WEIGHTED INEQUALITIES OF TRAPEZOID TYPE FOR FUNCTIONS OF BOUNDED VARIATION AND APPLICATIONS

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract. In this paper we establish some upper bounds for the quantity

$$
\left|(g(x)-g(a)) f(a)+(g(b)-g(x)) f(b)-\int_{a}^{b} f(t) g^{\prime}(t) d t\right|
$$

under the assumptions that $g:[a, b] \rightarrow[g(a), g(b)]$ is a continuous strictly increasing function that is differentiable on (a, b) and $f:[a, b] \rightarrow \mathbb{C}$ is a function of bounded variation on $[a, b]$. When g is an integral, namely $g(x)=$ $\int_{a}^{x} w(s) d s$, where $w:[a, b] \rightarrow(0, \infty)$ is continuous on $[a, b]$, then some weighted inequalities that generalize the Trapezoid inequality are provided. Applications for continuous probability density functions supported on finite and infinite intervals with two examples are also given.

1. Introduction

The following trapezoid type integral inequality for mappings of bounded variation holds [9], [13] and [4]:

Theorem 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a mapping of bounded variation.
We then have the inequality:

$$
\begin{align*}
& \left|\frac{1}{b-a} \int_{a}^{b} f(t) d t-\frac{(x-a) f(a)+(b-x) f(b)}{b-a}\right| \tag{1.1}\\
& \leq\left[\frac{1}{2}+\left|\frac{x-\frac{a+b}{2}}{b-a}\right|\right] \bigvee_{a}^{b}(f)
\end{align*}
$$

holding for all $x \in[a, b]$, where $\bigvee_{a}^{b}(f)$ denotes the total variation of f on the interval $[a, b]$.

The constant $\frac{1}{2}$ is the best possible one.
If we choose $x=\frac{a+b}{2}$, then we get [12]:

$$
\begin{equation*}
\left|\frac{1}{b-a} \int_{a}^{b} f(t) d t-\frac{f(a)+f(b)}{2}\right| \leq \frac{1}{2} \bigvee_{a}^{b}(f), \tag{1.2}
\end{equation*}
$$

which is the "trapezoid" inequality. Note that the trapezoid inequality (1.2) is in a sense the best possible inequality we can get from (1.1). Also, the constant $\frac{1}{2}$ is the best possible.

[^0]If $w:[a, b] \rightarrow \mathbb{R}$ is continuous and positive on the interval $[a, b]$, then the function $W:[a, b] \rightarrow[0, \infty), W(x):=\int_{a}^{x} w(s) d s$ is strictly increasing and differentiable on (a, b). We have $W^{\prime}(x)=w(x)$ for any $x \in(a, b)$.

In 2004 Tseng et al. [25] proved a weighted trapezoid inequality, which essentially can be written as

$$
\begin{align*}
& \left\lvert\, \frac{f(a) \int_{a}^{x} w(s) d s+f(b) \int_{x}^{b} w(s) d s}{\int_{a}^{b} w(s) d s}\right. \left.-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} f(t) w(t) d t \right\rvert\, \tag{1.3}\\
& \leq \frac{1}{2}\left[1+\left|\frac{\int_{x}^{b} w(s) d s-\int_{a}^{x} w(s) d s}{\int_{a}^{b} w(s) d s}\right|\right] \bigvee_{a}^{b}(f)
\end{align*}
$$

for any $x \in[a, b]$.
For related result concerning the Trapezoid inequality, see [1]-[3], [6]-[8] and [10]-[24].

Motivated by the above results, in this paper we establish some upper bounds for the quantity

$$
\left|\frac{[g(x)-g(a)] f(a)+[g(b)-g(x)] f(b)}{g(b)-g(a)}-\frac{1}{g(b)-g(a)} \int_{a}^{b} f(t) g^{\prime}(t) d t\right|
$$

under the assumptions that $g:[a, b] \rightarrow[g(a), g(b)]$ is a continuous strictly increasing function that is differentiable on (a, b) and $f:[a, b] \rightarrow \mathbb{C}$ is a function of bounded variation on $[a, b]$. When g is an integral, namely $g(x)=\int_{a}^{x} w(s) d s$, where $w:[a, b] \rightarrow(0, \infty)$ is continuous on $[a, b]$, then some weighted inequalities that generalize the Trapezoid inequality are provided. Applications for continuous probability density functions supported on finite and infinite intervals with two examples are also given.

2. Main Results

We need the following result that improves Theorem 1:
Lemma 1. Let $h:[c, d] \rightarrow \mathbb{C}$ be a function of bounded variation on $[c, d]$. Then for all $z \in[c, d]$

$$
\begin{align*}
& \left|\frac{(z-c) h(c)+(d-z) h(d)}{d-c}-\frac{1}{d-c} \int_{c}^{d} h(t) d t\right| \tag{2.1}\\
& \leq\left(\frac{z-c}{d-c}\right) \bigvee_{c}^{z}(h)+\left(\frac{d-z}{d-c}\right) \bigvee_{z}^{d}(h) \\
& \leq\left\{\begin{array}{l}
{\left[\frac{1}{2}+\left|\frac{z-\frac{c+d}{2}}{d-c}\right|\right] \bigvee_{c}^{d}(h),} \\
{\left[\left(\frac{z-c}{d-c}\right)^{p}+\left(\frac{d-z}{d-c}\right)^{p}\right]^{1 / p}\left[\left(\bigvee_{c}^{z}(h)\right)^{q}+\left(\bigvee_{z}^{d}(h)\right)^{q}\right]^{1 / q}} \\
w h e r e ~ p, q>1 \text { and } \frac{1}{p}+\frac{1}{q}=1, \\
\frac{1}{2}\left[\bigvee_{c}^{d}(h)+\left|\bigvee_{c}^{z}(h)-\bigvee_{z}^{d}(h)\right|\right] .
\end{array}\right.
\end{align*}
$$

Proof. Let $z \in(c, d)$. Using the integration by parts formula for the RiemannStieltjes integral we have,

$$
\begin{align*}
& \int_{c}^{z}(t-z) d h(t)+\int_{z}^{d}(t-z) d h(t) \tag{2.2}\\
& =(z-c) h(c)-\int_{c}^{z} h(t) d t+(d-z) h(d)-\int_{z}^{d} h(t) d t \\
& =(z-c) h(c)+(d-z) h(d)-\int_{c}^{d} h(t) d t .
\end{align*}
$$

It is well known $[2, \mathrm{p} .177]$ that if $q:[\alpha, \beta] \rightarrow \mathbb{C}$ is continuous on $[\alpha, \beta]$ and $v:[\alpha, \beta] \rightarrow \mathbb{C}$ is of bounded variation on $[\alpha, \beta]$, then

$$
\begin{equation*}
\left|\int_{\alpha}^{\beta} q(z) d v(z)\right| \leq \max _{z \in[\alpha, \beta]}|q(z)| \bigvee_{\alpha}^{\beta}(v) \tag{2.3}
\end{equation*}
$$

Using the triangle inequality and the property (2.3) we then have

$$
\begin{aligned}
& \left|\int_{c}^{z}(t-z) d h(t)+\int_{z}^{d}(t-z) d h(t)\right| \\
& \leq\left|\int_{c}^{z}(t-z) d h(t)\right|+\left|\int_{z}^{d}(t-z) d h(t)\right| \\
& \leq \max _{t \in[c, z]}|t-z| \bigvee_{c}^{z}(h)+\max _{t \in[z, d]}|t-d| \bigvee_{z}^{d}(h) \\
& =(z-c) \bigvee_{c}^{z}(h)+(d-z) \bigvee_{z}^{d}(h)
\end{aligned}
$$

and then, via the identity (2.2), we deduce the first inequality in (2.1).
By utilising Hölder's discrete inequality for two positive numbers, we also have

$$
(z-c) \bigvee_{c}^{z}(h)+(d-z) \bigvee_{z}^{d}(h)
$$

$$
\begin{aligned}
& \leq\left\{\begin{array}{c}
\max \{z-c, d-z\}\left[\bigvee_{c}^{z}(h)+\bigvee_{z}^{d}(h)\right] \\
{\left[(z-c)^{p}+(d-z)^{p}\right]^{1 / p}\left[\left(\bigvee_{c}^{z}(h)\right)^{q}+\left(\bigvee_{z}^{d}(h)\right)^{q}\right]^{1 / q}} \\
\text { where } p, q>1 \text { and } \frac{1}{p}+\frac{1}{q}=1, \\
(z-c+d-z) \max \left\{\bigvee_{c}^{z}(h), \bigvee_{z}^{d}(h)\right\}
\end{array}\right. \\
& =\left\{\begin{array}{c}
{\left[\frac{1}{2}(d-c)+\left|z-\frac{c+d}{2}\right|\right] \bigvee_{c}^{d}(h)} \\
{\left[(z-c)^{p}+(d-z)^{p}\right]^{1 / p}\left[\left(\bigvee_{c}^{z}(h)\right)^{q}+\left(\bigvee_{z}^{d}(h)\right)^{q}\right]^{1 / q}} \\
\text { where } p, q>1 \text { and } \frac{1}{p}+\frac{1}{q}=1, \\
(d-c)\left[\frac{1}{2} \bigvee_{c}^{d}(h)+\frac{1}{2}\left|\bigvee_{c}^{z}(h)-\bigvee_{z}^{d}(h)\right|\right],
\end{array}\right.
\end{aligned}
$$

which proves the last part of (2.1).
Corollary 1. Let $h:[c, d] \rightarrow \mathbb{C}$ be a function of bounded variation and $p \in(c, d)$ such that $\bigvee_{c}^{p}(h)=\bigvee_{p}^{d}(h)$. Then we have the inequality

$$
\begin{equation*}
\left|\frac{(p-c) h(c)+(d-p) h(d)}{d-c}-\frac{1}{d-c} \int_{c}^{d} h(t) d t\right| \leq \frac{1}{2} \bigvee_{c}^{d}(h) \tag{2.4}
\end{equation*}
$$

We have:
Theorem 2. Let $g:[a, b] \rightarrow[g(a), g(b)]$ be a continuous strictly increasing function that is differentiable on (a, b). If $f:[a, b] \rightarrow \mathbb{C}$ is a function of bounded variation on $[a, b]$, then we have

$$
\begin{align*}
& \left|\frac{[g(x)-g(a)] f(a)+[g(b)-g(x)] f(b)}{g(b)-g(a)}-\frac{1}{g(b)-g(a)} \int_{a}^{b} f(t) g^{\prime}(t) d t\right| \tag{2.5}\\
& \leq\left[\frac{g(x)-g(a)}{g(b)-g(a)}\right] \bigvee_{a}^{x}(f)+\left[\frac{g(b)-g(x)}{g(b)-g(a)}\right] \bigvee_{x}^{b}(f) \\
& \leq\left\{\begin{array}{l}
{\left[\frac{1}{2}+\left\lvert\, \frac{\left.\left.g(x)-\frac{g(a)+g(b)}{g(b)-g(a)} \right\rvert\,\right] \bigvee_{a}^{b}(f),}{}\right.\right.} \\
{\left[\left[\frac{g(x)-g(a)}{g(b)-g(a)}\right]^{p}+\left[\frac{g(b)-g(x)}{g(b)-g(a)}\right]^{p}\right]^{1 / p}\left[\left(\bigvee_{a}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{b}(f)\right)^{q}\right]^{1 / q}} \\
\text { where } p, q>1 \text { and } \frac{1}{p}+\frac{1}{q}=1, \\
\frac{1}{2}\left[\bigvee_{a}^{b}(f)+\left|\bigvee_{a}^{x}(f)-\bigvee_{x}^{b}(f)\right|\right]
\end{array}\right.
\end{align*}
$$

for all $x \in[a, b]$.
Proof. Assume that $[c, d] \subset[a, b]$. Let $g(c)=z_{0}<z_{1}<\ldots<z_{n-1}<z_{n}=g(d)$, $n \geq 1$, a division of the interval $[g(c), g(d)]$. Put $x_{i}=g^{-1}\left(z_{i}\right), i \in\{0, \ldots, n\}$. Then $c=x_{0}<x_{1}<\ldots<z_{n-1}<z_{n}=c$ is a division of $[c, d]$.

Observe that

$$
\sum_{i=0}^{n-1}\left|f \circ g^{-1}\left(z_{i+1}\right)-f \circ g^{-1}\left(z_{i}\right)\right|=\sum_{i=0}^{n-1}\left|f\left(x_{i+1}\right)-f\left(x_{i}\right)\right|
$$

which shows that, if $f:[c, d] \rightarrow \mathbb{C}$ is a function of bounded variation on $[c, d]$, then $f \circ g^{-1}:[g(c), g(d)] \rightarrow \mathbb{C}$ is of bounded variation on $[g(c), g(d)]$ and the total variation of $f \circ g^{-1}$ on $[g(c), g(d)]$ is the same with the total variation of f on $[c, d]$, namely

$$
\begin{equation*}
\bigvee_{g(c)}^{g(d)}\left(f \circ g^{-1}\right)=\bigvee_{c}^{d}(f) \tag{2.6}
\end{equation*}
$$

Now, if we use the inequality (2.1) for the function $h=f \circ g^{-1}$ on the interval $[g(a), g(b)]$ we get for any $z \in[g(a), g(b)]$ that

$$
\begin{equation*}
\left|\frac{1}{g(b)-g(a)} \int_{g(a)}^{g(b)}\left(f \circ g^{-1}\right)(u) d u-\frac{[z-g(a)] f(a)+[g(b)-z] f(b)}{g(b)-g(a)}\right| \tag{2.7}
\end{equation*}
$$

$$
\leq\left(\frac{z-g(a)}{g(b)-g(a)}\right) \bigvee_{g(a)}^{z}\left(f \circ g^{-1}\right)+\left(\frac{g(b)-z}{g(b)-g(a)}\right) \bigvee_{z}^{g(b)}\left(f \circ g^{-1}\right)
$$

$$
\int\left[\frac{1}{2}+\left|\frac{z-\frac{g(a)+g(b)}{2}}{g(b)-g(a)}\right|\right] \bigvee_{g(a)}^{g(b)}\left(f \circ g^{-1}\right)
$$

$\leq\left\{\begin{array}{l}{\left[\left(\frac{z-g(a)}{g(b)-g(a)}\right)^{p}+\left(\frac{g(b)-z}{g(b)-g(a)}\right)^{p}\right]^{1 / p}\left[\left(\bigvee_{g(a)}^{z}\left(f \circ g^{-1}\right)\right)^{q}+\left(\bigvee_{z}^{g(b)}\left(f \circ g^{-1}\right)\right)^{q}\right]^{1 / q}} \\ \text { where } p, q>1 \text { and } \frac{1}{p}+\frac{1}{q}=1,\end{array}\right.$

$$
\text { where } p, q>1 \text { and } \frac{1}{p}+\frac{1}{q}=1
$$

$$
\frac{1}{2}\left[\bigvee_{g(a)}^{g(b)}\left(f \circ g^{-1}\right)+\left|\bigvee_{g(a)}^{z}\left(f \circ g^{-1}\right)-\bigvee_{z}^{g(b)}\left(f \circ g^{-1}\right)\right|\right]
$$

Using the property (2.6) and taking $z=g(x), x \in[a, b]$, in (2.7) we then get

$$
\begin{align*}
& \left|\int_{g(a)}^{g(b)}\left(f \circ g^{-1}\right)(u) d u-\frac{[g(x)-g(a)] f(a)+[g(b)-g(x)] f(b)}{g(b)-g(a)}\right| \tag{2.8}\\
& \quad \leq\left[\frac{g(x)-g(a)}{g(b)-g(a)}\right] \bigvee_{a}^{x}(f)+\left[\frac{g(b)-g(x)}{g(b)-g(a)}\right] \bigvee_{x}^{b}(f) \\
& \quad \leq\left\{\begin{array}{l}
{\left[\frac{1}{2}+\left\lvert\, \frac{\left.\left.z-\frac{g(a)+g(b)}{g(b)-g(a)} \right\rvert\,\right] \bigvee_{a}^{b}(f),}{} \begin{array}{l}
{\left[\left(\frac{z-g(a)}{g(b)-g(a)}\right)^{p}+\left(\frac{g(b)-z}{g(b)-g(a)}\right)^{p}\right]^{1 / p}\left[\left(\bigvee_{a}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{b}(f)\right)^{q}\right]^{1 / q}} \\
\text { where } p, q>1 \text { and } \frac{1}{p}+\frac{1}{q}=1, \\
{\left[\frac{1}{2} \bigvee_{a}^{b}(f)+\frac{1}{2}\left|\bigvee_{a}^{x}(f)-\bigvee_{x}^{b}(f)\right|\right] .}
\end{array}\right.\right.}
\end{array} .\right.
\end{align*}
$$

Observe also that, by the change of variable $t=g^{-1}(u), u \in[g(a), g(b)]$, we have $u=g(t)$ that gives $d u=g^{\prime}(t) d t$ and

$$
\begin{equation*}
\int_{g(a)}^{g(b)}\left(f \circ g^{-1}\right)(u) d u=\int_{a}^{b} f(t) g^{\prime}(t) d t \tag{2.9}
\end{equation*}
$$

By choosing $z=g(x)$ with $x \in[a, b]$ in (2.8) and making use of (2.6) and (2.9) we get the desired result (2.5).

The best constant follows by Lemma 1 .

If g is a function which maps an interval I of the real line to the real numbers, and is both continuous and injective then we can define the g-mean of two numbers $a, b \in I$ as

$$
\begin{equation*}
M_{g}(a, b):=g^{-1}\left(\frac{g(a)+g(b)}{2}\right) \tag{2.10}
\end{equation*}
$$

If $I=\mathbb{R}$ and $g(t)=t$ is the identity function, then $M_{g}(a, b)=A(a, b):=\frac{a+b}{2}$, the arithmetic mean. If $I=(0, \infty)$ and $g(t)=\ln t$, then $M_{g}(a, b)=G(a, b):=\sqrt{a b}$, the geometric mean. If $I=(0, \infty)$ and $g(t)=-\frac{1}{t}$, then $M_{g}(a, b)=H(a, b):=$ $\frac{2 a b}{a+b}$, the harmonic mean. If $I=(0, \infty)$ and $g(t)=t^{p}, p \neq 0$, then $M_{g}(a, b)=$ $M_{p}(a, b):=\left(\frac{a^{p}+b^{p}}{2}\right)^{1 / p}$, the power mean with exponent p. Finally, if $I=\mathbb{R}$ and $g(t)=\exp t$, then

$$
\begin{equation*}
M_{g}(a, b)=\operatorname{LME}(a, b):=\ln \left(\frac{\exp a+\exp b}{2}\right) \tag{2.11}
\end{equation*}
$$

the LogMeanExp function.

Corollary 2. With the assumptions of Theorem 2 we have

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{g(b)-g(a)} \int_{a}^{b} f(t) g^{\prime}(t) d t\right| \leq \frac{1}{2} \bigvee_{a}^{b}(f) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{align*}
& \left\lvert\, \frac{\left[g\left(\frac{a+b}{2}\right)-g(a)\right] f(a)+\left[g(b)-g\left(\frac{a+b}{2}\right)\right] f(b)}{g(b)-g(a)}\right. \tag{2.13}\\
& \left.-\frac{1}{g(b)-g(a)} \int_{a}^{b} f(t) g^{\prime}(t) d t \right\rvert\, \\
& \leq\left[\frac{g\left(\frac{a+b}{2}\right)-g(a)}{g(b)-g(a)}\right] \bigvee_{a}^{\frac{a+b}{2}}(f)+\left[\frac{g(b)-g\left(\frac{a+b}{2}\right)}{g(b)-g(a)}\right] \bigvee_{\frac{a+b}{2}}^{b}(f) \\
& \leq\left\{\begin{array}{l}
{\left[\frac{1}{2}+\left|\frac{g\left(\frac{a+b}{2}\right)-\frac{g(a)+g(b)}{g(b)-g(a)}}{}\right|\right] \bigvee_{a}^{b}(f),} \\
{\left[\left[\frac{g\left(\frac{a+b}{2}\right)-g(a)}{g(b)-g(a)}\right]^{p}+\left[\frac{g(b)-g\left(\frac{a+b}{2}\right)}{g(b)-g(a)}\right]^{p}\right]^{1 / p}\left[\left(\bigvee_{a}^{\frac{a+b}{2}}(f)\right)^{q}+\left(\bigvee_{\frac{a+b}{2}}^{b}(f)\right)^{q}\right]^{1 / q}} \\
\text { where } p, q>1 \text { and } \frac{1}{p}+\frac{1}{q}=1, \\
\frac{1}{2}\left[\bigvee_{a}^{b}(f)+\left|\bigvee_{a}^{\frac{a+b}{2}}(f)-\bigvee_{\frac{a+b}{2}}^{b}(f)\right|\right] .
\end{array}\right.
\end{align*}
$$

The proof follows by Theorem 2 by taking $x=M_{g}(a, b)$, in the first case and $x=\frac{a+b}{2}$, in the second.

We also have:

Corollary 3. With the assumptions of Theorem 2 and if we have $p \in(a, b)$ such that $\bigvee_{a}^{p}(h)=\bigvee_{p}^{b}(h)$, then

$$
\begin{align*}
& \left|\frac{[g(p)-g(a)] f(a)+[g(b)-g(p)] f(b)}{g(b)-g(a)}-\frac{1}{g(b)-g(a)} \int_{a}^{b} f(t) g^{\prime}(t) d t\right| \tag{2.14}\\
& \leq \frac{1}{2} \bigvee_{a}^{b}(f) .
\end{align*}
$$

Let $f:[a, b] \rightarrow \mathbb{C}$ be a function of bounded variation. We can give the following examples of interest.
a). If we take $g:[a, b] \subset(0, \infty) \rightarrow \mathbb{R}, g(t)=\ln t$, in (2.5) then we get

$$
\begin{align*}
& \left|\frac{f(a) \ln \left(\frac{x}{a}\right)+f(b) \ln \left(\frac{b}{x}\right)}{\ln \left(\frac{b}{a}\right)}-\frac{1}{\ln \left(\frac{b}{a}\right)} \int_{a}^{b} \frac{f(t)}{t} d t\right| \tag{2.15}\\
& \leq \frac{\ln \left(\frac{x}{a}\right)}{\ln \left(\frac{b}{a}\right)} \bigvee_{a}^{x}(f)+\frac{\ln \left(\frac{b}{x}\right)}{\ln \left(\frac{b}{a}\right)} \bigvee_{x}^{b}(f) \\
& \leq\left\{\begin{array}{l}
{\left[\frac{1}{2}+\left|\frac{\ln \left(\frac{x}{G(a, b)}\right)}{\ln \left(\frac{b}{a}\right)}\right|\right] \bigvee_{a}^{b}(f),} \\
{\left[\left(\frac{\ln \left(\frac{x}{a}\right)}{\ln \left(\frac{b}{a}\right)}\right)^{p}+\left(\frac{\ln \left(\frac{b}{x}\right)}{\ln \left(\frac{b}{a}\right)}\right)^{p}\right]^{1 / p}\left[\left(\bigvee_{a}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{b}(f)\right)^{q}\right]^{1 / q}} \\
\text { where } p, q>1 \text { and } \frac{1}{p}+\frac{1}{q}=1, \\
\frac{1}{2}\left[\bigvee_{a}^{b}(f)+\left|\bigvee_{a}^{x}(f)-\bigvee_{x}^{b}(f)\right|\right]
\end{array}\right.
\end{align*}
$$

for any $x \in[a, b] \subset(0, \infty)$.
In particular, we have

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{\ln \left(\frac{b}{a}\right)} \int_{a}^{b} \frac{f(t)}{t} d t\right| \leq \frac{1}{2} \bigvee_{a}^{b}(f) \tag{2.16}
\end{equation*}
$$

If $p \in(a, b)$ is such that $\bigvee_{a}^{p}(f)=\bigvee_{p}^{b}(f)$, then

$$
\begin{equation*}
\left|\frac{f(a) \ln \left(\frac{p}{a}\right)+f(b) \ln \left(\frac{b}{p}\right)}{\ln \left(\frac{b}{a}\right)}-\frac{1}{\ln \left(\frac{b}{a}\right)} \int_{a}^{b} \frac{f(t)}{t} d t\right| \leq \frac{1}{2} \bigvee_{a}^{b}(f) \tag{2.17}
\end{equation*}
$$

b). If we take $g:[a, b] \subset \mathbb{R} \rightarrow(0, \infty), g(t)=\exp t$, in (2.5) then we get

$$
\begin{align*}
& \left\lvert\, \frac{(\exp x-\exp a) f(a)+(\exp b-\exp x) f(b)}{\exp b-\exp a}\right. \tag{2.18}\\
& \left.-\frac{1}{\exp b-\exp a} \int_{a}^{b} f(t) \exp t d t \right\rvert\, \\
& \leq\left(\frac{\exp x-\exp a}{\exp b-\exp a}\right) \bigvee_{a}^{x}(f)+\left(\frac{\exp b-\exp x}{\exp b-\exp a}\right) \bigvee_{x}^{b}(f) \\
& \leq\left\{\begin{array}{l}
{\left[\frac{1}{2}+\left|\frac{\exp x-\frac{\exp a+\exp b}{2}}{\exp b-\exp a}\right|\right] \bigvee_{a}^{b}(f),} \\
{\left[\left(\frac{\exp x-\exp a}{\exp b-\exp a}\right)^{p}+\left(\frac{\exp b-\exp x}{\exp b-\exp a}\right)^{p}\right]^{1 / p}\left[\left(\bigvee_{a}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{b}(f)\right)^{q}\right]^{1 / q}} \\
\operatorname{where} p, q>1 \operatorname{and} \frac{1}{p}+\frac{1}{q}=1, \\
\frac{1}{2}\left[\bigvee_{a}^{b}(f)+\left|\bigvee_{a}^{x}(f)-\bigvee_{x}^{b}(f)\right|\right]
\end{array}\right.
\end{align*}
$$

for any $x \in[a, b]$.

In particular, we have

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{\exp b-\exp a} \int_{a}^{b} f(t) \exp t d t\right| \leq \frac{1}{2} \bigvee_{a}^{b}(f) \tag{2.19}
\end{equation*}
$$

If $p \in(a, b)$ is such that $\bigvee_{a}^{p}(f)=\bigvee_{p}^{b}(f)$, then

$$
\begin{align*}
& \left\lvert\, \frac{(\exp p-\exp a) f(a)+(\exp b-\exp p) f(b)}{\exp b-\exp a}\right. \tag{2.20}\\
& \left.\quad-\frac{1}{\exp b-\exp a} \int_{a}^{b} f(t) \exp t d t \right\rvert\, \leq \frac{1}{2} \bigvee_{a}^{b}(f)
\end{align*}
$$

c). If we take $g:[a, b] \subset(0, \infty) \rightarrow \mathbb{R}, g(t)=t^{r}, r>0$ in (2.5), then we get

$$
\begin{align*}
& \left|\frac{\left(x^{r}-a^{r}\right) f(a)+\left(b^{r}-x^{r}\right) f(b)}{b^{r}-a^{r}}-\frac{r}{b^{r}-a^{r}} \int_{a}^{b} f(t) t^{r-1} d t\right| \tag{2.21}\\
& \leq\left(\frac{x^{r}-a^{r}}{b^{r}-a^{r}}\right) \bigvee_{a}^{x}(f)+\left(\frac{b^{r}-x^{r}}{b^{r}-a^{r}}\right) \bigvee_{x}^{b}(f) \\
& \leq\left\{\begin{array}{l}
{\left[\frac{1}{2}+\left|\frac{x^{r}-\frac{a^{r}+b^{r}}{2}}{b^{r}-a^{r}}\right|\right] \bigvee_{a}^{b}(f),} \\
{\left[\left(\frac{x^{r}-a^{r}}{b^{r}-a^{r}}\right)^{p}+\left(\frac{b^{r}-x^{r}}{b^{r}-a^{r}}\right)^{p}\right]^{1 / p}\left[\left(\bigvee_{a}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{b}(f)\right)^{q}\right]} \\
\text { where } p, q>1 \text { and } \frac{1}{p}+\frac{1}{q}=1, \\
\frac{1}{2}\left[\bigvee_{a}^{b}(f)+\left|\bigvee_{a}^{x}(f)-\bigvee_{x}^{b}(f)\right|\right]
\end{array}\right.
\end{align*}
$$

for any $x \in[a, b] \subset(0, \infty)$.
In particular, we have

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{r}{b^{r}-a^{r}} \int_{a}^{b} f(t) t^{r-1} d t\right| \leq \frac{1}{2}\left(b^{r}-a^{r}\right) \bigvee_{a}^{b}(f) \tag{2.22}
\end{equation*}
$$

If $p \in(a, b)$ is such that $\bigvee_{a}^{p}(f)=\bigvee_{p}^{b}(f)$, then

$$
\begin{equation*}
\left|\frac{\left(p^{r}-a^{r}\right) f(a)+\left(b^{r}-p^{r}\right) f(b)}{b^{r}-a^{r}}-r \int_{a}^{b} f(t) t^{r-1} d t\right| \leq \frac{1}{2}\left(b^{r}-a^{r}\right) \bigvee_{a}^{b}(f) \tag{2.23}
\end{equation*}
$$

d). If we take $g:[a, b] \subset(0, \infty) \rightarrow \mathbb{R}, g(t)=-t^{-r}, r>0$ in (2.5), then we get

$$
\begin{align*}
& \left|\frac{\left(x^{r}-a^{r}\right) b^{r}}{x^{r}\left(b^{r}-a^{r}\right)} f(a)+\frac{\left(b^{r}-x^{r}\right) a^{r}}{x^{r}\left(b^{r}-a^{r}\right)} f(b)-\frac{r b^{r} a^{r}}{b^{r}-a^{r}} \int_{a}^{b} f(t) t^{-r-1} d t\right| \tag{2.24}\\
& \leq \frac{\left(x^{r}-a^{r}\right) b^{r}}{x^{r}\left(b^{r}-a^{r}\right)} \bigvee_{a}^{x}(f)+\frac{\left(b^{r}-x^{r}\right) a^{r}}{x^{r}\left(b^{r}-a^{r}\right)} \bigvee_{x}^{b}(f) \\
& \left(\left[\frac{1}{2}+\left|\frac{x^{-r}-\frac{a^{-r}+b^{2}-r}{\frac{b^{r}-a^{2}}{b^{r}} a^{r}}}{}\right|\right] \bigvee_{a}^{b}(f),\right. \\
& \leq\left\{\begin{array}{l}
{\left[\left(\frac{\left(x^{r}-a^{r}\right) b^{r}}{x^{r}\left(b^{r}-a^{r}\right)}\right)^{p}+\left(\frac{\left(b^{r}-x^{r}\right) a^{r}}{x^{r}\left(b^{r}-a^{r}\right)}\right)^{p}\right]^{1 / p}\left[\left(\bigvee_{a}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{b}(f)\right)^{q}\right]^{1 / q}} \\
\text { where } p, q>1 \text { and } \underline{1}+\underline{1}=1,
\end{array}\right. \\
& \text { where } p, q>1 \text { and } \frac{1}{p}+\frac{1}{q}=1 \text {, } \\
& \frac{1}{2}\left[\bigvee_{a}^{b}(f)+\left|\bigvee_{a}^{x}(f)-\bigvee_{x}^{b}(f)\right|\right]
\end{align*}
$$

for any $x \in[a, b] \subset(0, \infty)$.
In particular, we have

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{r b^{r} a^{r}}{b^{r}-a^{r}} \int_{a}^{b} f(t) t^{-r-1} d t\right| \leq \frac{1}{2} \bigvee_{a}^{b}(f) \tag{2.25}
\end{equation*}
$$

If $p \in(a, b)$ is such that $\bigvee_{a}^{p}(f)=\bigvee_{p}^{b}(f)$, then

$$
\begin{align*}
& \left|\frac{\left(p^{r}-a^{r}\right) b^{r}}{p^{r}\left(b^{r}-a^{r}\right)} f(a)+\frac{\left(b^{r}-p^{r}\right) a^{r}}{p^{r}\left(b^{r}-a^{r}\right)} f(b)-\frac{r b^{r} a^{r}}{b^{r}-a^{r}} \int_{a}^{b} f(t) t^{-r-1} d t\right| \tag{2.26}\\
& \leq \frac{1}{2} \bigvee_{a}^{b}(f)
\end{align*}
$$

The particular case $r=1$ gives

$$
\begin{align*}
& \left|\frac{(x-a) b}{x(b-a)} f(a)+\frac{(b-x) a}{x(b-a)} f(b)-\frac{b a}{b-a} \int_{a}^{b} \frac{f(t)}{t^{2}} d t\right| \tag{2.27}\\
& \leq \frac{(x-a) b}{x(b-a)} \bigvee_{a}^{x}(f)+\frac{(b-x) a}{x(b-a)} \bigvee_{x}^{b}(f) \\
& \leq\left\{\begin{array}{c}
{\left[\frac{1}{2}+\left|\frac{x^{-1}-\frac{a^{-1}+b^{-1}}{\frac{b-a}{b a}}}{}\right|\right] \bigvee_{a}^{b}(f),} \\
\quad\left[\left(\frac{(x-a) b}{x(b-a)}\right)^{p}+\left(\frac{(b-x) a}{x(b-a)}\right)^{p}\right]^{1 / p}\left[\left(\bigvee_{a}^{x}(f)\right)^{q}+(\bigvee\right. \\
\text { where } p, q>1 \text { and } \frac{1}{p}+\frac{1}{q}=1, \\
\frac{1}{2}\left[\bigvee_{a}^{b}(f)+\left|\bigvee_{a}^{x}(f)-\bigvee_{x}^{b}(f)\right|\right]
\end{array}\right.
\end{align*}
$$

for any $x \in[a, b] \subset(0, \infty)$.

In particular, we have

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{b a}{b-a} \int_{a}^{b} \frac{f(t)}{t^{2}} d t\right| \leq \frac{1}{2} \bigvee_{a}^{b}(f) \tag{2.28}
\end{equation*}
$$

If $p \in(a, b)$ is such that $\bigvee_{a}^{p}(f)=\bigvee_{p}^{b}(f)$, then

$$
\begin{equation*}
\left|\frac{(p-a) b}{p(b-a)} f(a)+\frac{(b-p) a}{p(b-a)} f(b)-\frac{b a}{b-a} \int_{a}^{b} \frac{f(t)}{t^{2}} d t\right| \leq \frac{1}{2} \bigvee_{a}^{b}(f) \tag{2.29}
\end{equation*}
$$

3. Weighted Integral Inequalities and Probability Distributions

If $w:[a, b] \rightarrow \mathbb{R}$ is continuous and positive on the interval $[a, b]$, then the function $W:[a, b] \rightarrow[0, \infty), W(x):=\int_{a}^{x} w(s) d s$ is strictly increasing and differentiable on (a, b). We have $W^{\prime}(x)=w(x)$ for any $x \in(a, b)$.

The following refinement of (1.3) holds:
Proposition 1. Assume that $w:[a, b] \rightarrow(0, \infty)$ is continuous on $[a, b]$ and $f:$ $[a, b] \rightarrow \mathbb{C}$ is of bounded variation on $[a, b]$, then we have

$$
\begin{align*}
& \left|\frac{f(a) \int_{a}^{x} w(s) d s+f(b) \int_{x}^{b} w(s) d s}{\int_{a}^{b} w(s) d s}-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} f(t) w(t) d t\right| \tag{3.1}\\
& \leq \frac{\int_{a}^{x} w(s) d s}{\int_{a}^{b} w(s) d s} \bigvee_{a}^{x}(f)+\frac{\int_{x}^{b} w(s) d s}{\int_{a}^{b} w(s) d s} \bigvee_{x}^{b}(f) \\
& \leq\left\{\begin{array}{l}
\frac{1}{2}\left[1+\left|\frac{\int_{a}^{x} w(s) d s-\int_{x}^{b} w(s) d s}{\int_{a}^{b} w(s) d s}\right|\right] \bigvee_{a}^{b}(f), \\
{\left[\left(\frac{\int_{a}^{x} w(s) d s}{\int_{a}^{b} w(s) d s}\right)^{p}+\left(\frac{\int_{x}^{b} w(s) d s}{\int_{a}^{b} w(s) d s}\right)^{p}\right]^{1 / p}\left[\left(\bigvee_{a}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{b}(f)\right)^{q}\right]^{1 / q}} \\
w h e r e p, q>1 \text { and } \frac{1}{p}+\frac{1}{q}=1, \\
\frac{1}{2}\left[\bigvee_{a}^{b}(f)+\left|\bigvee_{a}^{x}(f)-\bigvee_{x}^{b}(f)\right|\right]
\end{array}\right.
\end{align*}
$$

for all $x \in[a, b]$.
In particular, we have

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} f(t) w(t) d t\right| \leq \frac{1}{2} \bigvee_{a}^{b}(f) \tag{3.2}
\end{equation*}
$$

Moreover, if $p \in(a, b)$ is such that $\bigvee_{a}^{p}(f)=\bigvee_{p}^{b}(f)$, then

$$
\begin{align*}
& \left|\frac{f(a) \int_{a}^{p} w(s) d s+f(b) \int_{p}^{b} w(s) d s}{\int_{a}^{b} w(s) d s}-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} f(t) w(t) d t\right| \tag{3.3}\\
& \leq \frac{1}{2} \bigvee_{a}^{b}(f)
\end{align*}
$$

The proof follows by Theorem 2 for $g(x):=\int_{a}^{x} w(s) d s, x \in[a, b]$.
The above result can be extended for infinite intervals I by assuming that the function $f: I \rightarrow \mathbb{C}$ is locally of bounded variation on I.

For instance, if $I=[a, \infty), f:[a, \infty) \rightarrow \mathbb{C}$ is locally of bounded variation on $[a, \infty)$ with

$$
\bigvee_{a}^{\infty}(f):=\lim _{b \rightarrow \infty} \bigvee_{a}^{b}(f)<\infty
$$

and $w(s)>0$ for $s \in[a, \infty)$ with $\int_{a}^{\infty} w(s) d s=1$, namely w is a probability density function on $[a, \infty)$, then by (3.1) for $f(\infty):=\lim _{b \rightarrow \infty} f(b)$ finite, we get

$$
\begin{align*}
& \left|f(a) W(x)+f(\infty)[1-W(x)]-\int_{a}^{\infty} f(t) w(t) d t\right| \tag{3.4}\\
& \leq W(x) \bigvee_{a}^{x}(f)+[1-W(x)] \bigvee_{x}^{\infty}(f) \\
& \leq\left\{\begin{array}{l}
{\left[\frac{1}{2}+\left|W(x)-\frac{1}{2}\right|\right] \bigvee_{a}^{\infty}(f),} \\
{\left[W^{p}(x)+(1-W(x))^{p}\right]^{1 / p}\left[\left(\bigvee_{a}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{\infty}(f)\right)^{q}\right]^{1 / q}} \\
\text { where } p, q>1 \text { and } \frac{1}{p}+\frac{1}{q}=1, \\
\frac{1}{2}\left[\bigvee_{a}^{\infty}(f)+\left|\bigvee_{a}^{x}(f)-\bigvee_{x}^{\infty}(f)\right|\right]
\end{array}\right.
\end{align*}
$$

for any $x \in[a, \infty)$, where $W(x):=\int_{a}^{x} w(s) d s$ is the cumulative distribution function.

If $m \in(a, \infty)$ is the median point for w, namely $W(m)=\frac{1}{2}$, then by (3.4) for $x=m$ we get

$$
\begin{equation*}
\left|\frac{f(a)+f(\infty)}{2}-\int_{a}^{\infty} f(t) w(t) d t\right| \leq \frac{1}{2} \bigvee_{a}^{\infty}(f) \tag{3.5}
\end{equation*}
$$

Also, if $p \in(a, \infty)$ such that $\bigvee_{a}^{p}(f)=\bigvee_{p}^{\infty}(f)$, then

$$
\begin{equation*}
\left|f(a) W(p)+f(\infty)[1-W(p)]-\int_{a}^{\infty} f(t) w(t) d t\right| \leq \frac{1}{2} \bigvee_{a}^{\infty}(f) \tag{3.6}
\end{equation*}
$$

In probability theory and statistics, the beta prime distribution (also known as inverted beta distribution or beta distribution of the second kind) is an absolutely continuous probability distribution defined for $x>0$ with two parameters α and β, having the probability density function:

$$
w_{\alpha, \beta}(x):=\frac{x^{\alpha-1}(1+x)^{-\alpha-\beta}}{B(\alpha, \beta)}
$$

where B is Beta function

$$
B(\alpha, \beta):=\int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1}, \alpha, \beta>0
$$

The cumulative distribution function is

$$
W_{\alpha, \beta}(x)=I_{\frac{x}{1+x}}(\alpha, \beta),
$$

where I is the regularized incomplete beta function defined by

$$
I_{z}(\alpha, \beta):=\frac{B(z ; \alpha, \beta)}{B(\alpha, \beta)}
$$

Here $B(\cdot ; \alpha, \beta)$ is the incomplete beta function defined by

$$
B(z ; \alpha, \beta):=\int_{0}^{z} t^{\alpha-1}(1-t)^{\beta-1}, \alpha, \beta, z>0
$$

Assume that $f:[0, \infty) \rightarrow \mathbb{C}$ is locally of bounded variation on $[0, \infty)$ with $\bigvee_{0}^{\infty}(f)<\infty$. Using the inequality (3.4) we have for $x>0$ that

$$
\begin{align*}
& \left\lvert\, f(a) I_{\frac{x}{1+x}}(\alpha, \beta)+f(\infty)\left[1-I_{\frac{x}{1+x}}(\alpha, \beta)\right]\right. \tag{3.7}\\
& \left.-\frac{1}{B(\alpha, \beta)} \int_{0}^{\infty} f(t) t^{\alpha-1}(1+t)^{-\alpha-\beta} d t \right\rvert\, \\
& \leq I_{\frac{x}{1+x}}(\alpha, \beta) \bigvee_{0}^{x}(f)+\left[1-I_{\frac{x}{1+x}}(\alpha, \beta)\right] \bigvee_{x}^{\infty}(f) \\
& \leq\left\{\begin{array}{l}
{\left[\frac{1}{2}+\left|I_{\frac{x}{1+x}}(\alpha, \beta)-\frac{1}{2}\right|\right] \bigvee_{0}^{\infty}(f),} \\
{\left[\left(I_{\frac{x}{1+x}}(\alpha, \beta)\right)^{p}+\left(1-I_{\frac{x}{1+x}}(\alpha, \beta)\right)^{p}\right]^{1 / p}} \\
{\left[\left(\bigvee_{0}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{\infty}(f)\right)^{q}\right]^{1 / q}} \\
\text { where } p, q>1 \text { and } \frac{1}{p}+\frac{1}{q}=1, \\
\frac{1}{2}\left[\bigvee_{0}^{\infty}(f)+\left|\bigvee_{0}^{x}(f)-\bigvee_{x}^{\infty}(f)\right|\right]
\end{array}\right.
\end{align*}
$$

for $\alpha, \beta>0$.
In particular,

$$
\begin{equation*}
\left|\frac{f(a)+f(\infty)}{2}-\frac{1}{B(\alpha, \beta)} \int_{0}^{\infty} f(t) t^{\alpha-1}(1+t)^{-\alpha-\beta} d t\right| \leq \frac{1}{2} \bigvee_{a}^{\infty}(f) \tag{3.8}
\end{equation*}
$$

Also, if $p \in(a, \infty)$ such that $\bigvee_{a}^{p}(f)=\bigvee_{p}^{\infty}(f)$, then

$$
\begin{equation*}
\left|f(a) I_{\frac{p}{1+p}}(\alpha, \beta)+f(\infty)\left[1-I_{\frac{p}{1+p}}(\alpha, \beta)\right]-\int_{a}^{\infty} f(t) w(t) d t\right| \leq \frac{1}{2} \bigvee_{a}^{\infty}(f) \tag{3.9}
\end{equation*}
$$

Similar results may be stated for the probability distributions that are supported on the whole axis \mathbb{R}. Namely, if $I=\mathbb{R}, f: \mathbb{R} \rightarrow \mathbb{C}$ is locally of bounded variation on \mathbb{R} with

$$
\bigvee_{-\infty}^{\infty}(f):=\lim _{b \rightarrow \infty, a \rightarrow-\infty} \bigvee_{a}^{b}(f)<\infty
$$

and $w(s)>0$ for $s \in \mathbb{R}$ with $\int_{-\infty}^{\infty} w(s) d s=1$, namely w is a probability density function on \mathbb{R}, then by (3.1) for $f(\infty):=\lim _{b \rightarrow \infty} f(b)$ and $f(-\infty):=$
$\lim _{a \rightarrow-\infty} f(a)$ finite, we get

$$
\begin{align*}
& \left|f(-\infty) W(x)+f(\infty)[1-W(x)]-\int_{-\infty}^{\infty} f(t) w(t) d t\right| \tag{3.10}\\
& \leq W(x) \bigvee_{-\infty}^{x}(f)+[1-W(x)] \bigvee_{x}^{\infty}(f) \\
& \leq\left\{\begin{array}{l}
{\left[\frac{1}{2}+\left|W(x)-\frac{1}{2}\right|\right] \bigvee_{-\infty}^{\infty}(f),} \\
{\left[W^{p}(x)+(1-W(x))^{p}\right]^{1 / p}\left[\left(\bigvee_{-\infty}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{\infty}(f)\right)^{q}\right]^{1 / q}} \\
\text { where } p, q>1 \text { and } \frac{1}{p}+\frac{1}{q}=1, \\
\frac{1}{2}\left[\bigvee_{-\infty}^{\infty}(f)+\left|\bigvee_{-\infty}^{x}(f)-\bigvee_{x}^{\infty}(f)\right|\right]
\end{array}\right.
\end{align*}
$$

for any $x \in \mathbb{R}$, where $W(x):=\int_{-\infty}^{x} w(s) d s$ is the cumulative distribution function.
If $m \in \mathbb{R}$ is the median point for w, namely $W(m)=\frac{1}{2}$, then by (3.4) we get

$$
\begin{equation*}
\left|\frac{f(-\infty)+f(\infty)}{2}-\int_{-\infty}^{\infty} f(t) w(t) d t\right| \leq \frac{1}{2} \bigvee_{-\infty}^{\infty}(f) . \tag{3.11}
\end{equation*}
$$

Also, if $p \in(-\infty, \infty)$ such that $\bigvee_{-\infty}^{p}(f)=\bigvee_{p}^{\infty}(f)$, then

$$
\begin{equation*}
\left|f(-\infty) W(p)+f(\infty)[1-W(p)]-\int_{-\infty}^{\infty} f(t) w(t) d t\right| \leq \frac{1}{2} \bigvee_{-\infty}^{\infty}(f) \tag{3.12}
\end{equation*}
$$

In what follows we give an example.
The probability density of the normal distribution on $(-\infty, \infty)$ is

$$
w_{\mu, \sigma^{2}}(x):=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right), x \in \mathbb{R}
$$

where μ is the mean or expectation of the distribution (and also its median and mode), σ is the standard deviation, and σ^{2} is the variance.

The cumulative distribution function is

$$
W_{\mu, \sigma^{2}}(x)=\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{x-\mu}{\sigma \sqrt{2}}\right)
$$

where the error function erf is defined by

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp \left(-t^{2}\right) d t
$$

If $f: \mathbb{R} \rightarrow \mathbb{R}$ is locally of bounded variation with $\bigvee_{-\infty}^{\infty}(f)<\infty$, then from (3.10) for $f(\infty):=\lim _{b \rightarrow \infty} f(b)$ and $f(-\infty):=\lim _{a \rightarrow-\infty} f(a)$ finite we have

$$
\begin{align*}
& \left\lvert\, \frac{1}{2}\left\{f(-\infty)\left[1+\operatorname{erf}\left(\frac{x-\mu}{\sigma \sqrt{2}}\right)\right]+f(\infty)\left[1-\operatorname{erf}\left(\frac{x-\mu}{\sigma \sqrt{2}}\right)\right]\right\}\right. \tag{3.13}\\
& \left.-\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} f(t) \exp \left(-\frac{(t-\mu)^{2}}{2 \sigma^{2}}\right) d t \right\rvert\, \\
& \leq \frac{1}{2}\left\{\left[1+\operatorname{erf}\left(\frac{x-\mu}{\sigma \sqrt{2}}\right)\right] \bigvee_{-\infty}^{x}(f)+\left[1-\operatorname{erf}\left(\frac{x-\mu}{\sigma \sqrt{2}}\right)\right] \bigvee_{x}^{\infty}(f)\right\} \\
& \leq\left\{\begin{array}{l}
\frac{1}{2}\left[\left(1+\operatorname{erf}\left(\frac{x-\mu}{\sigma \sqrt{2}}\right)\right)^{p}+\left(1-\operatorname{erf}\left(\frac{x-\mu}{\sigma \sqrt{2}}\right)\right)^{p}\right]^{1 / p} \\
\times\left[\left(\bigvee_{-\infty}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{\infty}(f)\right)^{q}\right]^{1 / q} \\
w h e r e p, q>1 \text { and } \frac{1}{p}+\frac{1}{q}=1, \\
\frac{1}{2}\left[\bigvee_{-\infty}^{\infty}(f)+\left|\bigvee_{-\infty}^{x}(f)-\bigvee_{x}^{\infty}(f)\right|\right]
\end{array}\right.
\end{align*}
$$

for any $x \in \mathbb{R}$.
In particular, we have

$$
\begin{equation*}
\left|\frac{f(-\infty)+f(\infty)}{2}-\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} f(t) \exp \left(-\frac{(t-\mu)^{2}}{2 \sigma^{2}}\right) d t\right| \leq \frac{1}{2} \bigvee_{-\infty}^{\infty}(f) \tag{3.14}
\end{equation*}
$$

Also, if $p \in \mathbb{R}$ such that $\bigvee_{-\infty}^{p}(f)=\bigvee_{p}^{\infty}(f)$, then

$$
\begin{align*}
& \left\lvert\, \frac{1}{2}\left\{f(-\infty)\left[1+\operatorname{erf}\left(\frac{p-\mu}{\sigma \sqrt{2}}\right)\right]+f(\infty)\left[1-\operatorname{erf}\left(\frac{p-\mu}{\sigma \sqrt{2}}\right)\right]\right\}\right. \tag{3.15}\\
& \left.-\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} f(t) \exp \left(-\frac{(t-\mu)^{2}}{2 \sigma^{2}}\right) d t \right\rvert\, \leq \frac{1}{2} \bigvee_{-\infty}^{\infty}(f)
\end{align*}
$$

References

[1] M. W. Alomari, A companion of the generalized trapezoid inequality and applications. J. Math. Appl. 36 (2013), 5-15.
[2] T. M. Apostol, Mathematical Analysis, Second Edition, Addison-Wesley Publishing Company, 1975.
[3] M. U. Awan, M. A. Noor, M. V. Mihai and K. I. Noor, Two point trapezoidal like inequalities involving hypergeometric functions. Filomat 31 (2017), no. 8, 2281-2292.
[4] P. Cerone, S. S. Dragomir and C. E. M. Pearce, A generalized trapezoid inequality for functions of bounded variation. Turkish J. Math. 24 (2000), no. 2, 147-163.
[5] P. Cerone and S. S. Dragomir. Trapezoidal-type rules from an inequalities point of view. Handbook of analytic-computational methods in applied mathematics, 65-134, Chapman \& Hall/CRC, Boca Raton, FL, 2000.
[6] P. Cerone, S. S. Dragomir and Eder Kikianty, Ostrowski and trapezoid type inequalities related to Pompeiu's mean value theorem. J. Math. Inequal. 9 (2015), no. 3, 739-762.
[7] P. Cerone, S. S. Dragomir and Eder Kikianty, Multiplicative Ostrowski and trapezoid inequalities. Handbook of functional equations, 57-73, Springer Optim. Appl., 95, Springer, New York, 2014.
[8] P. Cerone, S. S. Dragomir, J. Roumeliotis and J. Sunde, A new generalization of the trapezoid formula for n-time differentiable mappings and applications. Demonstratio Math. 33 (2000), no. 4, 719-736.
[9] S. S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation. Bull. Austral. Math. Soc. 60 (1999), No. 3, 495-508.
[10] S. S. Dragomir, On the trapezoid quadrature formula for Lipschitzian mappings and applications. Tamkang J. Math. 30 (1999), no. 2, 133-138.
[11] S. S. Dragomir, A Grüss' type integral inequality for mappings of r-Hölder's type and applications for trapezoid formula. Tamkang J. Math. 31 (2000), no. 1, 43-47.
[12] S. S. Dragomir, On the trapezoid quadrature formula and applications. Kragujevac J. Math. 23 (2001), 25-36.
[13] S. S. Dragomir, On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Ineq. Appl. 4 (2001), No. 1, 59-66. Preprint: RGMIA Res. Rep. Coll. 2 (1999), Art. 7, [Online: http://rgmia.org/papers/v2n1/v2n1-7.pdf.
[14] S. S. Dragomir, Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation. Arch. Math. (Basel) 91 (2008), no. 5, 450-460.
[15] S. S. Dragomir, Refinements of the generalized trapezoid inequality in terms of the cumulative variation and applications. Cubo 17 (2015), no. 2, 31-48.
[16] S. S. Dragomir, A functional generalization of trapezoid inequality. Vietnam J. Math. 43 (2015), no. 4, 663-675.
[17] S. S. Dragomir and A. Mcandrew, On trapezoid inequality via a Grüss type result and applications. Tamkang J. Math. 31 (2000), no. 3, 193-201.
[18] S. S. Dragomir, P. Cerone and A. Sofo, Some remarks on the trapezoid rule in numerical integration. Indian J. Pure Appl. Math. 31 (2000), no. 5, 475-494.
[19] A. Hadjian and M. R. Delavar, Trapezoid and mid-point type inequalities related to η-convex functions. J. Inequal. Spec. Funct. 8 (2017), no. 3, 25-31.
[20] D.-Y. Hwang, Some inequalities for differentiable convex mapping with application to weighted trapezoidal formula and higher moments of random variables. Appl. Math. Comput. 217 (2011), no. 23, 9598-9605.
[21] W. Liu and H. Zhang, Refinements of the weighted generalized trapezoid inequality in terms of cumulative variation and applications. Georgian Math. J. 25 (2018), no. 1, 47-64.
[22] W. Liu and J. Park, Some perturbed versions of the generalized trapezoid inequality for functions of bounded variation. J. Comput. Anal. Appl. 22 (2017), no. 1, 11-18.
[23] K.-L. Tseng, G.-S. Yang and K.-C. Hsu, Some inequalities for differentiable mappings and applications to Fejér inequality and weighted trapezoidal formula. Taiwanese J. Math. 15 (2011), no. 4, 1737-1747.
[24] K. L. Tseng and S. R. Hwang, Some extended trapezoid-type inequalities and applications. Hacet. J. Math. Stat. 45 (2016), no. 3, 827-850
[25] K.-L. Tseng, G.-S. Yang and S. S. Dragomir, Generalizations of weighted trapezoidal inequality for mappings of bounded variation and their applications. Math. Comput. Modelling 40 (2004), no. 1-2, 77-84.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the WitwaterSrand,, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15; 26D10.
 Key words and phrases. Function of bounded variation, Trapezoid inequality, Weighted integrals, Probability density functions, Cumulative probability function.

