Asymptotic series related to Ramanujan's expansion for the harmonic number

Chao-Ping Chen
School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City 454000, Henan Province, China
e-mail: chenchaoping@sohu.com

Abstract In this paper, we present various asymptotic series for the harmonic number $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$. More precisely, we give a recursive relation for determining the coefficients $\mu_{j}(h)$ such that

$$
H_{n} \sim \frac{1}{2} \psi(2 m+h)+\gamma+\sum_{j=1}^{\infty} \frac{\mu_{j}(h)}{(2 m+h)^{j}}
$$

as $n \rightarrow \infty$, where $h \in \mathbb{R}, m=\frac{1}{2} n(n+1), \psi$ denotes the digamma function and γ is the Euler-Mascheroni constant. We also give recursive relations for determining the constants $a_{\ell}, b_{\ell}, \alpha_{\ell}$, and β_{ℓ} such that
$H_{n} \sim \frac{1}{2} \ln \left(2 m+\frac{1}{3}\right)+\gamma+\sum_{\ell=1}^{\infty} \frac{a_{\ell}}{\left(2 m+b_{\ell}\right)^{2 \ell}}$ and $H_{n} \sim \frac{1}{2} \psi\left(2 m+\frac{5}{6}\right)+\gamma+\sum_{\ell=1}^{\infty} \frac{\alpha_{\ell}}{\left(2 m+\beta_{\ell}\right)^{2 \ell}}$ as $n \rightarrow \infty$.
Keywords Harmonic number; Euler-Mascheroni constant; Asymptotic expansion
Mathematics Subject Classification (2010) Primary 41A60; Secondary 40A05

1 Introduction

Ramanujan (see [2, p. 531] and [14, p. 276]) proposed, without a proof and without a formula for the general term, the following asymptotic expansion for the nth harmonic number:

$$
\begin{align*}
H_{n}:=\sum_{k=1}^{n} \frac{1}{k} \sim & \frac{1}{2} \ln (2 m)+\gamma+\frac{1}{12 m}-\frac{1}{120 m^{2}}+\frac{1}{630 m^{3}}-\frac{1}{1680 m^{4}}+\frac{1}{2310 m^{5}} \\
& -\frac{191}{360360 m^{6}}+\frac{29}{30030 m^{7}}-\frac{2833}{1166880 m^{8}}+\frac{140051}{17459442 m^{9}}-\cdots \tag{1.1}
\end{align*}
$$

as $n \rightarrow \infty$, where $m=\frac{1}{2} n(n+1)(n \in \mathbb{N}:=\{1,2, \ldots\})$ is the nth triangular number and γ is the Euler-Mascheroni constant.

Berndt [2, pp. 531-532] simply verified that Ramanujan's expansion coincides with the following Euler expansion:

$$
\begin{equation*}
H_{n} \sim \ln n+\gamma-\sum_{j=1}^{\infty} \frac{B_{j}}{j n^{j}}, \tag{1.2}
\end{equation*}
$$

where $B_{j}\left(j \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}\right)$ are the Bernoulli numbers defined by the following generating function:

$$
\frac{z}{e^{z}-1}=\sum_{j=0}^{\infty} B_{j} \frac{z^{j}}{j!}, \quad|z|<2 \pi .
$$

Hirschhorn [8] presented a natural derivation for Ramanujan's expansion. However, Berndt and Hirschhorn did not give the general formula for the coefficients of $\frac{1}{m^{j}}(j \in \mathbb{N})$ in Ramanujan's expansion. The complete proof of expansion (1.1) was given by Villarino [15, Theorem 1.1] who proved that for every integer $r \geq 1$, there exists a $\Theta_{r}, 0<\Theta_{r}<1$, for which the following equation is true:

$$
\begin{equation*}
H_{n}=\frac{1}{2} \ln (2 m)+\gamma+\sum_{j=1}^{r} \frac{R_{j}}{m^{j}}+\Theta_{r} \cdot \frac{R_{r+1}}{m^{r+1}}, \tag{1.3}
\end{equation*}
$$

with

$$
\begin{equation*}
R_{j}=\frac{(-1)^{j-1}}{2 j \cdot 8^{j}}\left\{1+\sum_{k=1}^{j}\binom{j}{k}(-4)^{k} B_{2 k}\left(\frac{1}{2}\right)\right\}, \tag{1.4}
\end{equation*}
$$

where $B_{n}(t)$ denotes the Bernoulli polynomials defined by the following generating function:

$$
\begin{equation*}
\frac{z e^{t z}}{e^{z}-1}=\sum_{n=0}^{\infty} B_{n}(t) \frac{z^{n}}{n!}, \quad|z|<2 \pi . \tag{1.5}
\end{equation*}
$$

By using the relation

$$
B_{n}\left(\frac{1}{2}\right)=-\left(1-2^{1-n}\right) B_{n} \quad \text { for } \quad n \in \mathbb{N}_{0}
$$

(see [1, p. 805]), it follows from (1.3) and (1.4) that

$$
\begin{equation*}
H_{n} \sim \frac{1}{2} \ln (2 m)+\gamma+\sum_{j=1}^{\infty} \frac{R_{j}}{m^{j}} \tag{1.6}
\end{equation*}
$$

with

$$
\begin{equation*}
R_{j}=\frac{(-1)^{j-1}}{2 j \cdot 8^{j}}\left\{1-\sum_{k=1}^{j}\binom{j}{k}(-4)^{k}\left(1-2^{1-2 k}\right) B_{2 k}\right\} . \tag{1.7}
\end{equation*}
$$

Ramanujan's expansion (1.1) was also researched in $[4,5,6,7,9]$.
Also in [15], Villarino remarked that there might exist a series expansion for the logarithm of the factorial in terms of $\frac{1}{m}$. Villarino's remark has been considered by Nemes [13] and Chen [3].

Mortici and Chen [11, Theorem 2] presented the following approximation formula:

$$
\begin{align*}
H_{n}= & \frac{1}{2} \ln \left(n^{2}+n+\frac{1}{3}\right)+\gamma-\frac{1}{180\left(n^{2}+n+\frac{1}{3}\right)^{2}}+\frac{8}{2835\left(n^{2}+n+\frac{1}{3}\right)^{3}} \\
& -\frac{5}{1512\left(n^{2}+n+\frac{1}{3}\right)^{4}}+\frac{592}{93555\left(n^{2}+n+\frac{1}{3}\right)^{5}}+O\left(\frac{1}{\left(n^{2}+n+\frac{1}{3}\right)^{6}}\right) . \tag{1.8}
\end{align*}
$$

Very recently, Mortici and Villarino [12, Theorem 2] and Chen [4, Theorem 3.3] developed the approximation formula (1.8) to produce a complete asymptotic expansion:

$$
\begin{equation*}
H_{n} \sim \frac{1}{2} \ln \left(2 m+\frac{1}{3}\right)+\gamma+\sum_{j=2}^{\infty} \frac{\rho_{j}}{\left(2 m+\frac{1}{3}\right)^{j}} . \tag{1.9}
\end{equation*}
$$

Moreover, the authors gave a formula for determining the coefficients ρ_{j} in (1.9).
Euler's gamma function:

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} \mathrm{~d} t, \quad x>0
$$

is one of the most important functions in mathematical analysis and has applications in many diverse areas. The logarithmic derivative of the gamma function:

$$
\psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}
$$

is known as the psi (or digamma) function. $\psi(x)$ is connected to the Euler-Mascheroni constant and harmonic numbers through the well known relation (see [1, p. 258, Eq. (6.3.2)])

$$
\begin{equation*}
\psi(n+1)=-\gamma+H_{n}, \quad n \in \mathbb{N} . \tag{1.10}
\end{equation*}
$$

Hence, various approximations of the psi function are used in this relation and interpreted as approximation for the harmonic number H_{n} or as approximation of the constant γ.

The psi function has the following asymptotic expansion (see [10, p. 33]):

$$
\begin{equation*}
\psi(x+a) \sim \ln x+\sum_{k=1}^{\infty} \frac{(-1)^{k-1} B_{k}(a)}{k x^{k}}, \quad x \rightarrow \infty, \quad a \in \mathbb{R}, \tag{1.11}
\end{equation*}
$$

where $B_{n}(t)$ is the Bernoulli polynomials defined by (1.5).
In view of (1.6), (1.9) and (1.11), we can let

$$
\begin{equation*}
H_{n} \sim \frac{1}{2} \psi(2 m+h)+\gamma+\sum_{j=1}^{\infty} \frac{\mu_{j}}{(2 m+h)^{j}}, \quad n \rightarrow \infty, \tag{1.12}
\end{equation*}
$$

where $h \in \mathbb{R}$ and $m=\frac{1}{2} n(n+1)$. The first aim of present paper is to determine the coefficients $\mu_{j} \equiv \mu_{j}(h)$ in (1.12). The second aim of present paper is to determine the constants $a_{\ell}, b_{\ell}, \alpha_{\ell}$, and β_{ℓ} such that

$$
H_{n} \sim \frac{1}{2} \ln \left(2 m+\frac{1}{3}\right)+\gamma+\sum_{\ell=1}^{\infty} \frac{a_{\ell}}{\left(2 m+b_{\ell}\right)^{2 \ell}}, \quad n \rightarrow \infty
$$

and

$$
H_{n} \sim \frac{1}{2} \psi\left(2 m+\frac{5}{6}\right)+\gamma+\sum_{\ell=1}^{\infty} \frac{\alpha_{\ell}}{\left(2 m+\beta_{\ell}\right)^{2 \ell}}, \quad n \rightarrow \infty .
$$

2 Main results

Theorem 2.1. Let $h \in \mathbb{R}$ and $m=\frac{1}{2} n(n+1)$. The harmonic number has the following asymptotic expansion:

$$
\begin{equation*}
H_{n} \sim \frac{1}{2} \psi(2 m+h)+\gamma+\sum_{j=1}^{\infty} \frac{\mu_{j}}{(2 m+h)^{j}}, \quad n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

with the coefficients $\mu_{j} \equiv \mu_{j}(h)(j \in \mathbb{N})$ given by the recurrence relation

$$
\begin{equation*}
\mu_{1}=\frac{1}{6}-\frac{B_{1}(h)}{2}, \quad \mu_{j}=2^{j} R_{j}-\frac{(-1)^{j-1} B_{j}(h)}{2 j}-\sum_{k=1}^{j-1} \mu_{k}(-h)^{j-k}\binom{j-1}{j-k}, \quad j \geq 2 \tag{2.2}
\end{equation*}
$$

where R_{j} are given in (1.7) and $B_{n}(t)$ is the Bernoulli polynomials.
Proof. Write (2.1) as

$$
\begin{equation*}
H_{n} \sim \frac{1}{2} \psi(2 m+h)+\gamma+\sum_{j=1}^{\infty} \frac{\mu_{j}}{(2 m)^{j}}\left(1+\frac{h}{2 m}\right)^{-j} . \tag{2.3}
\end{equation*}
$$

The choice $x=2 m$ and $a=h$ in (1.11) yields

$$
\begin{equation*}
\psi(2 m+h) \sim \ln (2 m)+\sum_{k=1}^{\infty} \frac{(-1)^{k-1} B_{k}(h)}{k \cdot 2^{k} m^{k}} \tag{2.4}
\end{equation*}
$$

Direct computation yields

$$
\begin{align*}
\sum_{j=1}^{\infty} \frac{\mu_{j}}{(2 m)^{j}}\left(1+\frac{h}{2 m}\right)^{-j} & =\sum_{j=1}^{\infty} \frac{\mu_{j}}{(2 m)^{j}} \sum_{k=0}^{\infty}\binom{-j}{k} \frac{h^{m}}{(2 m)^{k}} \\
& =\sum_{j=1}^{\infty} \frac{\mu_{j}}{2^{j}} \sum_{k=0}^{\infty}(-1)^{k}\binom{k+j-1}{k} \frac{h^{k}}{2^{k}} \frac{1}{m^{j+k}} \\
& =\sum_{j=1}^{\infty}\left\{\sum_{k=1}^{j} \frac{\mu_{k}}{2^{j}}(-h)^{j-k}\binom{j-1}{j-k}\right\} \frac{1}{m^{j}} \tag{2.5}
\end{align*}
$$

Substituting (2.4) and (2.5) into (2.3) we have

$$
\begin{equation*}
H_{n} \sim \frac{1}{2} \ln (2 m)+\gamma+\sum_{j=1}^{\infty}\left\{\frac{(-1)^{j-1} B_{j}(h)}{j \cdot 2^{j+1}}+\sum_{k=1}^{j} \frac{\mu_{k}}{2^{j}}(-h)^{j-k}\binom{j-1}{j-k}\right\} \frac{1}{m^{j}} \tag{2.6}
\end{equation*}
$$

Equating coefficients of the term m^{-j} on the right sides of (1.6) and (2.6), we obtain

$$
\begin{equation*}
\frac{(-1)^{j-1} B_{j}(h)}{j \cdot 2^{j+1}}+\sum_{k=1}^{j} \frac{\mu_{k}}{2^{j}}(-h)^{j-k}\binom{j-1}{j-k}=R_{j}, \quad j \in \mathbb{N} . \tag{2.7}
\end{equation*}
$$

For $j=1$ we obtain $\mu_{1}=\frac{1}{6}-\frac{B_{1}(h)}{2}$, and for $j \geq 2$ we have

$$
\frac{(-1)^{j-1} B_{j}(h)}{j \cdot 2^{j+1}}+\sum_{k=1}^{j-1} \frac{\mu_{k}}{2^{j}}(-h)^{j-k}\binom{j-1}{j-k}+\frac{\mu_{j}}{2^{j}}=R_{j}, \quad j \geq 2
$$

which yields the recursive formula (2.2). The proof of Theorem 2.1 is complete.

The first few coefficients $\mu_{j} \equiv \mu_{j}(h)$ are:

$$
\begin{aligned}
& \mu_{1}=-\frac{1}{2} h+\frac{5}{12}, \\
& \mu_{2}=-\frac{1}{4} h^{2}+\frac{1}{6} h+\frac{1}{120}, \\
& \mu_{3}=-\frac{1}{6} h^{3}+\frac{1}{6} h^{2}-\frac{1}{15} h+\frac{4}{315}, \\
& \mu_{4}=-\frac{1}{8} h^{4}+\frac{1}{6} h^{3}-\frac{1}{10} h^{2}+\frac{4}{105} h-\frac{23}{1680} .
\end{aligned}
$$

Setting $h=0$ in (2.1), we obtain the following explicit asymptotic expansion:

$$
\begin{equation*}
H_{n} \sim \gamma+\frac{1}{2} \psi(2 m)+\frac{5}{24 m}+\frac{1}{480 m^{2}}+\frac{1}{630 m^{3}}-\frac{23}{26880 m^{4}}+\cdots, \quad n \rightarrow \infty \tag{2.8}
\end{equation*}
$$

Setting $h=\frac{5}{6}$ in (2.1) yields

$$
\begin{align*}
H_{n} \sim & \frac{1}{2} \psi\left(2 m+\frac{5}{6}\right)+\gamma-\frac{19}{720\left(2 m+\frac{5}{6}\right)^{2}}-\frac{1069}{45360\left(2 m+\frac{5}{6}\right)^{3}} \\
& -\frac{263}{17280\left(2 m+\frac{5}{6}\right)^{4}}-\cdots, \quad n \rightarrow \infty \tag{2.9}
\end{align*}
$$

Theorem 2.2. The harmonic number has the following asymptotic series:

$$
\begin{equation*}
H_{n} \sim \frac{1}{2} \ln \left(2 m+\frac{1}{3}\right)+\gamma+\sum_{\ell=1}^{\infty} \frac{a_{\ell}}{\left(2 m+b_{\ell}\right)^{2 \ell}}, \quad n \rightarrow \infty \tag{2.10}
\end{equation*}
$$

where a_{ℓ} and b_{ℓ} are given by a pair of recurrence relations

$$
\begin{equation*}
a_{\ell}=2^{2 \ell}\left\{R_{2 \ell}+\frac{1}{4 \ell 6^{2 \ell}}-\sum_{k=1}^{\ell-1} \frac{a_{k}}{2^{2 k}}\left(-\frac{b_{k}}{2}\right)^{2 \ell-2 k}\binom{2 \ell-1}{2 \ell-2 k}\right\}, \quad \ell \geq 2 \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{\ell}=\frac{2^{2 \ell}}{\ell a_{\ell}}\left\{\frac{1}{(4 \ell+2) 6^{2 \ell+1}}+\sum_{k=1}^{\ell-1} \frac{a_{k}}{2^{2 k}}\left(-\frac{b_{k}}{2}\right)^{2 \ell-2 k+1}\binom{2 \ell}{2 \ell-2 k+1}-R_{2 \ell+1}\right\}, \quad \ell \geq 2 \tag{2.12}
\end{equation*}
$$

with $a_{1}=-\frac{1}{180}$ and $b_{1}=\frac{37}{63}$. Here R_{j} are given in (1.7).
Proof. Write (2.10) as

$$
\begin{equation*}
H_{n} \sim \frac{1}{2} \ln (2 m)+\frac{1}{2} \ln \left(1+\frac{1}{6 m}\right)+\gamma+\sum_{j=1}^{\infty} \frac{a_{j}}{2^{2 j} m^{2 j}}\left(1+\frac{b_{j}}{2 m}\right)^{-2 j} \tag{2.13}
\end{equation*}
$$

The Maclaurin expansion of $\ln (1+x)$ with $x=\frac{1}{6 m}$ gives

$$
\begin{equation*}
\frac{1}{2} \ln \left(1+\frac{1}{6 m}\right)=\sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{2 j 6^{j}} \frac{1}{m^{j}} \tag{2.14}
\end{equation*}
$$

Direct computation yields

$$
\begin{aligned}
\sum_{j=1}^{\infty} \frac{a_{j}}{2^{2 j} m^{2 j}}\left(1+\frac{b_{j}}{2 m}\right)^{-2 j} & =\sum_{j=1}^{\infty} \frac{a_{j}}{2^{2 j} m^{2 j}} \sum_{k=0}^{\infty}\binom{-2 j}{k}\left(\frac{b_{j}}{2}\right)^{k} \frac{1}{m^{k}} \\
& =\sum_{j=1}^{\infty} \frac{a_{j}}{2^{2 j} m^{2 j}} \sum_{k=0}^{\infty}(-1)^{k}\binom{k+2 j-1}{k}\left(\frac{b_{j}}{2}\right)^{k} \frac{1}{m^{k}} \\
& =\sum_{j=2}^{\infty} \sum_{k=0}^{j-2} \frac{a_{k+1}}{2^{2 k+2}}(-1)^{j-k}\binom{j+k-1}{j-k-2}\left(\frac{b_{k+1}}{2}\right)^{j-k-2} \frac{1}{m^{j+k}},
\end{aligned}
$$

which can be written as

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{a_{j}}{2^{2 j} m^{2 j}}\left(1+\frac{b_{j}}{2 m}\right)^{-2 j} \sim \sum_{j=2}^{\infty}\left\{\sum_{k=1}^{\lfloor j / 2\rfloor} \frac{a_{k}}{2^{2 k}}\left(-\frac{b_{k}}{2}\right)^{j-2 k}\binom{j-1}{j-2 k}\right\} \frac{1}{m^{j}} \tag{2.15}
\end{equation*}
$$

Substituting (2.14) and (2.15) into (2.13) we have

$$
\begin{equation*}
H_{n} \sim \frac{1}{2} \ln (2 m)+\gamma+\frac{1}{12 m}+\sum_{j=2}^{\infty}\left\{\frac{(-1)^{j-1}}{26^{j}}+\sum_{k=1}^{\lfloor j / 2\rfloor} \frac{a_{k}}{2^{2 k}}\left(-\frac{b_{k}}{2}\right)^{j-2 k}\binom{j-1}{j-2 k}\right\} \frac{1}{m^{j}} . \tag{2.16}
\end{equation*}
$$

Equating coefficients of the term m^{-j} on the right sides of (1.6) and (2.16), we obtain

$$
\begin{equation*}
\frac{(-1)^{j-1}}{2 j 6^{j}}+\sum_{k=1}^{\lfloor j / 2\rfloor} \frac{a_{k}}{2^{2 k}}\left(-\frac{b_{k}}{2}\right)^{j-2 k}\binom{j-1}{j-2 k}=R_{j}, \quad j \geq 2 . \tag{2.17}
\end{equation*}
$$

Setting $j=2 \ell$ and $j=2 \ell+1$ in (2.17), respectively, yields

$$
\begin{equation*}
-\frac{1}{4 \ell 6^{2 \ell}}+\sum_{k=1}^{\ell} \frac{a_{k}}{2^{2 k}}\left(-\frac{b_{k}}{2}\right)^{2 \ell-2 k}\binom{2 \ell-1}{2 \ell-2 k}=R_{2 \ell} \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{(4 \ell+2) 6^{2 \ell+1}}+\sum_{k=1}^{\ell} \frac{a_{k}}{2^{2 k}}\left(-\frac{b_{k}}{2}\right)^{2 \ell-2 k+1}\binom{2 \ell}{2 \ell-2 k+1}=R_{2 \ell+1} . \tag{2.19}
\end{equation*}
$$

For $\ell=1$, from (2.18) and (2.19) we obtain

$$
a_{1}=-\frac{1}{180} \quad \text { and } \quad b_{1}=\frac{37}{63},
$$

and for $\ell \geq 2$ we have

$$
-\frac{1}{4 \ell 6^{2 \ell}}+\sum_{k=1}^{\ell-1} \frac{a_{k}}{2^{2 k}}\left(-\frac{b_{k}}{2}\right)^{2 \ell-2 k}\binom{2 \ell-1}{2 \ell-2 k}+\frac{a_{\ell}}{2^{2 \ell}}=R_{2 \ell}
$$

and

$$
\frac{1}{(4 \ell+2) 6^{2 \ell+1}}+\sum_{k=1}^{\ell-1} \frac{a_{k}}{2^{2 k}}\left(-\frac{b_{k}}{2}\right)^{2 \ell-2 k+1}\binom{2 \ell}{2 \ell-2 k+1}-\frac{\ell a_{\ell}}{2^{2 \ell}} b_{\ell}=R_{2 \ell+1} .
$$

We then obtain the recurrence relations (2.11) and (2.12). The proof of Theorem 2.2 is complete.

Here we give explicit numerical values of some first terms of a_{ℓ} and b_{ℓ} by using the formula (2.11) and (2.12). This shows how easily we can determine the constants a_{ℓ} and b_{ℓ} in (2.10).

$$
\begin{aligned}
a_{1} & =-\frac{1}{180}, \quad b_{1}=\frac{37}{63}, \\
a_{2} & =-\frac{181}{22680}-3 a_{1} b_{1}^{2}=-\frac{1063}{476280}, \\
b_{2} & =\frac{17605}{11693}+\frac{476280}{1063} a_{1} b_{1}^{3}=\frac{2212979}{2209977}, \\
a_{3} & =-\frac{1480211}{43783740}-5 a_{1} b_{1}^{4}-10 a_{2} b_{2}^{2}=-\frac{115541458428859}{14223875580975060}, \\
b_{3} & =\frac{292957461659709}{115541458428859}+\frac{14223875580975060}{115541458428859} a_{1} b_{1}^{5}+\frac{47412918603250200}{115541458428859} a_{2} b_{2}^{3} \\
& =\frac{1201239089283324038771}{766031897022703578729} .
\end{aligned}
$$

We then obtain, as $n \rightarrow \infty$,

$$
\begin{align*}
H_{n} \sim & \frac{1}{2} \ln \left(2 m+\frac{1}{3}\right)+\gamma+\frac{-\frac{1}{180}}{\left(2 m+\frac{37}{63}\right)^{2}}+\frac{-\frac{1063}{476280}}{\left(2 m+\frac{2212979}{2209977}\right)^{4}} \\
& +\frac{-\frac{115541458428859}{1423875580975060}}{\left(2 m+\frac{1201239089283324038771}{766031897022703578729}\right)^{6}}+\cdots . \tag{2.20}
\end{align*}
$$

Theorem 2.3. The harmonic number has the following asymptotic series:

$$
\begin{equation*}
H_{n} \sim \frac{1}{2} \psi\left(2 m+\frac{5}{6}\right)+\gamma+\sum_{\ell=1}^{\infty} \frac{\alpha_{\ell}}{\left(2 m+\beta_{\ell}\right)^{2 \ell}}, \quad n \rightarrow \infty \tag{2.21}
\end{equation*}
$$

where α_{ℓ} and β_{ℓ} are given by a pair of recurrence relations

$$
\begin{equation*}
\alpha_{\ell}=2^{2 \ell}\left\{R_{2 \ell}+\frac{B_{2 \ell}\left(\frac{5}{6}\right)}{2 \ell \cdot 2^{2 \ell+1}}-\sum_{k=1}^{\ell-1} \frac{\alpha_{k}}{2^{2 k}}\left(-\frac{\beta_{k}}{2}\right)^{2 \ell-2 k}\binom{2 \ell-1}{2 \ell-2 k}\right\}, \quad j \geq 2 \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{\ell}=\frac{2^{2 \ell}}{\ell \alpha_{\ell}}\left\{\frac{B_{2 \ell+1}\left(\frac{5}{6}\right)}{(2 \ell+1) \cdot 2^{2 \ell+2}}+\sum_{k=1}^{\ell-1} \frac{\alpha_{k}}{2^{2 k}}\left(-\frac{\beta_{k}}{2}\right)^{2 \ell-2 k+1}\binom{2 \ell}{2 \ell-2 k+1}-R_{2 \ell+1}\right\}, \tag{2.23}
\end{equation*}
$$

with $\alpha_{1}=-\frac{19}{720}$ and $\beta_{1}=\frac{463}{1197}$. Here R_{j} are given in (1.7) and $B_{n}(t)$ is the Bernoulli polynomials.
Proof. By (2.15), we can write (2.21) as

$$
\begin{equation*}
H_{n} \sim \frac{1}{2} \psi\left(2 m+\frac{5}{6}\right)+\gamma+\sum_{j=2}^{\infty}\left\{\sum_{k=1}^{\lfloor j / 2\rfloor} \frac{\alpha_{k}}{2^{2 k}}\left(-\frac{\beta_{k}}{2}\right)^{j-2 k}\binom{j-1}{j-2 k}\right\} \frac{1}{m^{j}} \tag{2.24}
\end{equation*}
$$

The choice $x=2 m$ and $a=\frac{5}{6}$ in (1.11) yields

$$
\begin{equation*}
\psi\left(2 m+\frac{5}{6}\right) \sim \ln (2 m)+\sum_{j=1}^{\infty} \frac{(-1)^{j-1} B_{j}\left(\frac{5}{6}\right)}{j \cdot 2^{j} m^{j}} \tag{2.25}
\end{equation*}
$$

Substituting (2.25) into (2.24) yields

$$
\begin{equation*}
H_{n} \sim \frac{1}{2} \ln (2 m)+\gamma+\frac{1}{12 m}+\sum_{j=2}^{\infty}\left\{\frac{(-1)^{j-1} B_{j}\left(\frac{5}{6}\right)}{j \cdot 2^{j+1}}+\sum_{k=1}^{\lfloor j / 2\rfloor} \frac{\alpha_{k}}{2^{2 k}}\left(-\frac{\beta_{k}}{2}\right)^{j-2 k}\binom{j-1}{j-2 k}\right\} \frac{1}{m^{j}} \tag{2.26}
\end{equation*}
$$

Equating coefficients of the term m^{-j} on the right sides of (1.6) and (2.26), we obtain

$$
\begin{equation*}
\frac{(-1)^{j-1} B_{j}\left(\frac{5}{6}\right)}{j \cdot 2^{j+1}}+\sum_{k=1}^{\lfloor j / 2\rfloor} \frac{\alpha_{k}}{2^{2 k}}\left(-\frac{\beta_{k}}{2}\right)^{j-2 k}\binom{j-1}{j-2 k}=R_{j}, \quad j \geq 2 . \tag{2.27}
\end{equation*}
$$

Setting $j=2 \ell$ and $j=2 \ell+1$ in (2.27), respectively, yields

$$
\begin{equation*}
-\frac{B_{2 \ell}\left(\frac{5}{6}\right)}{2 \ell \cdot 2^{2 \ell+1}}+\sum_{k=1}^{\ell} \frac{\alpha_{k}}{2^{2 k}}\left(-\frac{\beta_{k}}{2}\right)^{2 \ell-2 k}\binom{2 \ell-1}{2 \ell-2 k}=R_{2 \ell} \tag{2.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{B_{2 \ell+1}\left(\frac{5}{6}\right)}{(2 \ell+1) \cdot 2^{2 \ell+2}}+\sum_{k=1}^{\ell} \frac{\alpha_{k}}{2^{2 k}}\left(-\frac{\beta_{k}}{2}\right)^{2 \ell-2 k+1}\binom{2 \ell}{2 \ell-2 k+1}=R_{2 \ell+1} . \tag{2.29}
\end{equation*}
$$

For $\ell=1$, from (2.28) and (2.29) we obtain

$$
\alpha_{1}=-\frac{19}{720} \quad \text { and } \quad \beta_{1}=\frac{463}{1197},
$$

and for $\ell \geq 2$ we have

$$
-\frac{B_{2 \ell}\left(\frac{5}{6}\right)}{2 \ell \cdot 2^{2 \ell+1}}+\sum_{k=1}^{\ell-1} \frac{\alpha_{k}}{2^{2 k}}\left(-\frac{\beta_{k}}{2}\right)^{2 \ell-2 k}\binom{2 \ell-1}{2 \ell-2 k}+\frac{\alpha_{\ell}}{2^{2 \ell}}=R_{2 \ell}
$$

and

$$
\frac{B_{2 \ell+1}\left(\frac{5}{6}\right)}{(2 \ell+1) \cdot 2^{2 \ell+2}}+\sum_{k=1}^{\ell-1} \frac{\alpha_{k}}{2^{2 k}}\left(-\frac{\beta_{k}}{2}\right)^{2 \ell-2 k+1}\binom{2 \ell}{2 \ell-2 k+1}-\frac{\ell \alpha_{\ell}}{2^{2 \ell}} b_{\ell}=R_{2 \ell+1} .
$$

We then obtain the recurrence relations (2.22) and (2.23). The proof of Theorem 2.3 is complete.

Here we give explicit numerical values of some first terms of α_{ℓ} and β_{ℓ} by using the formula (2.22) and (2.23). This shows how easily we can determine the constants α_{ℓ} and
β_{ℓ} in (2.21).

$$
\begin{aligned}
\alpha_{1}= & -\frac{19}{720}, \quad \beta_{1}=\frac{463}{1197}, \\
\alpha_{2}= & -\frac{4093}{362880}-3 \alpha_{1} \beta_{1}^{2}=\frac{16369}{28957824}, \\
\beta_{2}= & -\frac{4645291}{900295}-\frac{28957824}{16369} \alpha_{1} \beta_{1}^{3}=-\frac{1589397889}{646591869}, \\
\alpha_{3}= & -\frac{92371859}{2802159360}-5 \alpha_{1} \beta_{1}^{4}-10 \alpha_{2} \beta_{2}^{2}=-\frac{6169589469860094304177}{96149627446040745857280}, \\
\beta_{3}= & \frac{2006884623211057871127}{6169589469860094304177}+\frac{96149627446040745857280}{6169589469860094304177} \alpha_{1} \beta_{1}^{5} \\
& +\frac{320498758153469152857600}{6169589469860094304177} \alpha_{2} \beta_{2}^{3} \\
= & -\frac{1369356748651166691498365193619}{11967619158838672633962182810439} .
\end{aligned}
$$

We then obtain, as $n \rightarrow \infty$,

$$
\begin{align*}
H_{n} \sim & \frac{1}{2} \psi\left(2 m+\frac{5}{6}\right)+\gamma+\frac{-\frac{19}{720}}{\left(2 m+\frac{463}{1197}\right)^{2}}+\frac{\frac{16369}{28957824}}{\left(2 m-\frac{1589397889}{646591869}\right)^{4}} \\
& +\frac{-\frac{6169589469860094304177}{9614962746040458557280}}{\left(2 m-\frac{1369356748651166691498365193619}{11967619158838672633962182810439}\right)^{6}}+\cdots . \tag{2.30}
\end{align*}
$$

From a computational viewpoint, the formulas (2.20) and (2.30) are better than the formulas (1.1), (1.8), (2.8) and (2.9),

It follows from (2.20) and (2.30) that

$$
\begin{equation*}
H_{n} \sim \frac{1}{2} \ln \left(2 m+\frac{1}{3}\right)+\gamma+\frac{-\frac{1}{180}}{\left(2 m+\frac{37}{63}\right)^{2}}:=u_{n} \tag{2.31}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{n} \sim \frac{1}{2} \psi\left(2 m+\frac{5}{6}\right)+\gamma+\frac{-\frac{19}{720}}{\left(2 m+\frac{463}{1197}\right)^{2}}:=v_{n} \tag{2.32}
\end{equation*}
$$

Moreover, we have, as $n \rightarrow \infty$,

$$
H_{n}=u_{n}+O\left(n^{-8}\right) \quad \text { and } \quad H_{n}=v_{n}+O\left(n^{-8}\right)
$$

It is observed from Table 1 that, between approximation formulas (2.31) and (2.32), for $n \geq 2$, the formula (2.32) is better than the formula (2.31).

Table 1. Comparison between approximation formulas (2.31) and (2.32).

n	$u_{n}-H_{n}$	$H_{n}-v_{n}$
2	9.799×10^{-7}	7.620×10^{-7}
10	1.470×10^{-11}	4.189×10^{-12}
100	2.143×10^{-19}	5.437×10^{-20}
1000	2.222×10^{-27}	5.630×10^{-28}
10000	2.230×10^{-35}	5.650×10^{-36}

References

[1] Abramowitz, M., Stegun, I.A. (eds.): Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards, Applied Mathematics Series, vol. 55. Dover, New York (1972)
[2] Berndt, B.C.: Ramanujan's Notebooks Part V. Springer, Berlin (1998)
[3] Chen, C.P.: Stirling expansions into negative powers of a triangular number. Ramanujan J. 39 (2016) 107-116.
[4] Chen, C.P.: On the coefficients of asymptotic expansion for the harmonic number by Ramanujan. Ramanujan J. 40 (2016) 279-290.
[5] Chen, C.P.: Ramanujan's formula for the harmonic number, Appl. Math. Comput. 317 (2018), 121-128.
[6] Chen, C.P., Cheng, J.X.: Ramanujan's asymptotic expansion for the harmonic numbers. Ramanujan J. 38, 123-128 (2015)
[7] L. Feng, W. Wang, Riordan array approach to the coefficients of Ramanujans harmonic number expansion. Results Math. 71 (2017), 1413-1419.
[8] Hirschhorn, M.D.: Ramanujan's enigmatic formula for the harmonic series. Ramanujan J. 27, 343-347 (2012)
[9] Issaka, A.: An asymptotic series related to Ramanujan's expansion for the nth Harmonic number. Ramanujan J. 39 (2016) 303-313.
[10] Luke, Y.L.: The Special Functions and their Approximations, vol. I. Academic Press, New York (1969)
[11] Mortici, C., Chen, C.P.: On the harmonic number expansion by Ramanujan. J. Inequal. Appl. 2013 (2013) 222.
[12] Mortici, C., Villarino, M.B.: On the Ramanujan-Lodge harmonic number expansion. Appl. Math. Comput. 251, 423-430 (2015)
[13] Nemes, G.: Asymptotic expansion for $\log n$! in terms of the reciprocal of a triangular number. Acta Math. Hung. 129, 254-262 (2010)
[14] Ramanujan, S.: Notebook II, Narosa, New Delhi (1988)
[15] Villarino, M.B.: Ramanujan's harmonic number expansion into negative powers of a triangular number. J. Inequal. Pure Appl. Math. 9(3) (2008) Article 89. http: //www.emis.de/journals/JIPAM/images/245_07_JIPAM/245_07.pdf.

