NEW INEQUALITIES FOR THE ČEBYŠEV FUNCTIONAL

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

$$
\begin{aligned}
& \text { AbSTRACT. In this paper, by employing some classical results due to Os- } \\
& \text { trowski, Čebyšev and Lupaş, we establish some new inequalities for the Čebyšev } \\
& \text { functional } \\
& \qquad C(f, g):=\frac{1}{b-a} \int_{a}^{b} f(t) g(t) d t-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(t) d t \int_{a}^{b} g(t) d t, \\
& \text { of two Lebesgue integrable functions } f, g:[a, b] \rightarrow \mathbb{R} .
\end{aligned}
$$

1. Introduction

For two Lebesgue integrable functions $f, g:[a, b] \rightarrow \mathbb{R}$, consider the Čebyšev functional:

$$
\begin{equation*}
C(f, g):=\frac{1}{b-a} \int_{a}^{b} f(t) g(t) d t-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(t) d t \int_{a}^{b} g(t) d t \tag{1.1}
\end{equation*}
$$

In 1935, Grüss [18] showed that

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{4}(M-m)(N-n) \tag{1.2}
\end{equation*}
$$

provided that there exists the real numbers m, M, n, N such that

$$
\begin{equation*}
m \leq f(t) \leq M \quad \text { and } \quad n \leq g(t) \leq N \quad \text { for a.e. } t \in[a, b] \tag{1.3}
\end{equation*}
$$

The constant $\frac{1}{4}$ is best possible in (1.1) in the sense that it cannot be replaced by a smaller quantity.

Another, however less known result, even though it was obtained by Čebyšev in 1882, [4], states that

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{12}\left\|f^{\prime}\right\|_{\infty}\left\|g^{\prime}\right\|_{\infty}(b-a)^{2} \tag{1.4}
\end{equation*}
$$

provided that f^{\prime}, g^{\prime} exist and are continuous on $[a, b]$ and $\left\|f^{\prime}\right\|_{\infty}=\sup _{t \in[a, b]}\left|f^{\prime}(t)\right|$. The constant $\frac{1}{12}$ cannot be improved in the general case.

The Čebyšev inequality (1.4) also holds if $f, g:[a, b] \rightarrow \mathbb{R}$ are assumed to be absolutely continuous and $f^{\prime}, g^{\prime} \in L_{\infty}[a, b]$ while $\left\|f^{\prime}\right\|_{\infty}=\operatorname{essup}_{t \in[a, b]}\left|f^{\prime}(t)\right|$.

A mixture between Grüss' result (1.2) and Čebyšev's one (1.4) is the following inequality obtained by Ostrowski in 1970, [25]:

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{8}(b-a)(M-m)\left\|g^{\prime}\right\|_{\infty} \tag{1.5}
\end{equation*}
$$

provided that f is Lebesgue integrable and satisfies (1.3) while g is absolutely continuous and $g^{\prime} \in L_{\infty}[a, b]$. The constant $\frac{1}{8}$ is best possible in (1.5).

[^0]RGMIA Res. Rep. Coll. 21 (2018), Art. 56, 10 pp.

The case of euclidean norms of the derivative was considered by A. Lupaş in [22] in which he proved that

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{\pi^{2}}\left\|f^{\prime}\right\|_{2}\left\|g^{\prime}\right\|_{2}(b-a) \tag{1.6}
\end{equation*}
$$

provided that f, g are absolutely continuous and $f^{\prime}, g^{\prime} \in L_{2}[a, b]$. The constant $\frac{1}{\pi^{2}}$ is the best possible.

Consider now the weighted Cebyšev functional

$$
\begin{align*}
C_{w}(f, g):= & \frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t) f(t) g(t) d t \tag{1.7}\\
& \quad-\frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t) f(t) d t \frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t) g(t) d t
\end{align*}
$$

where $f, g, w:[a, b] \rightarrow \mathbb{R}$ and $w(t) \geq 0$ for a.e. $t \in[a, b]$ are measurable functions such that the involved integrals exist and $\int_{a}^{b} w(t) d t>0$.

In [6], Cerone and Dragomir obtained, among others, the following inequalities:

$$
\begin{equation*}
\left|C_{w}(f, g)\right| \tag{1.8}
\end{equation*}
$$

$$
\begin{aligned}
& \leq \frac{1}{2}(M-m) \frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t)\left|g(t)-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(s) g(s) d s\right| d t \\
\leq & \frac{1}{2}(M-m)\left[\frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t)\left|g(t)-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(s) g(s) d s\right|^{p} d t\right]^{\frac{1}{p}} \\
\leq & \frac{1}{2}(M-m) \underset{t \in[a, b]}{\operatorname{essup}}\left|g(t)-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(s) g(s) d s\right|
\end{aligned}
$$

for $p>1$, provided $-\infty<m \leq f(t) \leq M<\infty$ for a.e. $t \in[a, b]$ and the corresponding integrals are finite. The constant $\frac{1}{2}$ is sharp in all the inequalities in (1.8) in the sense that it cannot be replaced by a smaller constant.

In addition, if $-\infty<n \leq g(t) \leq N<\infty$ for a.e. $t \in[a, b]$, then the following refinement of the celebrated Grüss inequality is obtained:

$$
\begin{align*}
& \left|C_{w}(f, g)\right| \tag{1.9}\\
\leq & \frac{1}{2}(M-m) \frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t)\left|g(t)-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(s) g(s) d s\right| d t \\
\leq & \frac{1}{2}(M-m)\left[\frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t)\left|g(t)-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(s) g(s) d s\right|^{2} d t\right]^{\frac{1}{2}} \\
& \leq \frac{1}{4}(M-m)(N-n) .
\end{align*}
$$

Here, the constants $\frac{1}{2}$ and $\frac{1}{4}$ are also sharp in the sense mentioned above.
For other inequality of Grüss' type see [1]-[5], [7]-[17], [19]-[24] and [26]-[29].
In this paper we establish some new inequalities for the Čebyšev functional $C(f, g)$ under several conditions for the integrable functions $f, g:[a, b] \rightarrow \mathbb{R}$.

2. Preliminary Results

We have:
Lemma 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a Lebesgue integrable function such that there exists $m<M$ with

$$
\begin{equation*}
m \leq f(t) \leq M \text { for a.e. } t \in[a, b] \tag{2.1}
\end{equation*}
$$

and so that $F(b)=0$, where $F(x):=\int_{a}^{x} f(t) d t$. Then we have

$$
\begin{equation*}
\|F\|_{[a, b], 2}^{2} \leq \frac{1}{8}(b-a)^{2}(M-m)\|F\|_{[a, b], \infty} \tag{2.2}
\end{equation*}
$$

Proof. Using integration by parts we have

$$
\begin{align*}
& \int_{a}^{b} F^{2}(x) d x=\int_{a}^{b} F(x) F(x) d x=\int_{a}^{b} F(x) d\left(\int_{a}^{x} F(s) d s\right) \tag{2.3}\\
&=\left.F(x) \int_{a}^{x} F(s) d s\right|_{a} ^{b}-\int_{a}^{b} F^{\prime}(x)\left(\int_{a}^{x} F(s) d s\right) d x \\
&= F(b) \int_{a}^{b} F(s) d s-\int_{a}^{b} f(x)\left(\int_{a}^{x} F(s) d s\right) d x \\
&=-\int_{a}^{b} f(x)\left(\int_{a}^{x} F(s) d s\right) d x=\left|\int_{a}^{b} f(x)\left(\int_{a}^{x} F(s) d s\right) d x\right|
\end{align*}
$$

Using Ostrowski's inequality (1.5) we have

$$
\begin{array}{r}
\left|\frac{1}{b-a} \int_{a}^{b} f(x)\left(\int_{a}^{x} F(s) d s\right) d x\right|=\left\lvert\, \frac{1}{b-a} \int_{a}^{b} f(x)\left(\int_{a}^{x} F(s) d s\right) d x\right. \\
\left.-\frac{1}{b-a} \int_{a}^{b} f(x) d x \frac{1}{b-a} \int_{a}^{b}\left(\int_{a}^{x} F(s) d s\right) d x \right\rvert\, \\
\leq \frac{1}{8}(b-a)(M-m)\|F\|_{[a, b], \infty}
\end{array}
$$

which implies (2.2).

Corollary 1. Let $h:[a, b] \rightarrow \mathbb{R}$ be a Lebesgue integrable function on $[a, b]$ such that

$$
\begin{equation*}
\gamma \leq h(x) \leq \Gamma \text { for a.e. on }[a, b], \tag{2.4}
\end{equation*}
$$

then we have the inequality

$$
\begin{align*}
& \int_{a}^{b}\left|\int_{a}^{x} h(t) d t-\frac{x-a}{b-a} \int_{a}^{b} h(s) d s\right|^{2} d x \tag{2.5}\\
& \leq \frac{1}{8}(b-a)^{2}(\Gamma-\gamma) \max _{x \in[a, b]]}\left|\int_{a}^{x} h(t) d t-\frac{x-a}{b-a} \int_{a}^{b} h(s) d s\right|
\end{align*}
$$

Proof. Follows from Lemma 1 by taking $f(t)=h(t)-\frac{1}{b-a} \int_{a}^{b} h(s) d s$ and observing that $\int_{a}^{b} f(t) d t=0$,

$$
\begin{aligned}
m & =\gamma-\frac{1}{b-a} \int_{a}^{b} h(s) d s \leq h(t)-\frac{1}{b-a} \int_{a}^{b} h(s) d s \\
& \leq \Gamma-\frac{1}{b-a} \int_{a}^{b} h(s) d s=M
\end{aligned}
$$

and

$$
F(x)=\int_{a}^{x} h(t) d t-\frac{x-a}{b-a} \int_{a}^{b} h(s) d s, x \in[a, b]
$$

We also have by Ostrowski's inequality (1.5) that
Lemma 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be an absolutely continuous function with $f^{\prime} \in$ $L_{\infty}[a, b]$ and such that there exists $n<0<N$ with

$$
\begin{equation*}
n \leq F(x) \leq N \text { for a.e. } x \in[a, b] \tag{2.6}
\end{equation*}
$$

and so that $F(b)=0$, where $F(x):=\int_{a}^{x} f(t) d t$. Then we have

$$
\begin{equation*}
\|F\|_{[a, b], 2}^{2} \leq \frac{1}{8}(b-a)^{2}(N-n)\left\|f^{\prime}\right\|_{[a, b], \infty} \tag{2.7}
\end{equation*}
$$

Corollary 2. Let $h:[a, b] \rightarrow \mathbb{R}$ be an absolutely continuous function and such that there exists $\phi<0<\Phi$ with

$$
\begin{equation*}
\phi \leq \int_{a}^{x} h(t) d t-\frac{x-a}{b-a} \int_{a}^{b} h(s) d s \leq \Phi \text { for a.e. on }[a, b], \tag{2.8}
\end{equation*}
$$

then we have the inequality

$$
\begin{equation*}
\int_{a}^{b}\left|\int_{a}^{x} h(t) d t-\frac{x-a}{b-a} \int_{a}^{b} h(s) d s\right|^{2} d x \leq \frac{1}{8}(b-a)^{2}(\Phi-\phi)\left\|h^{\prime}\right\|_{[a, b], \infty} \tag{2.9}
\end{equation*}
$$

We also have:
Lemma 3. Let $f:[a, b] \rightarrow \mathbb{R}$ be an absolutely continuous function on $[a, b]$ such that $f^{\prime} \in L_{\infty}[a, b]$. Then

$$
\begin{equation*}
\|F\|_{[a, b], 2}^{2} \leq \frac{1}{12}(b-a)^{2}\left\|f^{\prime}\right\|_{[a, b], \infty}\|F\|_{[a, b], \infty} \tag{2.10}
\end{equation*}
$$

Proof. Using Čebyšev's inequality for the functions f and $\int_{a} F(s) d s$ we have

$$
\begin{array}{r}
\left|\frac{1}{b-a} \int_{a}^{b} f(x)\left(\int_{a}^{x} F(s) d s\right) d x\right|=\left\lvert\, \frac{1}{b-a} \int_{a}^{b} f(x)\left(\int_{a}^{x} F(s) d s\right) d x\right. \\
\left.-\frac{1}{b-a} \int_{a}^{b} f(x) d x \frac{1}{b-a} \int_{a}^{b}\left(\int_{a}^{x} F(s) d s\right) d x \right\rvert\, \\
\quad \leq \frac{1}{12}(b-a)^{2}\left\|f^{\prime}\right\|_{[a, b], \infty}\|F\|_{[a, b], \infty}
\end{array}
$$

Using the equality (2.3) we get the inequality (2.10).

Corollary 3. Let $h:[a, b] \rightarrow \mathbb{R}$ be an absolutely continuous function on $[a, b]$ with $h^{\prime} \in L_{\infty}[a, b]$, then we have the inequality

$$
\begin{align*}
& \int_{a}^{b}\left|\int_{a}^{x} h(t) d t-\frac{x-a}{b-a} \int_{a}^{b} h(s) d s\right|^{2} d x \tag{2.11}\\
& \leq \frac{1}{12}(b-a)^{2}\left\|h^{\prime}\right\|_{[a, b], \infty} \max _{x \in[a, b]}\left|\int_{a}^{x} h(t) d t-\frac{x-a}{b-a} \int_{a}^{b} h(s) d s\right| .
\end{align*}
$$

We have
Lemma 4. Let $f:[a, b] \rightarrow \mathbb{R}$ be an absolutely continuous function on $[a, b]$ such that $f^{\prime} \in L_{2}[a, b]$. Then

$$
\begin{equation*}
\|F\|_{[a, b], 2} \leq \frac{1}{\pi^{2}}(b-a)^{2}\left\|f^{\prime}\right\|_{[a, b], 2} \tag{2.12}
\end{equation*}
$$

Proof. Using Lupaş's inequality for the functions f and $\int_{a} F(s) d s$ we have

$$
\begin{aligned}
\left\lvert\, \frac{1}{b-a} \int_{a}^{b} f(x)\right. & \left(\int_{a}^{x} F(s) d s\right) d x|=| \frac{1}{b-a} \int_{a}^{b} f(x)\left(\int_{a}^{x} F(s) d s\right) d x \\
-\frac{1}{b-a} \int_{a}^{b} f(x) d x \frac{1}{b-a} \int_{a}^{b} & \left(\int_{a}^{x} F(s) d s\right) d x \mid \\
& \leq \frac{1}{\pi^{2}}(b-a)^{2}\left\|f^{\prime}\right\|_{[a, b], 2}\|F\|_{[a, b], 2}
\end{aligned}
$$

Using the equality (2.3) we get

$$
\|F\|_{[a, b], 2}^{2} \leq \frac{1}{\pi^{2}}(b-a)^{2}\left\|f^{\prime}\right\|_{[a, b], 2}\|F\|_{[a, b], 2}
$$

which is equivalent to (2.12).
Corollary 4. Let $h:[a, b] \rightarrow \mathbb{R}$ be an absolutely continuous function on $[a, b]$ with $h^{\prime} \in L_{2}[a, b]$, then we have the inequality

$$
\begin{equation*}
\left(\int_{a}^{b}\left|\int_{a}^{x} h(t) d t-\frac{x-a}{b-a} \int_{a}^{b} h(s) d s\right|^{2} d x\right)^{1 / 2} \leq \frac{1}{\pi^{2}}(b-a)^{2}\left\|h^{\prime}\right\|_{[a, b], 2} . \tag{2.13}
\end{equation*}
$$

Consider a function $g:[a, b] \rightarrow \mathbb{R}$ and assume that it is bounded on $[a, b]$. The chord that connects its end points $A=(a, g(a))$ and $B=(b, g(b))$ has the equation

$$
d_{g}:[a, b] \rightarrow \mathbb{R}, d_{g}(t)=\frac{(b-t) g(a)+(t-a) g(b)}{b-a}
$$

We consider the error in approximation the function g by d_{g} denoted by E_{g} and defined by

$$
E_{g}(t):=g(t)-d_{g}(t)=g(t)-\frac{(b-t) g(a)+(t-a) g(b)}{b-a}, t \in[a, b] .
$$

Sharp bounds for Φ_{g} under various assumptions for g and including absolute continuity, convexity, bounded variation, and monotonicity, were given in [14]. Some applications for weighted means and f-divergence measures in information theory were also provided.

We observe that if $g:[a, b] \rightarrow \mathbb{R}$ is aboslutely continuous on $[a, b]$, then

$$
\begin{aligned}
\int_{a}^{x} g^{\prime}(t) d t-\frac{x-a}{b-a} \int_{a}^{b} g^{\prime}(s) d s & =g(x)-g(a)-\frac{x-a}{b-a}[g(b)-g(a)] \\
& =g(x)-\frac{(x-a) g(b)+(b-x) g(a)}{b-a} \\
& =E_{g}(x)
\end{aligned}
$$

for $x \in[a, b]$
Using the above results we can state the following propositions:
Proposition 1. Assume that $g:[a, b] \rightarrow \mathbb{R}$ is aboslutely continuous on $[a, b]$ and there exists the constants γ, Γ so that

$$
\begin{equation*}
\gamma \leq g^{\prime}(x) \leq \Gamma \text { for a.e. on }[a, b] \tag{2.14}
\end{equation*}
$$

then we have the inequality

$$
\begin{align*}
& \left|\frac{1}{b-a} \int_{a}^{b} g(t) d t-\frac{g(a)+g(b)}{2}\right|^{2} \tag{2.15}\\
& \leq \frac{1}{b-a} \int_{a}^{b}\left|E_{g}(x)\right|^{2} d x \leq \frac{1}{8}(b-a)(\Gamma-\gamma) \max _{x \in[a, b]}\left|E_{g}(x)\right|
\end{align*}
$$

Proof. If we use the inequality (2.5) for $h=g^{\prime}$ then we get the second inequality in (2.15). For the first inequality, we use the Cauchy-Bunyakovsky-Schwarz integral inequality to get

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b}\left|E_{g}(x)\right|^{2} d x & \geq\left|\frac{1}{b-a} \int_{a}^{b} E_{g}(x) d x\right|^{2} \\
& =\left|\frac{1}{b-a} \int_{a}^{b}\left[g(x)-\frac{(x-a) g(b)+(b-x) g(a)}{b-a}\right] d x\right|^{2} \\
& =\left|\frac{1}{b-a} \int_{a}^{b} g(x) d x-\frac{g(a)+g(b)}{2}\right|^{2}
\end{aligned}
$$

Proposition 2. Assume that $g:[a, b] \rightarrow \mathbb{R}$ is differentiable and the derivative g^{\prime} is aboslutely continuous on $[a, b], g^{\prime \prime} \in L_{\infty}[a, b]$, and there exists the constants ϕ, Φ so that

$$
\begin{equation*}
\phi \leq E_{g}(x) \leq \Phi \text { for a.e. } x \in[a, b], \tag{2.16}
\end{equation*}
$$

then

$$
\begin{align*}
& \left|\frac{1}{b-a} \int_{a}^{b} g(t) d t-\frac{g(a)+g(b)}{2}\right|^{2} \tag{2.17}\\
& \leq \frac{1}{b-a} \int_{a}^{b}\left|E_{g}(x)\right|^{2} d x \leq \frac{1}{8}(b-a)(\Phi-\phi)\left\|g^{\prime \prime}\right\|_{[a, b], \infty}
\end{align*}
$$

The proof follows by Corollary 2.

Proposition 3. Assume that $g:[a, b] \rightarrow \mathbb{R}$ is differentiable and the derivative g^{\prime} is aboslutely continuous on $[a, b]$ and $g^{\prime \prime} \in L_{\infty}[a, b]$, then we have the inequality

$$
\begin{align*}
& \left|\frac{1}{b-a} \int_{a}^{b} g(t) d t-\frac{g(a)+g(b)}{2}\right|^{2} \tag{2.18}\\
& \leq \frac{1}{b-a} \int_{a}^{b}\left|E_{g}(x)\right|^{2} d x \leq \frac{1}{12}(b-a)\left\|g^{\prime \prime}\right\|_{[a, b], \infty} \max _{x \in[a, b]}\left|E_{g}(x)\right|
\end{align*}
$$

The proof follows by Corollary 3.
Proposition 4. Assume that $g:[a, b] \rightarrow \mathbb{R}$ is differentiable and the derivative g^{\prime} is absolutely continuous on $[a, b]$ and $g^{\prime \prime} \in L_{2}[a, b]$, then

$$
\begin{align*}
& \left|\frac{1}{b-a} \int_{a}^{b} g(t) d t-\frac{g(a)+g(b)}{2}\right|^{2} \tag{2.19}\\
& \leq \frac{1}{b-a} \int_{a}^{b}\left|E_{g}(x)\right|^{2} d x \leq \frac{1}{\pi^{4}}(b-a)^{3}\left\|g^{\prime \prime}\right\|_{[a, b], 2}^{2}
\end{align*}
$$

The proof follows by Corollary 4.

3. Bounds for Čebyšev's Functional

We have:
Theorem 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a Lebesgue integrable function on $[a, b]$ such that there exists the real numbers $m<M$ with the property

$$
\begin{equation*}
-\infty<m \leq f(x) \leq M<\infty \text { for a.e. on }[a, b], \tag{3.1}
\end{equation*}
$$

and $g:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous with $g^{\prime} \in L_{2}[a, b]$, then we have the inequality

$$
\begin{align*}
|C(f, g)|^{2} & \leq \frac{1}{(b-a)^{2}}\left\|g^{\prime}\right\|_{[a, b], 2}^{2} \int_{a}^{b}\left|\int_{a}^{x} f(t) d t-\frac{x-a}{b-a} \int_{a}^{b} f(s) d s\right|^{2} \tag{3.2}\\
& \leq \frac{1}{8}(M-m)\left\|g^{\prime}\right\|_{[a, b], 2}^{2} \max _{x \in[a, b]}\left|\int_{a}^{x} f(t) d t-\frac{x-a}{b-a} \int_{a}^{b} f(s) d s\right|
\end{align*}
$$

Proof. Integrating by parts, we have

$$
\begin{aligned}
& \frac{1}{b-a} \int_{a}^{b}\left(\int_{a}^{x} f(t) d t-\frac{x-a}{b-a} \int_{a}^{b} f(s) d s\right) g \prime(x) d x \\
& =\frac{1}{b-a}\left[\left.\left(\int_{a}^{x} f(t) d t-\frac{x-a}{b-a} \int_{a}^{b} f(s) d s\right) g(x)\right|_{a} ^{b}\right. \\
& -\int_{a}^{b} g(x)\left(f(x)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right) d x \\
& =-\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x+\frac{1}{b-a} \int_{a}^{b} f(s) d s \frac{1}{b-a} \int_{a}^{b} g(x) d x
\end{aligned}
$$

which gives that

$$
\begin{equation*}
C(f, g)=\frac{1}{b-a} \int_{a}^{b}\left(\frac{x-a}{b-a} \int_{a}^{b} f(s) d s-\int_{a}^{x} f(t) d t\right) g^{\prime}(x) d x . \tag{3.3}
\end{equation*}
$$

Using (CBS) integral inequality and the inequality (2.5), we have

$$
\begin{align*}
|C(f, g)|^{2} & =\frac{1}{(b-a)^{2}}\left|\int_{a}^{b}\left(\frac{x-a}{b-a} \int_{a}^{b} f(s) d s-\int_{a}^{x} f(t) d t\right) g \prime(x) d x\right|^{2} \tag{3.4}\\
& \leq \frac{1}{(b-a)^{2}} \int_{a}^{b}\left|\frac{x-a}{b-a} \int_{a}^{b} f(s) d s-\int_{a}^{x} f(t) d t\right|^{2}\left\|g^{\prime}\right\|_{[a, b], 2}^{2}
\end{align*}
$$

Using the inequality (2.5) for the function f we have

$$
\begin{align*}
& \frac{1}{(b-a)^{2}} \int_{a}^{b}\left|\int_{a}^{x} f(t) d t-\frac{x-a}{b-a} \int_{a}^{b} f(s) d s\right|^{2} d x \tag{3.5}\\
& \leq \frac{1}{8}(M-m) \max _{x \in[a, b]}\left|\int_{a}^{x} f(t) d t-\frac{x-a}{b-a} \int_{a}^{b} f(s) d s\right|
\end{align*}
$$

Using (3.4) and (3.5) we get (3.2).

We also have:
Theorem 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be an absolutely continuous function on $[a, b]$ and $g:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous with $g^{\prime} \in L_{2}[a, b]$.
(i) If there exists $\phi<0<\Phi$ with

$$
\begin{equation*}
\phi \leq \int_{a}^{x} f(t) d t-\frac{x-a}{b-a} \int_{a}^{b} f(s) d s \leq \Phi \text { for a.e. on }[a, b] \tag{3.6}
\end{equation*}
$$

then

$$
\begin{align*}
&|C(f, g)|^{2} \leq \frac{1}{(b-a)^{2}}\left\|g^{\prime}\right\|_{[a, b], 2}^{2} \int_{a}^{b}\left|\int_{a}^{x} f(t) d t-\frac{x-a}{b-a} \int_{a}^{b} f(s) d s\right|^{2} \tag{3.7}\\
& \leq \frac{1}{8}(\Phi-\phi)\left\|f^{\prime}\right\|_{[a, b], \infty}\left\|g^{\prime}\right\|_{[a, b], 2}^{2}
\end{align*}
$$

provided $f^{\prime} \in L_{\infty}[a, b]$.
(ii) If $f^{\prime} \in L_{\infty}[a, b]$, then we have the inequality

$$
\begin{align*}
& |C(f, g)|^{2} \leq \frac{1}{(b-a)^{2}}\left\|g^{\prime}\right\|_{[a, b], 2}^{2} \int_{a}^{b}\left|\int_{a}^{x} f(t) d t-\frac{x-a}{b-a} \int_{a}^{b} f(s) d s\right|^{2} d x \tag{3.8}\\
& \leq \frac{1}{12}(b-a)^{2}\left\|f^{\prime}\right\|_{[a, b], \infty}\left\|g^{\prime}\right\|_{[a, b], 2}^{2} \max _{x \in[a, b]}\left|\int_{a}^{x} f(t) d t-\frac{x-a}{b-a} \int_{a}^{b} f(s) d s\right| .
\end{align*}
$$

(iii) If $f^{\prime} \in L_{2}[a, b]$, then we have the inequality

$$
\begin{array}{r}
|C(f, g)| \leq \frac{1}{b-a}\left\|g^{\prime}\right\|_{[a, b], 2}\left(\int_{a}^{b}\left|\int_{a}^{x} f(t) d t-\frac{x-a}{b-a} \int_{a}^{b} f(s) d s\right|^{2} d x\right)^{1 / 2} \tag{3.9}\\
\leq \frac{1}{\pi^{2}}(b-a)\left\|f^{\prime}\right\|_{[a, b], 2}\left\|g^{\prime}\right\|_{[a, b], 2}
\end{array}
$$

The proof follows along the lines of the proof of Theorem 1 by making use of the inequalities $(2.9),(2.11)$ and (2.13) written for the function f. The details are however omitted.

References

[1] M. W. Alomari, A companion of Grüss type inequality for Riemann-Stieltjes integral and applications. Mat. Vesnik 66 (2014), no. 2, 202-212.
[2] D. Andrica and C. Badea, Grüss' inequality for positive linear functionals. Period. Math. Hungar. 19 (1988), no. 2, 155-167.
[3] D. Baleanu, S. D. Purohit and F. Uçar, On Grüss type integral inequality involving the Saigo's fractional integral operators. J. Comput. Anal. Appl. 19 (2015), no. 3, 480-489
[4] P. L. Chebyshev, Sur les expressions approximatives des intègrals dèfinis par les outres prises entre les même limites, Proc. Math. Soc. Charkov, 2 (1882), 93-98.
[5] P. Cerone, On a Čebyšev-type functional and Grüss-like bounds. Math. Inequal. Appl. 9 (2006), no. 1, 87-102.
[6] P. Cerone and S. S. Dragomir, A refinement of the Grüss inequality and applications, Tamkang J. Math., 38(1) (2007), 37-49. Preprint RGMIA Res. Rep. Coll., 5(2) (2002), Article 14. [ONLINE: http://rgmia.vu.edu.au/v5n2.html].
[7] P. Cerone and S. S. Dragomir, Some new Ostrowski-type bounds for the Cebyšev functional and applications. J. Math. Inequal. 8 (2014), no. 1, 159-170.
[8] P. Cerone, S. S. Dragomir and J. Roumeliotis, Grüss inequality in terms of Δ-seminorms and applications. Integral Transforms Spec. Funct. 14 (2003), no. 3, 205-216.
[9] S. S. Dragomir, A generalization of Grüss's inequality in inner product spaces and applications. J. Math. Anal. Appl. 237 (1999), no. 1, 74-82.
[10] S. S. Dragomir, A Grüss' type integral inequality for mappings of r-Hölder's type and applications for trapezoid formula. Tamkang J. Math. 31 (2000), no. 1, 43-47.
[11] S. S. Dragomir, Some integral inequalities of Grüss type. Indian J. Pure Appl. Math. $\mathbf{3 1}$ (2000), no. 4, 397-415.
[12] S. S. Dragomir, Integral Grüss inequality for mappings with values in Hilbert spaces and applications. J. Korean Math. Soc. 38 (2001), no. 6, 1261-1273.
[13] S. S. Dragomir, A Grüss related integral inequality and applications. Nonlinear Anal. Forum 8 (2003), no. 1, 79-92.
[14] S. S. Dragomir, Bounds for the deviation of a function from the chord generated by its extremities. Bull. Aust. Math. Soc. 78 (2008), no. 2, 225-248.
[15] S. S. Dragomir and I. A. Fedotov, An inequality of Grüss' type for Riemann-Stieltjes integral and applications for special means. Tamkang J. Math. 29 (1998), no. 4, 287-292.
[16] S. S. Dragomir and I. Gomm, Some integral and discrete versions of the Grüss inequality for real and complex functions and sequences. Tamsui Oxf. J. Math. Sci. 19 (2003), no. 1, 67-77.
[17] A. M. Fink, A treatise on Grüss' inequality. Analytic and Geometric Inequalities and Applications, 93-113, Math. Appl., 478, Kluwer Acad. Publ., Dordrecht, 1999.
[18] G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-$ $\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x$, Math. Z., 39(1935), 215-226.
[19] D. Jankov Maširević and T. K. Pogány, Bounds on Čebyšev functional for $C_{\varphi}[0,1]$ function class. J. Anal. 22 (2014), 107-117.
[20] Z. Liu, Refinement of an inequality of Grüss type for Riemann-Stieltjes integral. Soochow J. Math. 30 (2004), no. 4, 483-489.
[21] Z. Liu, Notes on a Grüss type inequality and its application. Vietnam J. Math. $\mathbf{3 5}$ (2007), no. 2, 121-127.
[22] A. Lupaş, The best constant in an integral inequality, Mathematica (Cluj, Romania), $15(\mathbf{3 8})(2)$ (1973), 219-222.
[23] A. Mc.D. Mercer and P. R. Mercer, New proofs of the Grüss inequality. Aust. J. Math. Anal. Appl. 1 (2004), no. 2, Art. 12, 6 pp.
[24] N. Minculete and L. Ciurdariu, A generalized form of Grüss type inequality and other integral inequalities. J. Inequal. Appl. 2014, 2014:119, 18 pp.
[25] A. M. Ostrowski, On an integral inequality, Aequat. Math., 4 (1970), 358-373.
[26] B. G. Pachpatte, A note on some inequalities analogous to Grüss inequality. Octogon Math. Mag. 5 (1997), no. 2, 62-66
[27] J. Pečarić and Š. Ungar, On a inequality of Grüss type. Math. Commun. 11 (2006), no. 2, 137-141.
[28] M. Z. Sarikaya and H. Budak, An inequality of Grüss like via variant of Pompeiu's mean value theorem. Konuralp J. Math. 3 (2015), no. 1, 29-35.
[29] N. Ujević, A generalization of the pre-Grüss inequality and applications to some quadrature formulae. J. Inequal. Pure Appl. Math. 3 (2002), no. 1, Article 13, 9 pp.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand, , Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15; 26D10.
 Key words and phrases. Ostrowski's inequality, Čebyšev inequality, Lupaş inequality,
 1

