac{b^{p+1} - a^{p+1}}{p+1} \frac{g(a) + g(b)}{2} \right| \\ \leq \int_{a}^{b} \left| g(t) - \frac{g(b) \left(t^{p+1} - a^{p+1}\right) + g(a) \left(b^{p+1} - t^{p+1}\right)}{b^{p+1} - a^{p+1}} \right| t^{p} dt \\ \leq \frac{1}{4 \left(p+1\right)^{2}} K \left(b^{p+1} - a^{p+1}\right)^{2} - \frac{1}{4K} \left(g(b) - g(a)\right)^{2} \leq \frac{1}{4 \left(p+1\right)^{2}} K \left(b^{p+1} - a^{p+1}\right)^{2}$$

3. Some Related Results

For two Lebesgue integrable functions $f, g : [a, b] \to \mathbb{R}$, consider the Čebyšev functional:

$$C(f,g) := \frac{1}{b-a} \int_{a}^{b} f(t)g(t)dt - \frac{1}{(b-a)^{2}} \int_{a}^{b} f(t)dt \int_{a}^{b} g(t)dt.$$

In 1935, Grüss [11] showed that

(3.1)
$$|C(f,g)| \leq \frac{1}{4} (M-m) (N-n),$$

provided that there exists the real numbers m, M, n, N such that

$$(3.2) mtext{$m \le f(t) \le M$ and $n \le g(t) \le N$ for a.e. $t \in [a,b]$}$$

The constant $\frac{1}{4}$ is best possible in (3.1) in the sense that it cannot be replaced by a smaller quantity.

The following inequality was obtained by Ostrowski in 1970, [17]:

(3.3)
$$|C(f,g)| \le \frac{1}{8} (b-a) (M-m) ||g'||_{\infty},$$

provided that f is Lebesgue integrable and satisfies (3.2) while g is absolutely continuous and $g' \in L_{\infty}[a, b]$. The constant $\frac{1}{8}$ is best possible in (3.3). In [5] we obtained the following refinement of Ostrowski's inequality:

Lemma 3. Let $f, g: [a,b] \to \mathbb{R}$ be such that g is absolutely continuous on [a,b] with $g' \in L_{\infty}[a,b]$ and f is Lebesgue integrable and satisfies (3.2), then

$$(3.4) \quad |C(f,g)| \leq \frac{1}{2} (b-a) ||g'||_{\infty} \frac{\left(\frac{1}{b-a} \int_{a}^{b} f(t) dt - m\right) \left(M - \frac{1}{b-a} \int_{a}^{b} f(t) dt\right)}{M-m} \\ \leq \frac{1}{8} ||g'||_{\infty} (b-a) (M-m).$$

As a particular case of this inequality that may be seen as a perturbed Iyengar type inequality, we have:

Corollary 1. If $f : [a, b] \to \mathbb{R}$ is absolutely continuous on [a, b] and there exist the real numbers γ , Γ with $\gamma \leq f''(x) \leq \Gamma$ for almost every (a.e.) $x \in [a, b]$, then

(3.5)
$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{12} (b - a) [f'(b) - f'(a)] - \frac{1}{b - a} \int_{a}^{b} f(t) dt \right|$$
$$\leq \frac{1}{4} (b - a)^{2} \frac{\left(\frac{f'(b) - f'(a)}{b - a} - \gamma\right) \left(\Gamma - \frac{f'(b) - f'(a)}{b - a}\right)}{\Gamma - \gamma}$$
$$\leq \frac{1}{16} (b - a)^{2} (\Gamma - \gamma).$$

In particular, if $|f''(x)| \leq \Gamma$ for almost every (a.e.) $x \in [a, b]$, then

(3.6)
$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{12} (b - a) [f'(b) - f'(a)] - \frac{1}{b - a} \int_{a}^{b} f(t) dt \right|$$
$$\leq \frac{1}{8} \Gamma (b - a)^{2} - \frac{1}{8\Gamma} [f'(b) - f'(a)]^{2}$$
$$\leq \frac{1}{8} (b - a)^{2} \Gamma.$$

Proof. Using (3.4) for f'' and $g(t) := \frac{1}{2}(t-a)(b-t)$ with $x \in [a,b]$, then we get

$$(3.7) \quad \left| \frac{1}{2(b-a)} \int_{a}^{b} (t-a) (b-t) f''(t) dt - \frac{1}{2(b-a)} \int_{a}^{b} (t-a) (b-t) dt \frac{1}{b-a} \int_{a}^{b} f''(t) dt \right|$$
$$\leq \frac{1}{2} \|g'\|_{[a,b],\infty} (b-a) \frac{\left(\frac{1}{b-a} \int_{a}^{b} f''(t) dt - \gamma\right) \left(\Gamma - \frac{1}{b-a} \int_{a}^{b} f''(t) dt\right)}{\Gamma - \gamma} \leq \frac{1}{8} \|g'\|_{[a,b],\infty} (b-a) (\Gamma - \gamma).$$

We have

$$\frac{1}{2} \int_{a}^{b} (t-a) (b-t) f''(t) dt$$

= $\frac{1}{2} (t-a) (b-t) f'(t) \Big|_{a}^{b} - \int_{a}^{b} \left(\frac{a+b}{2} - t\right) f'(t) dt$
= $\int_{a}^{b} \left(t - \frac{a+b}{2}\right) f'(t) dt = \frac{f(a) + f(b)}{2} (b-a) - \int_{a}^{b} f(t) dt$

and

$$\int_{a}^{b} (t-a) (b-t) dt = \frac{a^{2} + b^{2}}{2} (b-a) - \int_{a}^{b} t^{2} dt$$
$$= \frac{a^{2} + b^{2}}{2} (b-a) - \frac{b^{3} - a^{3}}{3}$$
$$= (b-a) \left[\frac{a^{2} + b^{2}}{2} - \frac{b^{2} + ab + a^{2}}{3} \right] = \frac{1}{6} (b-a)^{3}$$

then

$$\frac{1}{2(b-a)} \int_{a}^{b} (t-a) (b-t) f''(t) dt$$

$$-\frac{1}{2(b-a)} \int_{a}^{b} (t-a) (b-t) dt \frac{1}{b-a} \int_{a}^{b} f''(t) dt$$

$$= \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(t) dt - \frac{1}{12} (b-a) [f'(b) - f'(a)].$$

Also $g'(t) := \frac{a+b}{2} - t$, which gives $||g'||_{[a,b],\infty} = \frac{1}{2}(b-a)$ and by (3.7) we get (3.5).

Consider now the weighted Čebyšev functional

(3.8)
$$C_{w}(f,g) := \frac{1}{\int_{a}^{b} w(t) dt} \int_{a}^{b} w(t) f(t) g(t) dt - \frac{1}{\int_{a}^{b} w(t) dt} \int_{a}^{b} w(t) f(t) dt \frac{1}{\int_{a}^{b} w(t) dt} \int_{a}^{b} w(t) g(t) dt$$

where $f, g, w : [a, b] \to \mathbb{R}$ and $w(t) \ge 0$ for a.e. $t \in [a, b]$ are measurable functions such that the involved integrals exist and $\int_a^b w(t) dt > 0$.

We can also define, as above,

$$(3.9) \quad C_{h'}(f,g) := \frac{1}{h(b) - h(a)} \int_{a}^{b} f(t) g(t) h'(t) dt \\ - \frac{1}{h(b) - h(a)} \int_{a}^{b} f(t) h'(t) dt \frac{1}{h(b) - h(a)} \int_{a}^{b} g(t) h'(t) dt,$$

where h is absolutely continuous and f, g are Lebesgue measurable on [a, b] and such that the above integrals exist.

Lemma 4. Let $h : [a, b] \to [h(a), h(b)]$ be a continuous strictly increasing function that is differentiable on (a, b). If f is Lebesgue integrable and satisfies the condition $m \le f(t) \le M$ for $t \in [a, b]$ and $g : [a, b] \to \mathbb{R}$ is absolutely continuous on [a, b] and $\frac{g'}{h'}$ is essentially bounded, namely $\frac{g'}{h'} \in L_\infty\left[a,b\right],$ then we have

$$(3.10) \quad |C_{h'}(f,g)| \leq \frac{1}{2} \left[h(b) - h(a) \right] \left\| \frac{g'}{h'} \right\|_{\infty} \\ \times \frac{\left(\frac{1}{h(b) - h(a)} \int_{a}^{b} f(t) h'(t) dt - m \right) \left(M - \frac{1}{h(b) - h(a)} \int_{a}^{b} f(t) h'(t) dt \right)}{M - m} \\ \leq \frac{1}{8} \left[h(b) - h(a) \right] (M - m) \left\| \frac{g'}{h'} \right\|_{[a,b],\infty}$$

The constants $\frac{1}{2}$ and $\frac{1}{8}$ are best possible.

Proof. Since $\frac{g'}{h'} \in L_{\infty}[c,d]$, hence $(g \circ h^{-1})' \in L_{\infty}[h(c), h(d)]$. Also

$$\left\| \left(g \circ h^{-1}\right)' \right\|_{[h(c),h(d)],\infty} = \left\| \frac{g'}{h'} \right\|_{[c,d],\infty}$$

Now, if we use the refinement of Ostrowski's inequality (3.4) for the functions $f \circ h^{-1}$ and $g \circ h^{-1}$ on the interval [h(a), h(b)], then we get

$$(3.11) \quad \left| \frac{1}{h(b) - h(a)} \int_{h(a)}^{h(b)} f \circ h^{-1}(u) g \circ h^{-1}(u) du - \frac{1}{[h(b) - h(a)]^2} \int_{h(a)}^{h(b)} f \circ h^{-1}(u) du \int_{h(a)}^{h(b)} g \circ h^{-1}(u) du \right| \\ \leq \frac{1}{2} (h(b) - h(a)) \left\| (g \circ h^{-1})' \right\|_{[h(c), h(d)], \infty} \\ \times \frac{\left(\frac{1}{h(b) - h(a)} \int_{h(a)}^{h(b)} f \circ h^{-1}(t) dt - m \right) \left(M - \frac{1}{h(b) - h(a)} \int_{h(a)}^{h(b)} f(t) dt \right)}{M - m} \\ \leq \frac{1}{8} [h(b) - h(a)] (M - m) \left\| (g \circ h^{-1})' \right\|_{[h(a), h(b)], \infty}$$

since $m \leq f \circ h^{-1}(u) \leq M$ for all $u \in [h(a), h(b)]$.

Observe also that, by the change of variable $t = h^{-1}(u)$, $u \in [g(a), g(b)]$, we have u = h(t) that gives du = h'(t) dt and

$$\int_{h(a)}^{h(b)} \left(f \circ h^{-1} \right) (u) \, du = \int_{a}^{b} f(t) \, h'(t) \, dt,$$
$$\int_{h(a)}^{h(b)} g \circ h^{-1}(u) \, du = \int_{a}^{b} g(t) \, h'(t) \, dt,$$
$$\int_{h(a)}^{h(b)} f \circ h^{-1}(u) g \circ h^{-1}(u) \, du = \int_{a}^{b} f(t) \, g(t) \, h'(t) \, dt$$

and

$$\left\| \left(g \circ h^{-1}\right)' \right\|_{[h(a),h(b)],\infty} = \left\| \frac{g'}{h'} \right\|_{[a,b],\infty}$$

By making use of (3.11) we then get the desired result (3.10).

The best constant follows by the refinement of Ostrowski's inequality (3.4).

If $w : [a, b] \to \mathbb{R}$ is continuous and positive on the interval [a, b], then the function $W : [a, b] \to [0, \infty), W(x) := \int_a^x w(s) \, ds$ is strictly increasing and differentiable on (a, b). We have W'(x) = w(x) for any $x \in (a, b)$.

Theorem 5. Assume that $w : [a,b] \to (0,\infty)$ is continuous on [a,b], f is Lebesgue integrable and satisfies the condition $m \leq f(t) \leq M$ for $t \in [a,b]$ and $g : [a,b] \to \mathbb{R}$ is absolutely continuous on [a,b] with $\frac{g'}{w}$ is essentially bounded, namely $\frac{g'}{w} \in L_{\infty}[a,b]$, then we have

$$(3.12) \quad |C_w(f,g)| \le \frac{1}{2(M-m)} \left\| \frac{g'}{w} \right\|_{\infty} \\ \times \left(\frac{\int_a^b f(t) w(t) dt}{\int_a^b w(s) ds} - m \right) \left(M - \frac{\int_a^b f(t) w(t) dt}{\int_a^b w(s) ds} \right) \int_a^b w(s) ds \\ \le \frac{1}{8} (M-m) \left\| \frac{g'}{w} \right\|_{[a,b],\infty} \int_a^b w(s) ds.$$

The constant $\frac{1}{8}$ is best possible.

Remark 1. Under the assumptions of Theorem 5 and if there exists a constant K > 0 such that $|g'(t)| \le Kw(t)$ for a.e. $t \in [a, b]$, then by (3.12) we get

$$(3.13) \quad |C_w(f,g)| \le \frac{1}{2(M-m)}K$$

$$\times \left(\frac{\int_a^b f(t)w(t)dt}{\int_a^b w(s)ds} - m\right) \left(M - \frac{\int_a^b f(t)w(t)dt}{\int_a^b w(s)ds}\right) \int_a^b w(s)ds$$

$$\le \frac{1}{8}(M-m)K\int_a^b w(s)ds.$$

a). For $w(t) = \frac{1}{\ell(t)} = \ell^{-1}(t), t \in [a, b] \subset (0, \infty)$, where $\ell(t) = t$, define

$$(3.14) \quad C_{\ell^{-1}}(f,g) := \frac{1}{\ln\left(\frac{b}{a}\right)} \int_{a}^{b} \frac{f(t)g(t)}{t} dt - \frac{1}{\ln\left(\frac{b}{a}\right)} \int_{a}^{b} \frac{f(t)}{t} dt \frac{1}{\ln\left(\frac{b}{a}\right)} \int_{a}^{b} \frac{g(t)}{t} dt.$$

If $m \leq f(t) \leq M$ for $t \in [a, b]$ and $g : [a, b] \to \mathbb{R}$ is absolutely continuous on [a, b] with $\ell g'$ is essentially bounded, namely $\ell g' \in L_{\infty}[a, b]$, then we have

$$(3.15) \quad |C_{\ell^{-1}}(f,g)| \leq \frac{1}{2} \|\ell g'\|_{[a,b],\infty} \frac{\left(\frac{1}{\ln\left(\frac{b}{a}\right)} \int_{a}^{b} \frac{f(t)}{t} dt - m\right) \left(M - \frac{1}{\ln\left(\frac{b}{a}\right)} \int_{a}^{b} \frac{f(t)}{t} dt\right)}{M - m} \ln\left(\frac{b}{a}\right) \leq \frac{1}{8} \left(M - m\right) \|\ell g'\|_{[a,b],\infty} \ln\left(\frac{b}{a}\right).$$

b). For $w(t) = \exp t, t \in [a, b]$, define

(3.16)
$$C_{\exp}(f,g) := \frac{1}{\exp b - \exp a} \int_{a}^{b} f(t) g(t) \exp t dt$$
$$- \frac{1}{\exp b - \exp a} \int_{a}^{b} f(t) \exp t dt \frac{1}{\exp b - \exp a} \int_{a}^{b} g(t) \exp t dt$$

If $m \leq f(t) \leq M$ for $t \in [a, b]$ and $g: [a, b] \to \mathbb{R}$ is absolutely continuous on [a, b] with $\frac{g'}{\exp}$ is essentially bounded, namely $\frac{g'}{\exp} \in L_{\infty}[a, b]$, then we have

$$(3.17) \quad |C_{\exp}(f,g)| \leq \frac{1}{2(M-m)} \left\| \frac{g'}{\exp} \right\|_{[a,b],\infty} \left(\frac{\int_a^b f(t) \exp t dt}{\exp b - \exp a} - m \right) \left(M - \frac{\int_a^b f(t) \exp t dt}{\exp b - \exp a} \right) \\ \times (\exp b - \exp a) \leq \frac{1}{8} (M-m) \left\| \frac{g'}{\exp} \right\|_{[a,b],\infty} (\exp b - \exp a)$$

c). For $w(t) = \ell^{p}(t), t \in [a, b] \subset (0, \infty)$, where $\ell(t) = t$ and $p \neq -1$, define

(3.18)
$$C_{\ell^{p}}(f,g) := \frac{p+1}{b^{p+1} - a^{p+1}} \int_{a}^{b} t^{p} f(t) g(t) dt - \frac{p+1}{b^{p+1} - a^{p+1}} \int_{a}^{b} t^{p} f(t) dt \frac{p+1}{b^{p+1} - a^{p+1}} \int_{a}^{b} t^{p} g(t) dt.$$

If $m \leq f(t) \leq M$ for $t \in [a, b]$ and $g : [a, b] \to \mathbb{R}$ is absolutely continuous on [a, b] with $g'\ell^{-p}$ is essentially bounded, namely $g'\ell^{-p} \in L_{\infty}[a, b]$, then we have

$$(3.19) \quad |C_{\ell^{p}}(f,g)| \leq \frac{b^{p+1} - a^{p+1}}{2(p+1)(M-m)} \left\| g'\ell^{-p} \right\|_{\infty} \\ \times \left(\frac{p+1}{b^{p+1} - a^{p+1}} \int_{a}^{b} f(t) t^{p} dt - m \right) \left(M - \frac{p+1}{b^{p+1} - a^{p+1}} \int_{a}^{b} f(t) t^{p} dt \right) \\ \leq \frac{b^{p+1} - a^{p+1}}{8(p+1)} (M-m) \left\| g'\ell^{-p} \right\|_{[a,b],\infty}.$$

We have:

Lemma 5. Let $h : [a, b] \to [h(a), h(b)]$ be a continuous strictly increasing function that is twice differentiable on (a, b). If $g : [a, b] \to \mathbb{R}$ has an absolutely continuous derivative on [a, b] and there exist the real numbers n < N with

(3.20)
$$\phi \leq \frac{g''(x) h'(x) - g'(x) h''(x)}{[h'(x)]^3} \leq \Phi \text{ for a.e. } x \in [a, b],$$

then we have

$$(3.21) \quad \left| \frac{g(a) + g(b)}{2} - \frac{1}{12} (h(b) - h(a)) \left[\frac{g'(b)}{h'(b)} - \frac{g'(a)}{h'(a)} \right] - \frac{1}{h(b) - h(a)} \int_{a}^{b} g(t) h^{-1}(t) dt \right|$$
$$\leq \frac{1}{4} \frac{[h(b) - h(a)]^{2}}{\Phi - \phi} \left(\frac{\frac{g'(b)}{h'(b)} - \frac{g'(a)}{h'(a)}}{h(b) - h(a)} - \phi \right) \left(\Phi - \frac{\frac{g'(b)}{h'(b)} - \frac{g'(a)}{h'(a)}}{h(b) - h(a)} \right)$$
$$\leq \frac{1}{16} [h(b) - h(a)]^{2} (\Phi - \phi).$$

In particular, if

(3.22)
$$\left| \frac{g''(x) h'(x) - g'(x) h''(x)}{[h'(x)]^3} \right| \le \Phi \text{ for a.e. } x \in [a, b]$$

then

$$(3.23) \quad \left| \frac{g(a) + g(b)}{2} - \frac{1}{12} (h(b) - h(a)) \left[\frac{g'(b)}{h'(b)} - \frac{g'(a)}{h'(a)} \right] - \frac{1}{h(b) - h(a)} \int_{a}^{b} g(t) h^{-1}(t) dt \right|$$
$$\leq \frac{1}{8} \Phi \left[h(b) - h(a) \right]^{2} - \frac{1}{8\Phi} \left[\frac{g'(b)}{h'(b)} - \frac{g'(a)}{h'(a)} \right]^{2} \leq \frac{1}{8} \left[h(b) - h(a) \right]^{2} \Phi.$$

Proof. We observe that the function $f := g \circ h^{-1}$ has an absolutely continuous derivative on [h(a), h(b)] and using the chain rule and the derivative of inverse functions we have

$$\begin{split} \left(g \circ h^{-1}\right)''(z) &= \left(\frac{\left(g' \circ h^{-1}\right)(z)}{\left(h' \circ h^{-1}\right)(z)}\right)' \\ &= \frac{\left(g' \circ h^{-1}\right)'(z)\left(h' \circ h^{-1}\right)(z) - \left(g' \circ h^{-1}\right)(z)\left(h' \circ h^{-1}\right)'(z)}{\left[\left(h' \circ h^{-1}\right)(z)\right]^2} \\ &= \frac{\frac{\left(g'' \circ h^{-1}\right)(z)}{\left(h' \circ h^{-1}\right)(z)}\left(h' \circ h^{-1}\right)(z) - \left(g' \circ h^{-1}\right)(z)\frac{\left(h'' \circ h^{-1}\right)(z)}{\left(h' \circ h^{-1}\right)(z)}}{\left[\left(h' \circ h^{-1}\right)(z)\right]^2} \\ &= \frac{\left(g'' \circ h^{-1}\right)(z)\left(h' \circ h^{-1}\right)(z) - \left(g' \circ h^{-1}\right)(z)\left(h'' \circ h^{-1}\right)(z)}{\left[\left(h' \circ h^{-1}\right)(z)\right]^3} \end{split}$$

for almost every (a.e.) $z \in [h(a), h(b)]$. If $x \in [a, b]$ and we put z = h(x), then

$$\begin{split} & \left(g \circ h^{-1}\right)''(h\left(x\right)) \\ & = \frac{\left(g'' \circ h^{-1}\right)(h\left(x\right))\left(h' \circ h^{-1}\right)(h\left(x\right)) - \left(g' \circ h^{-1}\right)(h\left(x\right))\left(h'' \circ h^{-1}\right)(h\left(x\right))\right)}{\left[\left(h' \circ h^{-1}\right)(h\left(x\right))\right]^3} \\ & = \frac{g''\left(x\right)h'\left(x\right) - g'\left(x\right)h''\left(x\right)}{\left[h'\left(x\right)\right]^3} \in [\phi, \Phi] \,. \end{split}$$

If we use the inequality (3.5) for $f = g \circ h^{-1}$ and the interval [h(a), h(b)], then we get

$$\begin{split} \left| \frac{g \circ h^{-1} \left(h\left(a \right) \right) + g \circ h^{-1} \left(h\left(b \right) \right)}{2} \\ &- \frac{1}{12} \left(h\left(b \right) - h\left(a \right) \right) \left[\frac{\left(g' \circ h^{-1} \right) \left(h\left(b \right) \right)}{\left(h' \circ h^{-1} \right) \left(h\left(b \right) \right)} - \frac{\left(g' \circ h^{-1} \right) \left(h\left(a \right) \right)}{\left(h' \circ h^{-1} \right) \left(h\left(a \right) \right)} \right] \\ &- \frac{1}{h\left(b \right) - h\left(a \right)} \int_{h\left(a \right)}^{h\left(b \right)} \left(g \circ h^{-1} \right) \left(z \right) dz \\ &\leq \frac{1}{4} \frac{\left(h\left(b \right) - h\left(a \right) \right)^2}{\Phi - \phi} \\ \times \left(\frac{\left(\frac{\left(g' \circ h^{-1} \right) \left(h\left(b \right) \right)}{\left(h' \circ h^{-1} \right) \left(h\left(a \right) \right)} - \frac{\left(g' \circ h^{-1} \right) \left(h\left(a \right) \right)}{\left(h' \circ h^{-1} \right) \left(h\left(b \right) \right)} - \frac{\left(g' \circ h^{-1} \right) \left(h\left(a \right) \right)}{\left(h' \circ h^{-1} \right) \left(h\left(b \right) \right)} - h\left(a \right)} \right) \\ &\leq \frac{1}{16} \left[h\left(b \right) - h\left(a \right) \right]^2 \left(\Phi - \phi \right), \end{split}$$

which is equivalent to (3.21).

Theorem 6. Assume that $w : [a,b] \to (0,\infty)$ is absolutely continuous on [a,b], $g : [a,b] \to \mathbb{R}$ has an absolutely continuous derivative on [a,b] and there exist the real numbers $\phi < \Phi$ with

(3.24)
$$\phi \leq \frac{g''(x) w(x) - g'(x) w'(x)}{w^3(x)} \leq \Phi \text{ for a.e. } x \in [a, b],$$

 $then \ we \ have$

$$(3.25) \quad \left| \frac{g(a) + g(b)}{2} - \frac{1}{12} \left[\frac{g'(b)}{w(b)} - \frac{g'(a)}{w(a)} \right] \int_{a}^{b} w(s) \, ds - \frac{1}{\int_{a}^{b} w(s) \, ds} \int_{a}^{b} g(t) \, w(t) \, dt \right|$$
$$\leq \frac{1}{4} \frac{\left(\int_{a}^{b} w(s) \, ds \right)^{2}}{\Phi - \phi} \left(\frac{\frac{g'(b)}{w(b)} - \frac{g'(a)}{w(a)}}{\int_{a}^{b} w(s) \, ds} - \phi \right) \left(\Phi - \frac{\frac{g'(b)}{w(b)} - \frac{g'(a)}{w(a)}}{\int_{a}^{b} w(s) \, ds} \right)$$
$$\leq \frac{1}{16} \left(\Phi - \phi \right) \left(\int_{a}^{b} w(s) \, ds \right)^{2}.$$

In particular, if

$$(3.26) \qquad \left|\frac{g''\left(x\right)w\left(x\right) - g'\left(x\right)w'\left(x\right)}{w^{3}\left(x\right)}\right| \le \Phi \text{ for a.e. } x \in [a, b],$$

then

$$(3.27) \quad \left| \frac{g(a) + g(b)}{2} - \frac{1}{12} \left[\frac{g'(b)}{w(b)} - \frac{g'(a)}{w(a)} \right] \int_{a}^{b} w(s) \, ds - \frac{1}{\int_{a}^{b} w(s) \, ds} \int_{a}^{b} g(t) \, w(t) \, dt \right| \\ \leq \frac{1}{8} \Phi \left(\int_{a}^{b} w(s) \, ds \right)^{2} - \frac{1}{8\Phi} \left[\frac{g'(b)}{w(b)} - \frac{g'(a)}{w(a)} \right]^{2} \leq \frac{1}{8} \Phi \left(\int_{a}^{b} w(s) \, ds \right)^{2}.$$

a). Assume that $g:[a,b] \subset (0,\infty) \to \mathbb{R}$ has an absolutely continuous derivative on [a,b] and there exist the real numbers $\phi < \Phi$ with

(3.28)
$$\phi \leq g''(x) x^2 + g'(x) x \leq \Phi \text{ for a.e. } x \in [a, b],$$

then by (3.25) for $w(t) = \frac{1}{t}$ we get

$$(3.29) \quad \left| \frac{g(a) + g(b)}{2} - \frac{1}{12} \left[g'(b) b - g'(a) a \right] \ln\left(\frac{b}{a}\right) - \frac{1}{\ln\left(\frac{b}{a}\right)} \int_{a}^{b} \frac{g(t)}{t} dt \right|$$
$$\leq \frac{1}{4} \frac{\left(\ln\left(\frac{b}{a}\right)\right)^{2}}{\Phi - \phi} \left(\frac{g'(b) b - g'(a) a}{\ln\left(\frac{b}{a}\right)} - \phi \right) \left(\Phi - \frac{g'(b) b - g'(a) a}{\ln\left(\frac{b}{a}\right)} \right)$$
$$\leq \frac{1}{16} \left(\Phi - \phi \right) \left(\ln\left(\frac{b}{a}\right) \right)^{2}.$$

b). Assume that $g:[a,b] \subset (0,\infty) \to \mathbb{R}$ has an absolutely continuous derivative on [a,b] and there exist the real numbers $\phi < \Phi$ with

(3.30)
$$\phi \leq \frac{g''(x) - g'(x)}{\exp(2x)} \leq \Phi \text{ for a.e. } x \in [a, b],$$

then by (3.25) for $w(t) = \exp t$ we get

$$(3.31) \quad \left| \frac{g(a) + g(b)}{2} - \frac{1}{12} \left[g'(b) \exp(-b) - g'(a) \exp(-a) \right] (\exp b - \exp a) - \frac{1}{(\exp b - \exp a)} \int_{a}^{b} g(t) \exp t dt \right] \\ \leq \frac{1}{4} \frac{(\exp b - \exp a)^{2}}{\Phi - \phi} \\ \times \left(\frac{g'(b) \exp(-b) - g'(a) \exp(-a)}{\exp b - \exp a} - \phi \right) \left(\Phi - \frac{g'(b) \exp(-b) - g'(a) \exp(-a)}{\exp b - \exp a} \right) \\ \leq \frac{1}{16} \left(\Phi - \phi \right) (\exp b - \exp a)^{2}.$$

c). Assume that $g : [a, b] \subset (0, \infty) \to \mathbb{R}$ has an absolutely continuous derivative on [a, b] and there exist the real numbers $\phi < \Phi$ with

(3.32)
$$\phi \leq \frac{g''(x) x - pg'(x)}{x^{2p+1}} \leq \Phi \text{ for a.e. } x \in [a, b], \ p \neq -1,$$

then by (3.25) for $w(t) = t^p$ we get

$$(3.33) \quad \left| \frac{g(a) + g(b)}{2} - \frac{b^{p+1} - a^{p+1}}{12(p+1)} \left[g'(b) b^{-p} - g'(a) a^{-p} \right] - \frac{p+1}{b^{p+1} - a^{p+1}} \int_{a}^{b} g(t) t^{p} dt \right| \\ \leq \frac{1}{4} \frac{\left(b^{p+1} - a^{p+1} \right)^{2}}{(p+1)^{2} (\Phi - \phi)} \\ \times \left(\frac{\left(p+1 \right) \left(g'(b) b^{-p} - g'(a) a^{-p} \right)}{b^{p+1} - a^{p+1}} - \phi \right) \left(\Phi - \frac{(p+1) \left(g'(b) b^{-p} - g'(a) a^{-p} \right)}{b^{p+1} - a^{p+1}} \right) \\ \leq \frac{1}{16} \left(\Phi - \phi \right) \frac{\left(b^{p+1} - a^{p+1} \right)^{2}}{(p+1)^{2}}.$$

References

- [1] R. P. Agarwal and S. S. Dragomir, An application of Hayashi's inequality for differentiable functions, Computers Math. Appl., 32(6) (1996), 95-99.
- [2] V. Čuljak and N. Elezović, A note on Steffensen's and Iyengar's inequality. Glas. Mat. Ser. III 33(53) (1998), no. 2, 167–171.
- [3] P. Cerone and S. S. Dragomir, On a weighted generalization of Iyengar type inequalities involving bounded first derivative. Math. Inequal. Appl. 3 (2000), no. 1, 35-44.
- [4] X.-L. Cheng, The Iyengar-type inequality. Appl. Math. Lett. 14 (2001), no. 8, 975–978.
- [5] S. S. Dragomir, A refinement of Ostrowski's inequality for the Cebysev functional and applications, Analysis (Berlin) 23 (2003), 287-297.
- [6] S. S. Dragomir and S. Wang, Applications of Iyengar's type inequalities to the estimation of error bounds for the trapezoidal quadrature rule, Tamkang Journal of Mathematics, 29(1) (1998), 55-58.
- [7] S. S. Dragomir, Y. J. Cho and S. S. Kim, Some remarks on the Milovanović-Pečarić Inequality and in Applications for special means and numerical integration., Tamkang J. Math. 30 (1999), no. 3, 203-211.
- [8] I. Franjić, J. Pečarić and I. Perić, Iyengar type estimate of error in trapezoidal rule. Int. J. Pure Appl. Math. 26 (2006), no. 3, 285–295.
- [9] I. Franjić, J. Pečarić and I. Perić, Note on an Iyengar type inequality. Appl. Math. Lett. 19 (2006), no. 7, 657-660.
- [10] I. Franjić, J. Pečarić and I. Perić, Weighted generalizations of Iyengar type inequalities. Indian J. Pure Appl. Math. 38 (2007), no. 4, 291-304.
- [11] G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_a^b f(x)g(x)dx$ $\frac{1}{(b-a)^2} \int_a^b f(x) dx \int_a^b g(x) dx, Math. Z.,$ **39**(1935), 215-226.[12] Z. Liu, Note on Iyengar's inequality. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. **16**
- (2005), 29-35.
- [13] Y. Miao, A note on Ivengar type inequality. East J. Approx. 15 (2009), no. 4, 451–457.
- [14] G. V. Milovanović and J. E. Pečarić, Some considerations on Iyengar's inequality and some related applications. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 544-576 (1976), 166-170.
- [15] D. S. Mitrinović, J. E. Pećarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.
- [16] D. S. Mitrinović, J. E. Pećarić and A. M. Fink, Inequalities for Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, 1994.
- [17] A. M. Ostrowski, On an integral inequality, Aequat. Math., 4 (1970), 358-373.
- [18] F. Qi, P. Cerone and S. S. Dragomir, Some new Iyengar type inequalities. Rocky Mountain J. Math. 35 (2005), no. 3, 997-1015.
- [19] P. M. Vasić and G. V. Milovanović, On an inequality of Iyengar. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 544-576 (1976), 18-24.

- [20] X. H. Wang, C. C. Xie and S. J. Yang, The Iyengar inequality, revisited. BIT 47 (2007), no. 4, 839–852.
- [21] L. Xu, and Yu. Hu, Some new Iyengar type inequalities. Adv. Stud. Contemp. Math. (Kyungshang) 23 (2013), no. 4, 671–675.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA