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WEIGHTED INEQUALITIES OF OSTROWSKI TYPE FOR
ABSOLUTELY CONTINUOUS FUNCTIONS IN TERMS OF
p-NORMS AND APPLICATIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some upper bounds in terms of Lebesgue
p-norms for the quantity

b
9 (0) — g (@) f (&) - / F@) g ()t

under the assumptions that g : [a,b] — [g(a),g(b)] is a continuous strictly
increasing function that is differentiable on (a,b) and f : [a,b] — C is an
absolutely continuous function on [a,b]. When g is an integral, namely g (z) =
JZw(s)ds, where w : [a,b] — (0, 00) is continuous on [a, b], then some weighted
inequalities that generalize the Ostrowski’s inequality are provided. Appli-
cations for continuous probability density functions supported on finite and
infinite intervals with two examples are also given.

1. INTRODUCTION

In 1998, Dragomir and Wang proved the following Ostrowski type inequality [3].

Theorem 1. Let f : [a,b] — R be an absolutely continuous function on [a,b]. If
f' € L,[a,b], then we have the inequality

b
(1.1) 'f(x)—bla/a f(t)dt
x—a)\dtt — 2\t e
< (q +11)1/q [(b—a) + <Z—a> ] (b_a)l/q ||f/||[a7b]7p’

for all x € [a,b], where p > 1, % + % =1 and |||, 15 the p-Lebesgue norm on

L, la,b], i.e., we recall it
b 1/p
19Ml4,0),p == (/ lg (1)[" dt) :

Note that the inequality (1.1) can also be obtained from a more general result
obtained by A. M. Fink in [6] choosing n = 1 and doing some appropriate compu-
tation. However the inequality (1.1) was not stated explicitly in [6].
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2 S.S. DRAGOMIR

From (1.1) we get the following midpoint inequality

(1.2) ‘f (a;b> —bla/abf(t)dt

and % is a best possible constant.

Indeed, if we take f : [a,b] — R with f(¢) = ‘t - ""QH’|, then f is absolutely
continuous fab f@)dt = (b_f)z, 1 Nfapy,p = (0= a)*? and if we assume that (1.2)
holds with a constant C' > 0 instead of %, then we get } (b—a) < W (b—a)
for any ¢ > 1. Letting ¢ — 14, we obtain C' > %, which proves the sharpness of the
constant.

For related results, see [1], [5] and [8]. For a comprehensive survey on Ostrowski’s
inequality, see [4] and the references therein.

In this paper we establish some upper bounds in terms of Lebesgue p-norms||-|| »
for the quantity

1
< b—a) | gy p -

2(q+1)1/q<

b
w@fﬂwfmf/f@j@ﬁ

under the assumptions that g : [a,0] — [g(a),g (D)] is a continuous strictly in-
creasing function that is differentiable on (a,b) and f : [a,b] — C is an absolutely
continuous function on [a,b]. When g is an integral, namely g (z) = [ w (s) ds,
where w : [a,b] — (0,00) is continuous on [a,b], then some weighted inequalities
that generalize the Ostrowski’s inequality are provided. Applications for continu-
ous probability density functions supported on finite and infinite intervals with two
examples are also given.

2. SOME PRELIMINARY FACTS

The following new result, which is an improvement on the inequality (1.1), holds.

Theorem 2 (Dragomir, 2013, [2]). Let h : [c,d] — C be an absolutely continuous
function on [c,d]. If ' € L, [c,d], then

1
at _dfc/
atl a+1
)

d
h(
1 z—c\ ¢ d—2z\ 4 Y
1 1/q [(d_c) Hh/||[c,z],p+ <d_ C> ||h/[z,d],;;‘| (d*C) q
1

<
T g+

(2.1)

t) dt

z)
<
(q+
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at+1 at

x [(;_g) ’ +(§_§)“} (d— )

(00 + 1015,)* [(20) ™+ (2) 7] -0
1,

1,1 _
wherea>1anda—|—3—

Q=

ctd
z— 5=

d—c

[Hh‘/”[c,z],p + ||h/‘ [Zvd]’p:| |:% *

for all z € [c,d], where p > 1, 1% + % =1 and |||, ), denotes the usual p-norm on
L, [m,n] with m < n, i.e., we recall that

n 1/p
o= ([ loOlat) <.

Proof. For the sake of completeness, we give here a proof.
Using the integration by parts formula for absolutely continuous functions on
[¢, d], we have

(2.2) /z(t—c)h’(t)dt:(z—c)h(z)—/zh(t)dt
and

d d
(2.3) /(t—d)h’(t)dt:(d—z)h(z)—/ h(t)dt

for all z € [¢, d].
Adding the two inequalities, we obtain the Montgomery identity for absolutely
continuous functions (see for example [7, p. 565])
d z d
24)  (d—o)h(2) —/ h () dt :/ (t—c)h’(t)dt+/ (t—d) ' (£)dt

for all z € [¢,d].
Taking the modulus, we deduce

d
(2.5) (d—c)h(z) - / h(t)dt

<

d
/ (t—d) I (t) dt

/:(t—c)h’(t)dt‘+

z d
g/ (tfc)|h'(t)|dt+/ (d—t)|n (t)] dt.
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Utilizing Holder’s integral inequality we have

/Z (t—o) | (t )|dt+/zd(d—t)|h’(t)dt
( (t - ¢)f )Uq (/ I (t)pdt>1/p
) (o)

q+1 g+l
(2= )T IW Ny + (= )T 1H Ny ]

@9 <q+1>”q |

for all z € [¢,d], and the first inequality in (2.1) is proved.
Now, let us observe that

a+1 a+1
(Z—C) ¢ ||h/||[c,z]7p+(d_z) ! ||h/||[z,d],p
i li atl atl
< max {0l Il ) [ = 0T +(d=2)7 |
1
= 5 (10 e+ 1+ W g = 1N
x [(z—c)% + (d—z)qqi}

and the first part of the second inequality is proved.
For the second inequality, we employ the elementary inequality for real numbers
which can be derived from Hélder’s discrete inequality

1
(2.6) 0 < ms—+nt < (m®+n)?% x (s? +t%)7

provided that m, s, n, t > 0, a > 1 and i + % =1
Using (2.6), we obtain

q+t1 q+1
(2 =) T W ey + (A=) W,
= a1 e+l g7
< (I + 101y ) ™ [z = 0) T2 4 (@ = 2)"7 7

and the second part of the second inequality in (2.1) is also obtained.
Finally, we observe that

q+1 q+1
(z=0) 7 Wllgzyp + (d— )q 1A N2 .
g+1

<max{(z =% (a2} Wy + 101y

d—c c+d Ka ’ /
= |: -+ ‘Z B) :| |:Hh ||[c,z],p + ||h ||[z,d],pi|

and the last part of the second inequality in (2.1) is proved. O

The following corollary is also natural.
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Corollary 1. Under the above assumptions, we have
c+d 1 d
h - h(t)dt
( 2 ) d—c c ()
1

< "I+ "N _ e
= 2lat)/a (g 4 1)1 {”h e 21+ 1Pl [ g | (4 =€)

2.7)

Another interesting result is the following one.

Corollary 2. Under the above assumptions, and if there is an zo € [c,d] with

20 d
(2.8) / W (6)[F dt = / W (0 dt,

then we have the inequality

(2.9)

d
h(zo)—ﬁ/ h(t) dt

g+1 q+1
1 zo—c\ ¢ d—2z\ ¢ ’ 1/q
< [(d_c) (2 ]nhn[c,zo],p(d—c) .

Remark 1. If we take in (2.1) o = p and § = q, where p > 1, % + % =1, then we
get the following refinement of (1.1)

d
h(z)—dic/ h(t) dt

(2.10)

g+l g+1

1 z—c\ ¢ d—z\ ¢ 1/
< (550 Wy (55) 7 Wlans| -0
1/q

1 z—c\7 d—z\" 1/
< d—c)' ||
<o |29 ()] @ s,

for all z € [c,d].

This is true, since for a = p, we have

1 z d 1/p
(||h'||fc,z],p+||h'||f;,d],p)”—( / B (1) dt + / |h'<t>”> = 1 e -

3. MAIN RESULTS
‘We have:

Theorem 3. Let g : [a,b] — [g(a), g (b)] be a continuous strictly increasing func-
tion that is differentiable on (a,b). If f : [a,b] — C is absolutely continuous on [a, b]

and g—,/ € L,a,b], where p, ¢ > 1 with % + % =1, then we have
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(3.1) ‘f / f

a 1/q
7(q+1)1/q ) —g(a)]
g@ —g@\ 7| g®) —g@\ 7|
X{(gw)g(a)) () Mm*(g@)g@) () MJ

1/q

—~

1 e | (9@ —g(@) g () —g @)\
S Grpva 9@ -el) [(ga))g(a)) (o)
f/
8 IPIRE

)

[a,b],p

for any = € [a,b] .

Proof. Assume that [¢,d] C [a,b]. If f : [¢,d] — C is absolutely continuous on [c, d] ,
then fog™!:[g(c),g(d)] — C is absolutely continuous on [g (c), g (d)] and using
the chain rule and the derivative of inverse functions we have

(3.2) (f ogil)l (2) = (f/ 0971) (2) (971)l (2) = W

for almost every (a.e.) z € [g(c),g (d)].
Now, if we use the inequality (2.10) for the function h = f o g~! on the interval
[g(a),g ()], then we get for any z € [g(a), g (b)] that

1 1 g(b) 1
(33) |fog (z)—g(b)_g(a)/g(a)fog (t) dt
_(q:l)l/qg g (@)
X < z—gl(a) >q:1 frog™! +( g) —= )T frog™!
g(b) —g(a) 909  Nigay-1p  \9(0) —g(a) 9297 Iz gm0
1/q

< | (a2 ™ (]

/O —1
% (g (b) — g (a))"" f;—j

[g9(a),g(b)],p

Taking z =g (z), = € [a,b], in (3.3) we then get
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1 g(b) o
(3.4) 'f(w) - g(b)g(a)/g(a) fog™ (t)dt
< (q+11>/ (9 () — g (a))/"
g(@) —g@\T || og™! g(b) =g @)\ || og™"
. l(g (b) —g(a) > g'og! [9(a),g(x)],p * (9 (b)) —g (a)) g ogt [g($)7g(b)]7p]

1 (@) —g @\ (g®) - g@)\*]"
SNTEEL l(g(m—g(a)) " <g<b>—g<a>>
% (g (b) — g (a))"" g;’

[g(a),g(b)],p

Observe also that, by the change of variable t = g~ (u), u € [g(a),g(b)], we
have u = g (t) that gives du = ¢’ (t) dt and

g(b) b
(3.5) / L reg ) wdu= [ rwg@ae

Also
p 1/p
‘ I ogfl _ /g(z) (f/ og—l) (u) "
9 ° 97 lig(ay.g@)p o) | (9097 (u)
x 1 = P 1/p
(1P ) ro .
- (1) g (t) = , 1-1/p
a 19 a (9" (1)
1/
e [P\
- ’ 1/q dt - n1/q
« (g () VIREl P
and, similarly,
' flog™ S
909 lg@amne 1) |y,
and
‘ frog™! S
99 lg@amie @) |00
By replacing these norms into (3.4) we get the desired result (3.1). g

If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can define the g-mean of two numbers
a,bel as

(3.6) My (a,b) =g " (g(a)Q—l—g(b)) .

If I =R and g (t) =t is the identity function, then M, (a,b) = A
the arithmetic mean. If I = (0, 00) and g (t) = Int, then M, (a,b) = G (a,b) := Vab,
the geometric mean. If I = (0,00) and g (t) = —1, then M, (a,b) = H (a,b) :=
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%, the harmonic mean. If I = (0,00) and g (t) = t?, p # 0, then M, (a,b) =

M, (a,b) := (#)UP, the power mean with exponent p. Finally, if I = R and
g (t) = expt, then

(3.7) M, (a,b) = LME (a,b) := In (‘W) ,

the LogMeanEzp function.

Corollary 3. With the assumptions of Theorem 8 we have

1 b
38) |F My @h) ~ ot [ F)g

1 1/q f/ f/
< —m - 19(b) —g(a)] T /q
QT (q+1)1/q [ (g/)l/q [a,Mg(ayb)],p (g/)l/q [Mg(a,b)ab]vp:|
1 1/q f
- [g(b) =
SETTERTECR A N Tl

Remark 2. With the assumptions of Theorem 8, we have

a+b 1 b ,
(39) 'f( ) [ T

) ol g\ |
(q N 1)1/q [ ( ) g (a)] [( g(b) o g(a) (g/>1/q a7a;rb]7p

f/
(9"

[a,b],p

Let f : [a,b] — C be an absolutely continuous function on [a,b] and p, ¢ > 1
with % + % = 1. We can give the following examples of interest.
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a). If we take g : [a,b] C (0,00) — R, ¢g(¢t) = Int, in (3.1) and assume that
M9 € Lo, [a,b] where £ (t) := t, then we get

b
(3.10) ‘f(x)—lnzb)/ @dt

ISEIRS
~_

gW[m(

a+1 a+1
In (%) ! 191/q In (%) ! 1p1/q
XKIH(Z)) 72 et i) 77 e,

. N g+17 /4
1 |:1n (b>:| i In (5) + In (%) ‘ flfl/q
o W edy) e sl
for any z € [a,}].
In particular, we have
3.11) | f(C(a,b)) — — /bf(t)dt
' S In(g) Ja
1/q / /
S . 1/q {ln <Z>] /fl/q /fl/q
270 (¢+1) @) Mo c@ore 19 i as).op

f/
(9"

)

FrrnddCl

where G (a,b) := Vab is the geometric mean of a, b > 0.
b). If we take ¢ : [a,b] C R — (0,00), g (t) = expt, in (3.1) and assume that

flexp (—%K) € Lo [a,b], then we get

[a,b],p

b
(3.12) |f(x)—w / £ (£) oxp tt

g+1

1 - z 1
<1 (expb—expa) <expxexpa> £ exp <_£)
(g+1) /4 expb—expa q

qt1
+(epr—eXW> q ’ Jexp (_1e>
expb—expa 9/ Wz,b),p

1/q
exprT — expa>q+1 N <epr - expz>q+1]

[a,z],p

expb—expa expb—expa

flexp <—1€>
q

1
< PR (expb — expa)'/? l(
q

X )

[a,b],p

for any x € [a,b].
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In particular, we have

(expb — expa)/?

&

(expb — expa)/?

2 (q+ 1)1/q

2l

1 b

1 LMFE -

(313) |f( (a,5) epr_expa/fa)exptdt

aLME(ab)],p ‘ [LME(a,bxb],p]

e U
1
(=)
q
where LM E (a,b) :=In (%ﬂ"pb) is the LogMeanFExp function.

c). If we take g : [a,b] C (0,00) = R, g(¢) =¢", 7> 0in (3.1) and assume that
Kl%f’ € Lo [a,b] then we get

)

[a,b],p

2(q+1)1/q

b
(3.14) ‘f(x)_brrar/ F)dt

1 T r1/
§ (q+1)1/q(b _G,) q

r b N~
xr — — X a
ca ff + ‘
x l(bT— T) H la,z],p <br—ar>

1—1r

e f!

[=,0] ,p]

1/q
1 r_ o\ 9+l b — 2" q+1 .
< o (br _ar)l/q (xT ar) I ( _ .’L'T) ’é < f/ ’
r(q+1) q b" —a b" —a la,b],p
for any « € [a, ] .
In particular, we have
(3.15) ‘f( - (a,b)) )t tat
S %(briar)l/q |:‘£1q7"f/ +‘€1;7~f/ :|
2% (g+1)"1 [a. My (a.b)].p (M (a,b).b].p
]_ 1/ 1—1r
< - - br _ ar q 7 / ,
2 (q+ 1)1/q ( ) d [a,b],p

™ T 1
where M, (a,b) := (%£2) /r, r > 1 is the power mean with exponent r.

4. WEIGHTED INTEGRAL INEQUALITIES AND PROBABILITY DISTRIBUTIONS

If w : [a,b] — R is continuous and positive on the interval [a, b] , then the function
W : [a,b] — [0,00), W (z) := [ w(s)ds is strictly increasing and differentiable on
(a,b) . We have W' (z) = w (x) for any = € (a,b).

Proposition 1. Assume that w : [a,b] — (0,00) is continuous on [a,b] and f :
[a,b] — C is absolutely continuous on [a,b] with fE/ € Ly [a,b], where p, ¢ > 1 with
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% + % =1, then we have
1 b
(4.1) ’f(w) - fw()d/ £ (tyw (t)dt

1/q

1 b
< (L o)

q+1 q+1

y [Fw(s)ds q‘ f! N ffw(s)ds ! ’ f!
f; w (S) ds wl/q la,z],p f: w (S) ds wl/q [z,b],p

8

=

1 1 1/q
1 b /4 ffw (s) ds a+ fbw (s) ds q+1 5

a

In particular, if

then we have

1 b
(4.2) 'f(MW (a,b)) — f;w(s)ds/a f)w(t)dt

- ! (/b ()d)l/q M f ‘ I ]
~ VT wis S
2% (q+1)1/q a wt/a la,Mw (a,b)],p w'/a [Mw (a,b),b],p
1/q
1 b /
< —7 /w(s)ds Ji/
2(¢+ 1) \Ja W la,b),p

The above result can be extended for infinite intervals I by assuming that the
function f : I — C is locally absolutely continuous on I.

For instance, if I = [a,0), f : [a,00) — C is locally absolutely continuous on
[a,00) and w (s) > 0 for s € [a,00) with [ w(s)ds = 1, namely w is a probability
density function on [a, o), and if fEI € L,la,0), p, ¢ >1 with % + % =1, then by
(4.1) we get

(43) 'f(w)—/amf(t)w(t)dt‘
1

at1 || f’ ax1 || f’
< 1/q [ ' 1/q HL=W()]e 1/q ]
(q + 1) w [a,x],p w [.’I;,OO),p
1 1/ '
< [wert+n-wer]"|-L]
(¢+1) W M a,00),p

for any « € [a,00), where W (z) := [ w (s) ds is the cumulative distribution func-
tion.
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If m € (a,00) is the median point for w, namely W (m) = 1, then by (4.3) we
get

(4.4 'f(m)— / Oof(t)w(t)dt'
.

wl/q

| i WG 1
N 21%1 (Q+1)1/q wt/a la,m],p wl/4 [m,00),p B Q(Q+1)1/q

In probability theory and statistics, the beta prime distribution (also known as
inverted beta distribution or beta distribution of the second kind) is an absolutely
continuous probability distribution defined for x > 0 with two parameters « and
[, having the probability density function:

o o (14 x)_a_’B
Wt (2) = e B)

where B is Beta function

la,00),p

1
B(a,B) ::/ to‘fl(l—t)’ﬁ_l, a, B>0.
0
The cumulative distribution function is

Waﬁ (.’IJ):I £ (0476)7

1+

where I is the regularized incomplete beta function defined by

I (a,8) := W.

Here B (+; , 8) is the incomplete beta function defined by

B (z;a, ) ::/zta_l(l—t)’g_l, a, B, 2> 0.

0
Assume that f : [0,00) — C is locally absolutely continuous on [0,00) with
f—/w € L,[0,00), were £(t) =t, p, ¢ > 1 with %Jr% = 1. Using the

z%(ys-é)‘ q
inequality (4.3) we have for z > 0 that

(4.5) ‘f(x)—M/Ooof(t)ta—l(ut)—“—ﬁ dt’

1 1/ q+1 f/
SiB 1 aaﬁ I x 0476 ! a—1 a+p
(q+1)1/q ( ) { 1+w( )} Var (1+g)* :[ (0,2],p
g+1
e i
+ |:1_Ilid~ (avﬁ)} g(,_l (1+€)70+5
! * M a,00),p
1 g+1 g+171/a
< L mies [[re @o] "+ 1-1e @) "]

(g+1)
f/
at+p

X a—1
o (144) e

[0,00),p
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Similar results may be stated for the probability distributions that are supported
on the whole axis R = (—00,00). Namely, if I = (—o00,00), f : R — C is locally
absolutely continuous on R and w (s) > 0 for s € R with [*°_w (s)ds = 1, namely
w is a probability density function on (—o0, 00), and if ’% € Ly (—00,00) then by
(4.1) we get

o) |1~ [ sau

1 a1 || ff at1 || ff
< —— 7 l[W @] |- HL=W @) |7
(g+1) (—o0.2].p [,00).p
1 1/ '
< L@t v w2 ,
(q + 1) w (700,00),}3

for all z € (—00,00).
In particular, if m € R is the median point for w, namely W (m) = %, then by
(4.6) we get

<= | I,
= _gtt
257 (q+ 1)V (1wl Caomrp 10 o)
1 !
< 1/q Ji/q
2(qg+1) W (—o0,00),p

In what follows we give an example.
The probability density of the normal distribution on (—oo,00) is

1 (x— )’
W02 (T) 1= o expl -5 53| % € R,

where 1 is the mean or expectation of the distribution (and also its median and
mode), o is the standard deviation, and o2 is the variance.
The cumulative distribution function is

1 1 T— U
I/Vw,z(:c):2-1-261"f(0\/§)7

where the error function erf is defined by

erf (z) = % /Ow exp (—t°) dt.
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If f : R — Rislocally absolutely continuous with exp ((e_‘;)z) f' € Lo (—00,00),

202q

where £ (t) = ¢, then from (4.6) we get

I (t—mw?
@) |f@-—= [ fen (-

+1

1/q a+1 2
q ?— ,
< g et ()] e (zaz'fz) f

+1

N = u)2
" {1 et ( ov2 )] TP 202 [z,00)
,00),p

< e {1+eff(i;§)]q“+[l-erf< =

V2
X ||exp 202 ) ,

(700,00),13

(—o0,z],p

for all z € (—o0,00) .

In particular, we have

[e’s) _ 2
@9 |- [ sen(-LE )

1]

2]

3]

[4]

5

[6]

— 00

(—o0,m],p [m,00),p

1
(V2r0) " | (-’
S S|P\ 22y
2(g+1) 20

(—00,00),p
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