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Abstract In this paper, we present various asymptotic series for the harmonic number
Hn =

∑n
k=1

1
k . More precisely, we give a recursive relation for determining the coefficients

µj(h) such that

Hn ∼
1

2
ψ (2m+ h) + γ +

∞∑
j=1

µj(h)

(2m+ h)j

as n → ∞, where h ∈ R, m = 1
2n(n + 1), ψ denotes the digamma function and γ is the

Euler–Mascheroni constant. We also give recursive relations for determining the constants
a`, b`, α`, and β` such that

Hn ∼
1

2
ln

(
2m+

1

3

)
+γ+

∞∑
`=1

a`
(2m+ b`)2`

and Hn ∼
1

2
ψ

(
2m+

5

6

)
+γ+

∞∑
`=1

α`

(2m+ β`)2`

as n→∞.
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1 Introduction

Ramanujan (see [2, p. 531] and [14, p. 276]) proposed, without a proof and without a
formula for the general term, the following asymptotic expansion for the nth harmonic
number:

Hn :=

n∑
k=1

1

k
∼ 1

2
ln(2m) + γ +

1

12m
− 1

120m2
+

1

630m3
− 1

1680m4
+

1

2310m5

− 191

360360m6
+

29

30030m7
− 2833

1166880m8
+

140051

17459442m9
− · · · (1.1)

as n → ∞, where m = 1
2n(n + 1) (n ∈ N := {1, 2, . . .}) is the nth triangular number and

γ is the Euler–Mascheroni constant.
Berndt [2, pp. 531–532] simply verified that Ramanujan’s expansion coincides with

the following Euler expansion:

Hn ∼ lnn+ γ −
∞∑
j=1

Bj

jnj
, (1.2)
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where Bj (j ∈ N0 := N ∪ {0}) are the Bernoulli numbers defined by the following gener-
ating function:

z

ez − 1
=
∞∑
j=0

Bj
zj

j!
, |z| < 2π.

Hirschhorn [8] presented a natural derivation for Ramanujan’s expansion. However,
Berndt and Hirschhorn did not give the general formula for the coefficients of 1

mj (j ∈ N)
in Ramanujan’s expansion. The complete proof of expansion (1.1) was given by Villarino
[15, Theorem 1.1] who proved that for every integer r ≥ 1, there exists a Θr, 0 < Θr < 1,
for which the following equation is true:

Hn =
1

2
ln(2m) + γ +

r∑
j=1

Rj

mj
+ Θr ·

Rr+1

mr+1
, (1.3)

with

Rj =
(−1)j−1

2j · 8j

{
1 +

j∑
k=1

(
j

k

)
(−4)kB2k(12)

}
, (1.4)

where Bn(t) denotes the Bernoulli polynomials defined by the following generating func-
tion:

zetz

ez − 1
=

∞∑
n=0

Bn(t)
zn

n!
, |z| < 2π. (1.5)

By using the relation

Bn(12) = −(1− 21−n)Bn for n ∈ N0

(see [1, p. 805]), it follows from (1.3) and (1.4) that

Hn ∼
1

2
ln(2m) + γ +

∞∑
j=1

Rj

mj
(1.6)

with

Rj =
(−1)j−1

2j · 8j

{
1−

j∑
k=1

(
j

k

)
(−4)k(1− 21−2k)B2k

}
. (1.7)

Ramanujan’s expansion (1.1) was also researched in [4, 5, 6, 7, 9].
Also in [15], Villarino remarked that there might exist a series expansion for the log-

arithm of the factorial in terms of 1
m . Villarino’s remark has been considered by Nemes

[13] and Chen [3].
Mortici and Chen [11, Theorem 2] presented the following approximation formula:

Hn =
1

2
ln

(
n2 + n+

1

3

)
+ γ − 1

180(n2 + n+ 1
3)2

+
8

2835(n2 + n+ 1
3)3

− 5

1512(n2 + n+ 1
3)4

+
592

93555(n2 + n+ 1
3)5

+O

(
1

(n2 + n+ 1
3)6

)
. (1.8)
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Very recently, Mortici and Villarino [12, Theorem 2] and Chen [4, Theorem 3.3] developed
the approximation formula (1.8) to produce a complete asymptotic expansion:

Hn ∼
1

2
ln

(
2m+

1

3

)
+ γ +

∞∑
j=2

ρj

(2m+ 1
3)j

. (1.9)

Moreover, the authors gave a formula for determining the coefficients ρj in (1.9).
Euler’s gamma function:

Γ(x) =

∫ ∞
0

tx−1e−tdt, x > 0

is one of the most important functions in mathematical analysis and has applications in
many diverse areas. The logarithmic derivative of the gamma function:

ψ(x) =
Γ′(x)

Γ(x)

is known as the psi (or digamma) function. ψ(x) is connected to the Euler–Mascheroni
constant and harmonic numbers through the well known relation (see [1, p. 258, Eq.
(6.3.2)])

ψ(n+ 1) = −γ +Hn, n ∈ N. (1.10)

Hence, various approximations of the psi function are used in this relation and interpreted
as approximation for the harmonic number Hn or as approximation of the constant γ.

The psi function has the following asymptotic expansion (see [10, p. 33]):

ψ(x+ a) ∼ lnx+

∞∑
k=1

(−1)k−1Bk(a)

kxk
, x→∞, a ∈ R, (1.11)

where Bn(t) is the Bernoulli polynomials defined by (1.5).
In view of (1.6), (1.9) and (1.11), we can let

Hn ∼
1

2
ψ (2m+ h) + γ +

∞∑
j=1

µj
(2m+ h)j

, n→∞, (1.12)

where h ∈ R and m = 1
2n(n + 1). The first aim of present paper is to determine the

coefficients µj ≡ µj(h) in (1.12). The second aim of present paper is to determine the
constants a`, b`, α`, and β` such that

Hn ∼
1

2
ln

(
2m+

1

3

)
+ γ +

∞∑
`=1

a`
(2m+ b`)2`

, n→∞

and

Hn ∼
1

2
ψ

(
2m+

5

6

)
+ γ +

∞∑
`=1

α`

(2m+ β`)2`
, n→∞.
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2 Main results

Theorem 2.1. Let h ∈ R and m = 1
2n(n + 1). The harmonic number has the following

asymptotic expansion:

Hn ∼
1

2
ψ (2m+ h) + γ +

∞∑
j=1

µj
(2m+ h)j

, n→∞, (2.1)

with the coefficients µj ≡ µj(h) (j ∈ N) given by the recurrence relation

µ1 =
1

6
− B1(h)

2
, µj = 2jRj −

(−1)j−1Bj(h)

2j
−

j−1∑
k=1

µk (−h)j−k
(
j − 1

j − k

)
, j ≥ 2,

(2.2)

where Rj are given in (1.7) and Bn(t) is the Bernoulli polynomials.

Proof. Write (2.1) as

Hn ∼
1

2
ψ (2m+ h) + γ +

∞∑
j=1

µj
(2m)j

(
1 +

h

2m

)−j
. (2.3)

The choice x = 2m and a = h in (1.11) yields

ψ(2m+ h) ∼ ln(2m) +
∞∑
k=1

(−1)k−1Bk(h)

k · 2kmk
. (2.4)

Direct computation yields

∞∑
j=1

µj
(2m)j

(
1 +

h

2m

)−j
=
∞∑
j=1

µj
(2m)j

∞∑
k=0

(
−j
k

)
hm

(2m)k

=

∞∑
j=1

µj
2j

∞∑
k=0

(−1)k
(
k + j − 1

k

)
hk

2k
1

mj+k

=
∞∑
j=1

{
j∑

k=1

µk
2j

(−h)j−k
(
j − 1

j − k

)}
1

mj
. (2.5)

Substituting (2.4) and (2.5) into (2.3) we have

Hn ∼
1

2
ln(2m) + γ +

∞∑
j=1

{
(−1)j−1Bj(h)

j · 2j+1
+

j∑
k=1

µk
2j

(−h)j−k
(
j − 1

j − k

)}
1

mj
. (2.6)

Equating coefficients of the term m−j on the right sides of (1.6) and (2.6), we obtain

(−1)j−1Bj(h)

j · 2j+1
+

j∑
k=1

µk
2j

(−h)j−k
(
j − 1

j − k

)
= Rj , j ∈ N. (2.7)

For j = 1 we obtain µ1 = 1
6 −

B1(h)
2 , and for j ≥ 2 we have

(−1)j−1Bj(h)

j · 2j+1
+

j−1∑
k=1

µk
2j

(−h)j−k
(
j − 1

j − k

)
+
µj
2j

= Rj , j ≥ 2,

which yields the recursive formula (2.2). The proof of Theorem 2.1 is complete.
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The first few coefficients µj ≡ µj(h) are:

µ1 = −1

2
h+

5

12
,

µ2 = −1

4
h2 +

1

6
h+

1

120
,

µ3 = −1

6
h3 +

1

6
h2 − 1

15
h+

4

315
,

µ4 = −1

8
h4 +

1

6
h3 − 1

10
h2 +

4

105
h− 23

1680
.

Setting h = 0 in (2.1), we obtain the following explicit asymptotic expansion:

Hn ∼ γ +
1

2
ψ(2m) +

5

24m
+

1

480m2
+

1

630m3
− 23

26880m4
+ · · · , n→∞. (2.8)

Setting h = 5
6 in (2.1) yields

Hn ∼
1

2
ψ

(
2m+

5

6

)
+ γ − 19

720(2m+ 5
6)2
− 1069

45360(2m+ 5
6)3

− 263

17280(2m+ 5
6)4
− · · · , n→∞. (2.9)

Theorem 2.2. The harmonic number has the following asymptotic series:

Hn ∼
1

2
ln

(
2m+

1

3

)
+ γ +

∞∑
`=1

a`
(2m+ b`)2`

, n→∞, (2.10)

where a` and b` are given by a pair of recurrence relations

a` = 22`

{
R2` +

1

4`62`
−

`−1∑
k=1

ak
22k

(
−bk

2

)2`−2k ( 2`− 1

2`− 2k

)}
, ` ≥ 2 (2.11)

and

b` =
22`

`a`

{
1

(4`+ 2)62`+1
+

`−1∑
k=1

ak
22k

(
−bk

2

)2`−2k+1( 2`

2`− 2k + 1

)
−R2`+1

}
, ` ≥ 2,

(2.12)
with a1 = − 1

180 and b1 = 37
63 . Here Rj are given in (1.7).

Proof. Write (2.10) as

Hn ∼
1

2
ln(2m) +

1

2
ln

(
1 +

1

6m

)
+ γ +

∞∑
j=1

aj
22jm2j

(
1 +

bj
2m

)−2j
. (2.13)

The Maclaurin expansion of ln(1 + x) with x = 1
6m gives

1

2
ln

(
1 +

1

6m

)
=
∞∑
j=1

(−1)j−1

2j6j
1

mj
. (2.14)
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Direct computation yields

∞∑
j=1

aj
22jm2j

(
1 +

bj
2m

)−2j
=
∞∑
j=1

aj
22jm2j

∞∑
k=0

(
−2j

k

)(
bj
2

)k 1

mk

=
∞∑
j=1

aj
22jm2j

∞∑
k=0

(−1)k
(
k + 2j − 1

k

)(
bj
2

)k 1

mk

=
∞∑
j=2

j−2∑
k=0

ak+1

22k+2
(−1)j−k

(
j + k − 1

j − k − 2

)(
bk+1

2

)j−k−2 1

mj+k
,

which can be written as

∞∑
j=1

aj
22jm2j

(
1 +

bj
2m

)−2j
∼
∞∑
j=2


bj/2c∑
k=1

ak
22k

(
−bk

2

)j−2k ( j − 1

j − 2k

) 1

mj
. (2.15)

Substituting (2.14) and (2.15) into (2.13) we have

Hn ∼
1

2
ln(2m)+γ+

1

12m
+

∞∑
j=2

(−1)j−1

2j6j
+

bj/2c∑
k=1

ak
22k

(
−bk

2

)j−2k ( j − 1

j − 2k

) 1

mj
. (2.16)

Equating coefficients of the term m−j on the right sides of (1.6) and (2.16), we obtain

(−1)j−1

2j6j
+

bj/2c∑
k=1

ak
22k

(
−bk

2

)j−2k ( j − 1

j − 2k

)
= Rj , j ≥ 2. (2.17)

Setting j = 2` and j = 2`+ 1 in (2.17), respectively, yields

− 1

4`62`
+
∑̀
k=1

ak
22k

(
−bk

2

)2`−2k ( 2`− 1

2`− 2k

)
= R2` (2.18)

and

1

(4`+ 2)62`+1
+
∑̀
k=1

ak
22k

(
−bk

2

)2`−2k+1( 2`

2`− 2k + 1

)
= R2`+1. (2.19)

For ` = 1, from (2.18) and (2.19) we obtain

a1 = − 1

180
and b1 =

37

63
,

and for ` ≥ 2 we have

− 1

4`62`
+

`−1∑
k=1

ak
22k

(
−bk

2

)2`−2k ( 2`− 1

2`− 2k

)
+
a`
22`

= R2`

and

1

(4`+ 2)62`+1
+

`−1∑
k=1

ak
22k

(
−bk

2

)2`−2k+1( 2`

2`− 2k + 1

)
− `a`

22`
b` = R2`+1.

We then obtain the recurrence relations (2.11) and (2.12). The proof of Theorem 2.2 is
complete.
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Here we give explicit numerical values of some first terms of a` and b` by using the
formula (2.11) and (2.12). This shows how easily we can determine the constants a` and
b` in (2.10).

a1 = − 1

180
, b1 =

37

63
,

a2 = − 181

22680
− 3a1b

2
1 = − 1063

476280
,

b2 =
17605

11693
+

476280

1063
a1b

3
1 =

2212979

2209977
,

a3 = − 1480211

43783740
− 5a1b

4
1 − 10a2b

2
2 = − 115541458428859

14223875580975060
,

b3 =
292957461659709

115541458428859
+

14223875580975060

115541458428859
a1b

5
1 +

47412918603250200

115541458428859
a2b

3
2

=
1201239089283324038771

766031897022703578729
.

We then obtain, as n→∞,

Hn ∼
1

2
ln

(
2m+

1

3

)
+ γ +

− 1
180

(2m+ 37
63)2

+
− 1063

476280

(2m+ 2212979
2209977)4

+
− 115541458428859

14223875580975060

(2m+ 1201239089283324038771
766031897022703578729 )6

+ · · · . (2.20)

Theorem 2.3. The harmonic number has the following asymptotic series:

Hn ∼
1

2
ψ

(
2m+

5

6

)
+ γ +

∞∑
`=1

α`

(2m+ β`)2`
, n→∞, (2.21)

where α` and β` are given by a pair of recurrence relations

α` = 22`

{
R2` +

B2`(
5
6)

2` · 22`+1
−

`−1∑
k=1

αk

22k

(
−βk

2

)2`−2k ( 2`− 1

2`− 2k

)}
, j ≥ 2 (2.22)

and

β` =
22`

`α`

{
B2`+1(

5
6)

(2`+ 1) · 22`+2
+

`−1∑
k=1

αk

22k

(
−βk

2

)2`−2k+1( 2`

2`− 2k + 1

)
−R2`+1

}
, j ≥ 2

(2.23)
with α1 = − 19

720 and β1 = 463
1197 . Here Rj are given in (1.7) and Bn(t) is the Bernoulli

polynomials.

Proof. By (2.15), we can write (2.21) as

Hn ∼
1

2
ψ

(
2m+

5

6

)
+ γ +

∞∑
j=2


bj/2c∑
k=1

αk

22k

(
−βk

2

)j−2k ( j − 1

j − 2k

) 1

mj
. (2.24)

The choice x = 2m and a = 5
6 in (1.11) yields

ψ

(
2m+

5

6

)
∼ ln(2m) +

∞∑
j=1

(−1)j−1Bj(
5
6)

j · 2jmj
. (2.25)
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Substituting (2.25) into (2.24) yields

Hn ∼
1

2
ln(2m) + γ +

1

12m
+
∞∑
j=2

(−1)j−1Bj(
5
6)

j · 2j+1
+

bj/2c∑
k=1

αk

22k

(
−βk

2

)j−2k ( j − 1

j − 2k

) 1

mj
.

(2.26)
Equating coefficients of the term m−j on the right sides of (1.6) and (2.26), we obtain

(−1)j−1Bj(
5
6)

j · 2j+1
+

bj/2c∑
k=1

αk

22k

(
−βk

2

)j−2k ( j − 1

j − 2k

)
= Rj , j ≥ 2. (2.27)

Setting j = 2` and j = 2`+ 1 in (2.27), respectively, yields

−
B2`(

5
6)

2` · 22`+1
+
∑̀
k=1

αk

22k

(
−βk

2

)2`−2k ( 2`− 1

2`− 2k

)
= R2` (2.28)

and
B2`+1(

5
6)

(2`+ 1) · 22`+2
+
∑̀
k=1

αk

22k

(
−βk

2

)2`−2k+1( 2`

2`− 2k + 1

)
= R2`+1. (2.29)

For ` = 1, from (2.28) and (2.29) we obtain

α1 = − 19

720
and β1 =

463

1197
,

and for ` ≥ 2 we have

−
B2`(

5
6)

2` · 22`+1
+

`−1∑
k=1

αk

22k

(
−βk

2

)2`−2k ( 2`− 1

2`− 2k

)
+
α`

22`
= R2`

and

B2`+1(
5
6)

(2`+ 1) · 22`+2
+

`−1∑
k=1

αk

22k

(
−βk

2

)2`−2k+1( 2`

2`− 2k + 1

)
− `α`

22`
b` = R2`+1.

We then obtain the recurrence relations (2.22) and (2.23). The proof of Theorem 2.3 is
complete.

Here we give explicit numerical values of some first terms of α` and β` by using the
formula (2.22) and (2.23). This shows how easily we can determine the constants α` and
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β` in (2.21).

α1 = − 19

720
, β1 =

463

1197
,

α2 = − 4093

362880
− 3α1β

2
1 =

16369

28957824
,

β2 = −4645291

900295
− 28957824

16369
α1β

3
1 = −1589397889

646591869
,

α3 = − 92371859

2802159360
− 5α1β

4
1 − 10α2β

2
2 = − 6169589469860094304177

96149627446040745857280
,

β3 =
2006884623211057871127

6169589469860094304177
+

96149627446040745857280

6169589469860094304177
α1β

5
1

+
320498758153469152857600

6169589469860094304177
α2β

3
2

= − 1369356748651166691498365193619

11967619158838672633962182810439
.

We then obtain, as n→∞,

Hn ∼
1

2
ψ

(
2m+

5

6

)
+ γ +

− 19
720

(2m+ 463
1197)2

+
16369

28957824

(2m− 1589397889
646591869 )4

+
− 6169589469860094304177

96149627446040745857280

(2m− 1369356748651166691498365193619
11967619158838672633962182810439)6

+ · · · . (2.30)

From a computational viewpoint, the formulas (2.20) and (2.30) are better than the
formulas (1.1), (1.8), (2.8) and (2.9),

It follows from (2.20) and (2.30) that

Hn ∼
1

2
ln

(
2m+

1

3

)
+ γ +

− 1
180

(2m+ 37
63)2

:= un (2.31)

and

Hn ∼
1

2
ψ

(
2m+

5

6

)
+ γ +

− 19
720

(2m+ 463
1197)2

:= vn. (2.32)

Moreover, we have, as n→∞,

Hn = un +O
(
n−8

)
and Hn = vn +O

(
n−8

)
.

It is observed from Table 1 that, between approximation formulas (2.31) and (2.32),
for n ≥ 2, the formula (2.32) is better than the formula (2.31).

Table 1. Comparison between approximation formulas (2.31) and (2.32).

n un −Hn Hn − vn
2 9.799× 10−7 7.620× 10−7

10 1.470× 10−11 4.189× 10−12

100 2.143× 10−19 5.437× 10−20

1000 2.222× 10−27 5.630× 10−28

10000 2.230× 10−35 5.650× 10−36
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