
SOME IYENGAR TYPE WEIGHTED INTEGRAL INEQUALITIES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we obtain some weighted integral inequalities related
to the celebrated results of Iyengar and Ostrowski. Particular cases for some
weights of interest are given as well.

1. Introduction

In 1938, Iyengar proved the following theorem obtaining bounds for a trapezoidal
quadrature rule for functions whose derivative are bounded (see for example [16, p.
471]).

Theorem 1. Let f be a di¤erentiable function on (a; b) and assume that there is
a constant M > 0 such that jf 0 (x)j �M;for any x 2 (a; b) : Then we have

(1.1)

�����
Z b

a

f (x) dx� (b� a) f (a) + f (b)
2

����� � M (b� a)2

4
� 1

4M
(f (a)� f (b))2 :

Using a classical inequality due to Hayashi (see for example, [15, pp. 311-312]),
Agarwal and Dragomir proved in [1] the following generalization of Theorem 1.

Theorem 2. Let f : I � R 7! R be a di¤erentiable mapping in °I, the interior
of I, and let a; b 2 �I with a < b: Let M = supx2[a;b] f

0 (x) < 1 and m =

infx2[a;b] f
0 (x) > �1: If m < M; then we have�����

Z b

a

f (t) dt� (b� a) f (a) + f (b)
2

�����(1.2)

� [f (b)� f (a)�m (b� a)] [M (b� a)� f (b) + f (a)]
2 (M �m)

� 1

8
(M �m) (b� a)2 :

Thus, by placing m = �M in (1.2) the Iyengar�s result (1.1) is recovered.
As pointed out in [12], it should be noted that Theorem 1 and Theorem 2 are

equivalent, in the sense that we can also obtain Theorem 2 from Theorem 1. Indeed,
we can write the condition m � f 0 (x) � M for x 2 [a; b] as

��f 0 (x)� m+M
2

�� �
1
2 (M �m) for x 2 [a; b] : Let g (x) := f (x)� m+M

2 x and M1 :=
1
2 (M �m) and if

we apply Theorem 1 for g and M1; then we get Theorem 2.
For some Iyengar type inequalities see [2]-[4], [7]-[10], [12]-[14] and [18]-[21].
Motivated by the above results, in this paper we obtain some weighted integral

inequalities related to (1.1), (1.2) and Ostrowski�s result from 1970 regarding an
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2 S. S. DRAGOMIR

upper bound for the absolute value of µCeby�ev�s functional. Particular cases for
some weights of interest are given as well.

2. Weighted Iyengar Type Inequalities

In [5] we obtained the following inequality:

Lemma 1. Let h : [a; b]! R be an integrable function on [a; b] such that

�1 < 
 � h (x) � � <1 for a.e. x on [a; b] :

Then we have the inequality

1

b� a

Z b

a

�����
Z x

a

h (t) dt� x� a
b� a

Z b

a

h (u) du

����� dx(2.1)

� 1

2

 
1

b� a

Z b

a

h (u) du� 

! 

�� 1

b� a

Z b

a

h (u) du

!
b� a
�� 


� 1

8
(�� 
) (b� a) ;

with the constants 1
2 and

1
8 best possible.

Using this fact, we can improve the Agarwal-Dragomir inequality (1.2) and Iyen-
gar inequality (1.1) as follows:

Theorem 3. If f : [a; b]! R is absolutely continuous on [a; b] and there exist the
real numbers m; M with m � f 0 (x) �M for almost every (a.e.) x 2 [a; b] ; then�����

Z b

a

f (t) dt� (b� a) f (a) + f (b)
2

�����(2.2)

�
Z b

a

����f (x)� (x� a) f (b) + (b� x) f (a)b� a

���� dx
� [f (b)� f (a)�m (b� a)] [M (b� a)� f (b) + f (a)]

2 (M �m)

� 1

8
(M �m) (b� a)2 :

If jf 0 (x)j �M for a.e. x 2 [a; b] with M > 0; then�����
Z b

a

f (t) dt� (b� a) f (a) + f (b)
2

�����(2.3)

�
Z b

a

����f (x)� (x� a) f (b) + (b� x) f (a)b� a

���� dx
� M (b� a)2

4
� 1

4M
(f (a)� f (b))2 � M (b� a)2

4
:
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Proof. We observe that, if we take h (t) = f 0 (t) ; thenZ x

a

h (t) dt� x� a
b� a

Z b

a

h (u) du =

Z x

a

f 0 (t) dt� x� a
b� a

Z b

a

f 0 (u) du

= f (x)� f (a)� x� a
b� a [f (b)� f (a)]

= f (x)� (x� a) f (b) + (b� x) f (a)
b� a

and by (2.1) we get

1

b� a

Z b

a

����f (x)� (x� a) f (b) + (b� x) f (a)b� a

���� dx(2.4)

� 1

2

�
f (b)� f (a)

b� a �m
��

M � f (b)� f (a)
b� a

�
b� a
M �m

� 1

8
(M �m) (b� a) ;

provided m � f 0 (x) �M for a.e. x 2 [a; b] :
By the properties of modulus and integral we also haveZ b

a

����f (x)� (x� a) f (b) + (b� x) f (a)b� a

���� dx(2.5)

�
�����
Z b

a

f (x) dx�
Z b

a

(x� a) f (b) + (b� x) f (a)
b� a dx

�����
=

�����
Z b

a

f (x) dx� (b� a) f (a) + f (b)
2

����� ;
which completes the proof of (2.2). �

In order to extend the Iyengar type inequalities presented above for weighted
integrals, we need the following result as well:

Lemma 2. Let h : [a; b]! [h (a) ; h (b)] be a continuous strictly increasing function
that is di¤erentiable on (a; b) : If g : [a; b] ! R are absolutely continuous on [a; b]
and there exist the real numbers k < K with

(2.6) k � g0 (x)

h0 (x)
� K for a.e. x 2 [a; b] ;

then we have

(2.7)

�����
Z b

a

g (t)h0 (t) dt� (h (b)� h (a)) g (a) + g (b)
2

�����
�
Z b

a

����g (t)� (h (t)� h (a)) g (b) + (h (b)� h (t)) g (a)h (b)� h (a)

����h0 (t) dt
� 1

2 (K � k) [g (b)� g (a)� k (h (b)� h (a))] [K (h (b)� h (a))� g (b) + g (a)]

� 1

8
(K � k) (h (b)� h (a))2 :
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If
��� g0(x)h0(x)

��� � K for a.e. x 2 [a; b] with K > 0; then we have

(2.8)

�����
Z b

a

g (t)h0 (t) dt� (h (b)� h (a)) g (a) + g (b)
2

�����
�
Z b

a

����g (t)� (h (t)� h (a)) g (b) + (h (b)� h (t)) g (a)h (b)� h (a)

����h0 (t) dt
� 1

4
K (h (b)� h (a))2 � 1

4K
(g (b)� g (a))2 � 1

4
K (h (b)� h (a))2 :

Proof. We observe that the function f := g � h�1 is absolutely continuous on
[h (a) ; h (b)] and using the chain rule and the derivative of inverse functions we
have

(2.9)
�
g � h�1

�0
(z) =

�
g0 � h�1

�
(z)
�
h�1

�0
(z) =

�
g0 � h�1

�
(z)

(h0 � h�1) (z)
for almost every (a.e.) z 2 [h (c) ; h (d)] :
By the condition (2.6) we have

k �
�
g � h�1

�0
(z) � K for a.e. z 2 [h (c) ; h (d)] :

If we use the inequality (2.2) for the function f := g�h�1 on the interval [h (a) ; h (b)] ;
then we get�����
Z h(b)

h(a)

�
g � h�1

�
(z) dz � (h (b)� h (a))

�
g � h�1

�
(h (a)) +

�
g � h�1

�
(h (b))

2

�����
�
Z h(b)

h(a)

������g � h�1� (z)� (z � h (a))
�
g � h�1

�
(h (b)) + (h (b)� z)

�
g � h�1

�
(h (a))

h (b)� h (a)

����� dz
� 1

2 (K � k)
��
g � h�1

�
(h (b))�

�
g � h�1

�
(h (a))� k (h (b)� h (a))

�
�
�
K (h (b)� h (a))�

�
g � h�1

�
(h (b)) +

�
g � h�1

�
(h (a))

�
� 1

8
(K � k) (h (b)� h (a))2 ;

which is equivalent to

(2.10)

�����
Z h(b)

h(a)

�
g � h�1

�
(z) dz � (h (b)� h (a)) g (a) + g (b)

2

�����
�
Z h(b)

h(a)

�����g � h�1� (z)� (z � h (a)) g (b) + (h (b)� z) g (a)h (b)� h (a)

���� dz
� 1

2 (K � k) [g (b)� g (a)� k (h (b)� h (a))] [K (h (b)� h (a))� g (b) + g (a)]

� 1

8
(K � k) (h (b)� h (a))2 :

If we change the variable t = h�1 (z) ; z 2 [h (c) ; h (d)] ; then we have z = h (t) ;
which gives dz = h0 (t) dt;Z h(b)

h(a)

�
g � h�1

�
(z) dz =

Z b

a

g (t)h0 (t) dt;
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h(a)

�����g � h�1� (z)� (z � h (a)) g (b) + (h (b)� z) g (a)h (b)� h (a)

���� dz
=

Z b

a

����g (t)� (h (t)� h (a)) g (b) + (h (b)� h (t)) g (a)h (b)� h (a)

����h0 (t) dt
and by (2.10) we get the desired result (2.7). �

The following weighted integral inequality holds:

Theorem 4. Assume that w : [a; b]! (0;1) is continuous on [a; b] : If g : [a; b]!
R are absolutely continuous on [a; b] and there exist the real numbers k < K with

(2.11) kw (x) � g0 (x) � w (x)K for a.e. x 2 [a; b] ;

then we have

(2.12)

�����
Z b

a

g (t)w (t) dt� g (a) + g (b)
2

Z b

a

w (t) dt

�����
�
Z b

a

�����g (t)� g (b)
R t
a
w (s) ds+ g (a)

R b
t
w (s) dsR b

a
w (t) dt

�����w (t) dt
� 1

2 (K � k)

"
g (b)� g (a)� k

Z b

a

w (t) dt

#"
K

Z b

a

w (t) dt� g (b) + g (a)
#

� 1

8
(K � k)

 Z b

a

w (t) dt

!2
:

If jg0 (x)j � Kw (x) for a.e. x 2 [a; b] with K > 0; then we have

(2.13)

�����
Z b

a

g (t)w (t) dt� g (a) + g (b)
2

Z b

a

w (t) dt

�����
�
Z b

a

�����g (t)� g (b)
R t
a
w (s) ds+ g (a)

R b
t
w (s) dsR b

a
w (t) dt

�����w (t) dt
� 1

4
K

 Z b

a

w (t) dt

!2
� 1

4K
(g (b)� g (a))2 � 1

4
K

 Z b

a

w (t) dt

!2
:

The proof follows by Lemma 2 for h (x) :=
R x
a
w (s) ds:

a). If g : [a; b] � (0;1) ! R are absolutely continuous on [a; b] and there exist
the real numbers k < K with

(2.14)
k

x
� g0 (x) � K

x
for a.e. x 2 [a; b] ;
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then

(2.15)

�����
Z b

a

g (t)

t
dt� g (a) + g (b)

2
ln

�
b

a

������
�
Z b

a

�����g (t)� g (b) ln
�
t
a

�
+ g (a) ln

�
b
t

�
s

ln
�
b
a

� ����� 1t dt
� 1

2 (K � k)

�
g (b)� g (a)� k ln

�
b

a

���
K ln

�
b

a

�
� g (b) + g (a)

�
� 1

8
(K � k)

�
ln

�
b

a

��2
:

If jg0 (x)j � K
x for a.e. x 2 [a; b] � (0;1) with K > 0; then we have

(2.16)

�����
Z b

a

g (t)

t
dt� g (a) + g (b)

2
ln

�
b

a

������
�
Z b

a

�����g (t)� g (b) ln
�
t
a

�
+ g (a) ln

�
b
t

�
s

ln
�
b
a

� ����� 1t dt
� 1

4
K

�
ln

�
b

a

��2
� 1

4K
(g (b)� g (a))2 � 1

4
K

�
ln

�
b

a

��2
:

b). If g : [a; b] ! R are absolutely continuous on [a; b] and there exist the real
numbers k < K with

(2.17) k expx � g0 (x) � K expx for a.e. x 2 [a; b] ;

(2.18)

�����
Z b

a

g (t) exp tdt� g (a) + g (b)
2

(exp b� exp a)
�����

�
Z b

a

����g (t)� g (b) (exp t� exp a) + g (a) (exp b� exp t)(exp b� exp a)

���� exp tdt
� 1

2 (K � k) [g (b)� g (a)� k (exp b� exp a)] [K (exp b� exp a)� g (b) + g (a)]

� 1

8
(K � k) (exp b� exp a)2 :

If jg0 (x)j � K exp (x) for a.e. x 2 [a; b] with K > 0; then we have

(2.19)

�����
Z b

a

g (t) exp tdt� g (a) + g (b)
2

(exp b� exp a)
�����

�
Z b

a

����g (t)� g (b) (exp t� exp a) + g (a) (exp b� exp t)(exp b� exp a)

���� exp tdt
� 1

4
K (exp b� exp a)2 � 1

4K
(g (b)� g (a))2 � 1

4
K (exp b� exp a)2 :

c). If g : [a; b] � (0;1) ! R are absolutely continuous on [a; b] and there exist
the real numbers k < K and p 6= �1 with
(2.20) kxp � g0 (x) � Kxp for a.e. x 2 [a; b] ;
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then

(2.21)

�����
Z b

a

g (t) tpdt� b
p+1 � ap+1
p+ 1

g (a) + g (b)

2

�����
�
Z b

a

�����g (t)� g (b)
�
tp+1 � ap+1

�
+ g (a)

�
bp+1 � tp+1

�
bp+1 � ap+1

����� tpdt
� 1

2 (K � k)

�
g (b)� g (a)� k b

p+1 � ap+1
p+ 1

� �
K
bp+1 � ap+1
p+ 1

� g (b) + g (a)
�

� 1

8 (p+ 1)
2 (K � k)

�
bp+1 � ap+1

�2
:

If jg0 (x)j � Kxp for a.e. x 2 [a; b] � (0;1) with K > 0; then we have

(2.22)

�����
Z b

a

g (t) tpdt� b
p+1 � ap+1
p+ 1

g (a) + g (b)

2

�����
�
Z b

a

�����g (t)� g (b)
�
tp+1 � ap+1

�
+ g (a)

�
bp+1 � tp+1

�
bp+1 � ap+1

����� tpdt
� 1

4 (p+ 1)
2K

�
bp+1 � ap+1

�2� 1

4K
(g (b)� g (a))2 � 1

4 (p+ 1)
2K

�
bp+1 � ap+1

�2
:

3. Some Related Results

For two Lebesgue integrable functions f; g : [a; b] ! R, consider the µCeby�ev
functional :

C (f; g) :=
1

b� a

Z b

a

f(t)g(t)dt� 1

(b� a)2
Z b

a

f(t)dt

Z b

a

g(t)dt:

In 1935, Grüss [11] showed that

(3.1) jC (f; g)j � 1

4
(M �m) (N � n) ;

provided that there exists the real numbers m; M; n; N such that

(3.2) m � f (t) �M and n � g (t) � N for a.e. t 2 [a; b] :

The constant 1
4 is best possible in (3.1) in the sense that it cannot be replaced by

a smaller quantity.
The following inequality was obtained by Ostrowski in 1970, [17]:

(3.3) jC (f; g)j � 1

8
(b� a) (M �m) kg0k1 ;

provided that f is Lebesgue integrable and satis�es (3.2) while g is absolutely con-
tinuous and g0 2 L1 [a; b] : The constant 18 is best possible in (3.3).
In [5] we obtained the following re�nement of Ostrowski�s inequality:
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Lemma 3. Let f; g : [a; b] ! R be such that g is absolutely continuous on [a; b]
with g0 2 L1 [a; b] and f is Lebesgue integrable and satis�es (3.2), then

jC (f; g)j � 1

2
(b� a) kg0k1

�
1
b�a

R b
a
f (t) dt�m

��
M � 1

b�a
R b
a
f (t) dt

�
M �m(3.4)

� 1

8
kg0k1 (b� a) (M �m) :

As a particular case of this inequality that may be seen as a perturbed Iyengar
type inequality, we have:

Corollary 1. If f : [a; b]! R is absolutely continuous on [a; b] and there exist the
real numbers 
; � with 
 � f 00 (x) � � for almost every (a.e.) x 2 [a; b] ; then�����f (a) + f (b)2

� 1

12
(b� a) [f 0 (b)� f 0 (a)]� 1

b� a

Z b

a

f (t) dt

�����(3.5)

� 1

4
(b� a)2

�
f 0(b)�f 0(a)

b�a � 

��
�� f 0(b)�f 0(a)

b�a

�
�� 


� 1

16
(b� a)2 (�� 
) :

In particular, if jf 00 (x)j � � for almost every (a.e.) x 2 [a; b] ; then�����f (a) + f (b)2
� 1

12
(b� a) [f 0 (b)� f 0 (a)]� 1

b� a

Z b

a

f (t) dt

�����(3.6)

� 1

8
� (b� a)2 � 1

8�
[f 0 (b)� f 0 (a)]2

� 1

8
(b� a)2 �:

Proof. Using (3.4) for f 00 and g (t) := 1
2 (t� a) (b� t) with x 2 [a; b], then we get

(3.7)

����� 1

2 (b� a)

Z b

a

(t� a) (b� t) f 00 (t) dt

� 1

2 (b� a)

Z b

a

(t� a) (b� t) dt 1

b� a

Z b

a

f 00 (t) dt

�����
� 1

2
kg0k[a;b];1 (b� a)

�
1
b�a

R b
a
f 00 (t) dt� 


��
�� 1

b�a
R b
a
f 00 (t) dt

�
�� 


� 1

8
kg0k[a;b];1 (b� a) (�� 
) :

We have

1

2

Z b

a

(t� a) (b� t) f 00 (t) dt

=
1

2
(t� a) (b� t) f 0 (t)jba �

Z b

a

�
a+ b

2
� t
�
f 0 (t) dt

=

Z b

a

�
t� a+ b

2

�
f 0 (t) dt =

f (a) + f (b)

2
(b� a)�

Z b

a

f (t) dt
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and Z b

a

(t� a) (b� t) dt = a2 + b2

2
(b� a)�

Z b

a

t2dt

=
a2 + b2

2
(b� a)� b

3 � a3
3

= (b� a)
�
a2 + b2

2
� b

2 + ab+ a2

3

�
=
1

6
(b� a)3

then

1

2 (b� a)

Z b

a

(t� a) (b� t) f 00 (t) dt

� 1

2 (b� a)

Z b

a

(t� a) (b� t) dt 1

b� a

Z b

a

f 00 (t) dt

=
f (a) + f (b)

2
� 1

b� a

Z b

a

f (t) dt� 1

12
(b� a) [f 0 (b)� f 0 (a)] :

Also g0 (t) := a+b
2 � t; which gives kg0k[a;b];1 = 1

2 (b� a) and by (3.7) we get
(3.5). �

Consider now the weighted µCeby�ev functional

(3.8) Cw (f; g) :=
1R b

a
w (t) dt

Z b

a

w (t) f (t) g (t) dt

� 1R b
a
w (t) dt

Z b

a

w (t) f (t) dt
1R b

a
w (t) dt

Z b

a

w (t) g (t) dt

where f; g; w : [a; b]! R and w (t) � 0 for a.e. t 2 [a; b] are measurable functions
such that the involved integrals exist and

R b
a
w (t) dt > 0:

We can also de�ne, as above,

(3.9) Ch0 (f; g) :=
1

h (b)� h (a)

Z b

a

f (t) g (t)h0 (t) dt

� 1

h (b)� h (a)

Z b

a

f (t)h0 (t) dt
1

h (b)� h (a)

Z b

a

g (t)h0 (t) dt;

where h is absolutely continuous and f; g are Lebesgue measurable on [a; b] and
such that the above integrals exist.

Lemma 4. Let h : [a; b]! [h (a) ; h (b)] be a continuous strictly increasing function
that is di¤erentiable on (a; b) : If f is Lebesgue integrable and satis�es the condition
m � f (t) �M for t 2 [a; b] and g : [a; b]! R is absolutely continuous on [a; b] and
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g0

h0 is essentially bounded, namely
g0

h0 2 L1 [a; b] ; then we have

(3.10) jCh0 (f; g)j �
1

2
[h (b)� h (a)]





 g0h0





1

�

�
1

h(b)�h(a)
R b
a
f (t)h0 (t) dt�m

��
M � 1

h(b)�h(a)
R b
a
f (t)h0 (t) dt

�
M �m

� 1

8
[h (b)� h (a)] (M �m)





 g0h0





[a;b];1

:

The constants 1
2 and

1
8 are best possible.

Proof. Since g0

h0 2 L1 [c; d], hence
�
g � h�1

�0 2 L1 [h (c) ; h (d)] : Also


�g � h�1�0



[h(c);h(d)];1

=





 g0h0





[c;d];1

:

Now, if we use the re�nement of Ostrowski�s inequality (3.4) for the functions
f � h�1 and g � h�1 on the interval [h (a) ; h (b)] ; then we get

(3.11)

����� 1

h (b)� h (a)

Z h(b)

h(a)

f � h�1(u)g � h�1(u)du

� 1

[h (b)� h (a)]2
Z h(b)

h(a)

f � h�1(u)du
Z h(b)

h(a)

g � h�1(u)du
�����

� 1

2
(h (b)� h (a))




�g � h�1�0



[h(c);h(d)];1

�

�
1

h(b)�h(a)
R h(b)
h(a)

f � h�1 (t) dt�m
��
M � 1

h(b)�h(a)
R h(b)
h(a)

f (t) dt
�

M �m

� 1

8
[h (b)� h (a)] (M �m)




�g � h�1�0



[h(a);h(b)];1

since m � f � h�1(u) �M for all u 2 [h (a) ; h (b)] :
Observe also that, by the change of variable t = h�1 (u) ; u 2 [g (a) ; g (b)] ; we

have u = h (t) that gives du = h0 (t) dt andZ h(b)

h(a)

�
f � h�1

�
(u) du =

Z b

a

f (t)h0 (t) dt;Z h(b)

h(a)

g � h�1(u)du =
Z b

a

g (t)h0 (t) dt;Z h(b)

h(a)

f � h�1(u)g � h�1(u)du =
Z b

a

f (t) g (t)h0 (t) dt

and 


�g � h�1�0



[h(a);h(b)];1

=





 g0h0





[a;b];1

:

By making use of (3.11) we then get the desired result (3.10).
The best constant follows by the re�nement of Ostrowski�s inequality (3.4). �
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If w : [a; b]! R is continuous and positive on the interval [a; b] ; then the function
W : [a; b]! [0;1); W (x) :=

R x
a
w (s) ds is strictly increasing and di¤erentiable on

(a; b) : We have W 0 (x) = w (x) for any x 2 (a; b) :

Theorem 5. Assume that w : [a; b]! (0;1) is continuous on [a; b] ; f is Lebesgue
integrable and satis�es the condition m � f (t) � M for t 2 [a; b] and g : [a; b] !
R is absolutely continuous on [a; b] with g0

w is essentially bounded, namely g0

w 2
L1 [a; b] ; then we have

(3.12) jCw (f; g)j �
1

2 (M �m)





g0w





1

�
 R b

a
f (t)w (t) dtR b
a
w (s) ds

�m
! 

M �
R b
a
f (t)w (t) dtR b
a
w (s) ds

!Z b

a

w (s) ds

� 1

8
(M �m)





g0w





[a;b];1

Z b

a

w (s) ds:

The constant 18 is best possible.

Remark 1. Under the assumptions of Theorem 5 and if there exists a constant
K > 0 such that jg0 (t)j � Kw (t) for a.e. t 2 [a; b] ; then by (3.12) we get

(3.13) jCw (f; g)j �
1

2 (M �m)K

�
 R b

a
f (t)w (t) dtR b
a
w (s) ds

�m
! 

M �
R b
a
f (t)w (t) dtR b
a
w (s) ds

!Z b

a

w (s) ds

� 1

8
(M �m)K

Z b

a

w (s) ds:

a). For w (t) = 1
`(t) = `

�1 (t) ; t 2 [a; b] � (0;1) ; where ` (t) = t; de�ne

(3.14) C`�1 (f; g) :=
1

ln
�
b
a

� Z b

a

f (t) g (t)

t
dt� 1

ln
�
b
a

� Z b

a

f (t)

t
dt

1

ln
�
b
a

� Z b

a

g (t)

t
dt:

If m � f (t) � M for t 2 [a; b] and g : [a; b] ! R is absolutely continuous on [a; b]
with `g0 is essentially bounded, namely `g0 2 L1 [a; b] ; then we have

(3.15) jC`�1 (f; g)j

� 1

2
k`g0k[a;b];1

�
1

ln( ba )

R b
a
f(t)
t dt�m

��
M � 1

ln( ba )

R b
a
f(t)
t dt

�
M �m ln

�
b

a

�
� 1

8
(M �m) k`g0k[a;b];1 ln

�
b

a

�
:

b). For w (t) = exp t; t 2 [a; b] ; de�ne

(3.16) Cexp (f; g) :=
1

exp b� exp a

Z b

a

f (t) g (t) exp tdt

� 1

exp b� exp a

Z b

a

f (t) exp tdt
1

exp b� exp a

Z b

a

g (t) exp tdt:
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If m � f (t) � M for t 2 [a; b] and g : [a; b] ! R is absolutely continuous on [a; b]
with g0

exp is essentially bounded, namely
g0

exp 2 L1 [a; b] ; then we have

(3.17) jCexp (f; g)j

� 1

2 (M �m)





 g0exp





[a;b];1

 R b
a
f (t) exp tdt

exp b� exp a �m
! 

M �
R b
a
f (t) exp tdt

exp b� exp a

!
� (exp b� exp a)

� 1

8
(M �m)





 g0exp





[a;b];1

(exp b� exp a) :

c). For w (t) = `p (t) ; t 2 [a; b] � (0;1) ; where ` (t) = t and p 6= �1; de�ne

(3.18) C`p (f; g) :=
p+ 1

bp+1 � ap+1
Z b

a

tpf (t) g (t) dt

� p+ 1

bp+1 � ap+1
Z b

a

tpf (t) dt
p+ 1

bp+1 � ap+1
Z b

a

tpg (t) dt:

If m � f (t) � M for t 2 [a; b] and g : [a; b] ! R is absolutely continuous on [a; b]
with g0`�p is essentially bounded, namely g0`�p 2 L1 [a; b] ; then we have

(3.19) jC`p (f; g)j �
bp+1 � ap+1

2 (p+ 1) (M �m)


g0`�p

1

�
 

p+ 1

bp+1 � ap+1
Z b

a

f (t) tpdt�m
! 

M � p+ 1

bp+1 � ap+1
Z b

a

f (t) tpdt

!

� bp+1 � ap+1
8 (p+ 1)

(M �m)


g0`�p



[a;b];1 :

We have:

Lemma 5. Let h : [a; b]! [h (a) ; h (b)] be a continuous strictly increasing function
that is twice di¤erentiable on (a; b) : If g : [a; b] ! R has an absolutely continuous
derivative on [a; b] and there exist the real numbers n < N with

(3.20) � � g00 (x)h0 (x)� g0 (x)h00 (x)
[h0 (x)]

3 � � for a.e. x 2 [a; b] ;

then we have

(3.21)

����g (a) + g (b)2

� 1

12
(h (b)� h (a))

�
g0 (b)

h0 (b)
� g0 (a)

h0 (a)

�
� 1

h (b)� h (a)

Z b

a

g (t)h�1 (t) dt

�����
� 1

4

[h (b)� h (a)]2

�� �

0@ g0(b)
h0(b) �

g0(a)
h0(a)

h (b)� h (a) � �

1A0@�� g0(b)
h0(b) �

g0(a)
h0(a)

h (b)� h (a)

1A
� 1

16
[h (b)� h (a)]2 (�� �) :
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In particular, if

(3.22)

�����g00 (x)h0 (x)� g0 (x)h00 (x)[h0 (x)]
3

����� � � for a.e: x 2 [a; b]
then

(3.23)

����g (a) + g (b)2

� 1

12
(h (b)� h (a))

�
g0 (b)

h0 (b)
� g0 (a)

h0 (a)

�
� 1

h (b)� h (a)

Z b

a

g (t)h�1 (t) dt

�����
� 1

8
� [h (b)� h (a)]2 � 1

8�

�
g0 (b)

h0 (b)
� g0 (a)

h0 (a)

�2
� 1

8
[h (b)� h (a)]2 �:

Proof. We observe that the function f := g � h�1 has an absolutely continuous
derivative on [h (a) ; h (b)] and using the chain rule and the derivative of inverse
functions we have

�
g � h�1

�00
(z) =

 �
g0 � h�1

�
(z)

(h0 � h�1) (z)

!0

=

�
g0 � h�1

�0
(z)
�
h0 � h�1

�
(z)�

�
g0 � h�1

�
(z)
�
h0 � h�1

�0
(z)

[(h0 � h�1) (z)]2

=

(g00�h�1)(z)
(h0�h�1)(z)

�
h0 � h�1

�
(z)�

�
g0 � h�1

�
(z)

(h00�h�1)(z)
(h0�h�1)(z)

[(h0 � h�1) (z)]2

=

�
g00 � h�1

�
(z)
�
h0 � h�1

�
(z)�

�
g0 � h�1

�
(z)
�
h00 � h�1

�
(z)

[(h0 � h�1) (z)]3

for almost every (a.e.) z 2 [h (a) ; h (b)] :
If x 2 [a; b] and we put z = h (x) ; then

�
g � h�1

�00
(h (x))

=

�
g00 � h�1

�
(h (x))

�
h0 � h�1

�
(h (x))�

�
g0 � h�1

�
(h (x))

�
h00 � h�1

�
(h (x))

[(h0 � h�1) (h (x))]3

=
g00 (x)h0 (x)� g0 (x)h00 (x)

[h0 (x)]
3 2 [�;�] :
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If we use the inequality (3.5) for f = g �h�1 and the interval [h (a) ; h (b)] ; then we
get

����g � h�1 (h (a)) + g � h�1 (h (b))2

� 1

12
(h (b)� h (a))

"�
g0 � h�1

�
(h (b))

(h0 � h�1) (h (b)) �
�
g0 � h�1

�
(h (a))

(h0 � h�1) (h (a))

#

� 1

h (b)� h (a)

Z h(b)

h(a)

�
g � h�1

�
(z) dz

�����
� 1

4

(h (b)� h (a))2

�� �

�

0@ (g0�h�1)(h(b))(h0�h�1)(h(b)) �
(g0�h�1)(h(a))
(h0�h�1)(h(a))

h (b)� h (a) � �

1A0@�� (g0�h�1)(h(b))
(h0�h�1)(h(b)) �

(g0�h�1)(h(a))
(h0�h�1)(h(a))

h (b)� h (a)

1A
� 1

16
[h (b)� h (a)]2 (�� �) ;

which is equivalent to (3.21). �

Theorem 6. Assume that w : [a; b] ! (0;1) is absolutely continuous on [a; b] ;
g : [a; b] ! R has an absolutely continuous derivative on [a; b] and there exist the
real numbers � < � with

(3.24) � � g00 (x)w (x)� g0 (x)w0 (x)
w3 (x)

� � for a.e. x 2 [a; b] ;

then we have

(3.25)

����g (a) + g (b)2

� 1

12

�
g0 (b)

w (b)
� g

0 (a)

w (a)

� Z b

a

w (s) ds� 1R b
a
w (s) ds

Z b

a

g (t)w (t) dt

�����
� 1

4

�R b
a
w (s) ds

�2
�� �

0@ g0(b)
w(b) �

g0(a)
w(a)R b

a
w (s) ds

� �

1A0@�� g0(b)
w(b) �

g0(a)
w(a)R b

a
w (s) ds

1A
� 1

16
(�� �)

 Z b

a

w (s) ds

!2
:

In particular, if

(3.26)

����g00 (x)w (x)� g0 (x)w0 (x)w3 (x)

���� � � for a.e. x 2 [a; b] ;
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then

(3.27)

����g (a) + g (b)2

� 1

12

�
g0 (b)

w (b)
� g

0 (a)

w (a)

� Z b

a

w (s) ds� 1R b
a
w (s) ds

Z b

a

g (t)w (t) dt

�����
� 1

8
�

 Z b

a

w (s) ds

!2
� 1

8�

�
g0 (b)

w (b)
� g

0 (a)

w (a)

�2
� 1

8
�

 Z b

a

w (s) ds

!2
:

a). Assume that g : [a; b] � (0;1)! R has an absolutely continuous derivative
on [a; b] and there exist the real numbers � < � with

(3.28) � � g00 (x)x2 + g0 (x)x � � for a.e. x 2 [a; b] ;
then by (3.25) for w (t) = 1

t we get

(3.29)

����g (a) + g (b)2

� 1

12
[g0 (b) b� g0 (a) a] ln

�
b

a

�
� 1

ln
�
b
a

� Z b

a

g (t)

t
dt

�����
� 1

4

�
ln
�
b
a

��2
�� �

 
g0 (b) b� g0 (a) a

ln
�
b
a

� � �
! 

�� g
0 (b) b� g0 (a) a

ln
�
b
a

� !

� 1

16
(�� �)

�
ln

�
b

a

��2
:

b). Assume that g : [a; b] � (0;1)! R has an absolutely continuous derivative
on [a; b] and there exist the real numbers � < � with

(3.30) � � g00 (x)� g0 (x)
exp (2x)

� � for a.e. x 2 [a; b] ;

then by (3.25) for w (t) = exp t we get

(3.31)

����g (a) + g (b)2

� 1

12
[g0 (b) exp (�b)� g0 (a) exp (�a)] (exp b� exp a)� 1

(exp b� exp a)

Z b

a

g (t) exp tdt

�����
� 1

4

(exp b� exp a)2

�� �

�
�
g0 (b) exp (�b)� g0 (a) exp (�a)

exp b� exp a � �
��

�� g
0 (b) exp (�b)� g0 (a) exp (�a)

exp b� exp a

�
� 1

16
(�� �) (exp b� exp a)2 :

c). Assume that g : [a; b] � (0;1)! R has an absolutely continuous derivative
on [a; b] and there exist the real numbers � < � with

(3.32) � � g00 (x)x� pg0 (x)
x2p+1

� � for a.e. x 2 [a; b] ; p 6= �1;
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then by (3.25) for w (t) = tp we get

(3.33)

����g (a) + g (b)2

�b
p+1 � ap+1
12 (p+ 1)

�
g0 (b) b�p � g0 (a) a�p

�
� p+ 1

bp+1 � ap+1
Z b

a

g (t) tpdt

�����
� 1

4

�
bp+1 � ap+1

�2
(p+ 1)

2
(�� �)

�
�
(p+ 1) (g0 (b) b�p � g0 (a) a�p)

bp+1 � ap+1 � �
��

�� (p+ 1) (g
0 (b) b�p � g0 (a) a�p)
bp+1 � ap+1

�
� 1

16
(�� �)

�
bp+1 � ap+1

�2
(p+ 1)

2 :
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