SOME INTEGRAL INEQUALITIES RELATED TO WIRTINGER'S RESULT FOR p-NORMS

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. In this paper we establish several natural consequences of some Wirtinger type integral inequalities for p-norms. Applications related to the trapezoid unweighted inequalities, of Grüss' type inequalities and reverses of Jensen's inequality are also provided.

1. Introduction

The following Wirtinger type inequalities are well known

(1.1)
$$\int_{a}^{b} u^{2}(t)dt \leq \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b} \left[u'(t)\right]^{2} dt$$

provided $u \in C^1([a, b], \mathbb{R})$ and u(a) = u(b) = 0 with equality holding if and only if $u(t) = K \sin \left[\frac{\pi(t-a)}{b-a}\right]$ for some constant K, and, similarly, if $u \in C^1([a, b], \mathbb{R})$ satisfies u(a) = 0, then

(1.2)
$$\int_{a}^{b} u^{2}(t)dt \leq \frac{4(b-a)^{2}}{\pi^{2}} \int_{a}^{b} \left[u'(t)\right]^{2} dt.$$

The equality holds in (1.2) if and only if $u(t) = K \sin \left[\frac{\pi(t-a)}{2(b-a)} \right]$ for some constant K.

For p > 1 put $\pi_{p-1} := \frac{2\pi}{p} \sin\left(\frac{\pi}{p}\right)$. In [10], J. Jaroš obtained, as a particular case of a more general inequality, the following generalization of (1.1)

(1.3)
$$\int_{a}^{b} |u(t)|^{p} dt \leq \frac{(b-a)^{p}}{(p-1)\pi_{p-1}^{p}} \int_{a}^{b} |u'(t)|^{p} dt$$

provided $u \in C^1([a, b], \mathbb{R})$ and u(a) = u(b) = 0, with equality if and only if $u(t) = K \sin_{p-1} \left[\frac{\pi_{p-1}(t-a)}{b-a}\right]$ for some $K \in \mathbb{R}$, where \sin_{p-1} is the $2\pi_{p-1}$ -periodic generalized sine function, see [17] or [5].

If u(a) = 0 and $u \in C^1([a, b], \mathbb{R})$, then

(1.4)
$$\int_{a}^{b} |u(t)|^{p} dt \leq \frac{\left[2(b-a)\right]^{p}}{(p-1)\pi_{p-1}^{p}} \int_{a}^{b} |u'(t)|^{p} dt$$

with equality iff $u(t) = K \sin_{p-1} \left[\frac{\pi_{p-1}(t-a)}{2(b-a)} \right]$ for some $K \in \mathbb{R}$. The inequalities (1.3) and (1.4) were obtained for a = 0, b = 1 and q = p > 1 in

The inequalities (1.3) and (1.4) were obtained for a = 0, b = 1 and q = p > 1 in [16] by the use of an elementary proof.

 $^{1991\} Mathematics\ Subject\ Classification.\ 26 D15;\ 26 D10.$

Key words and phrases. Wirtinger's inequality, Trapezoid inequality, Grüss' inequality, Jensen's inequality.

For some related Wirtinger type integral inequalities see [1], [2], [4], [8], [11], [10] and [14]-[16].

Motivated by the above results, in this paper we establish some natural consequences of the Wirtinger type integral inequalities for p-norms (1.3) and (1.4). Applications related to the trapezoid unweighted inequalities, of Grüss' type inequalities and reverses of Jensen's inequality are also provided.

2. Some Applications for Trapezoid Inequality

We have:

Proposition 1. Let $g \in C^1([a,b],\mathbb{R})$. Then for p > 1 we have the trapezoid inequality

$$(2.1) \quad \left| \frac{g(a) + g(b)}{2} - \frac{1}{b - a} \int_{a}^{b} g(t) dt \right| \\ \leq \frac{b - a}{2(p - 1)^{1/p} \pi_{p - 1}} \left(\frac{1}{b - a} \int_{a}^{b} |g'(t) - g'(a + b - t)|^{p} \right)^{1/p}.$$

In particular, for p = 2, we have [7]

$$(2.2) \quad \left| \frac{g(a) + g(b)}{2} - \frac{1}{b - a} \int_{a}^{b} g(t) dt \right| \\ \leq \frac{b - a}{2\pi} \left(\frac{1}{b - a} \int_{a}^{b} |g'(t) - g'(a + b - t)|^{2} \right)^{1/2}.$$

Proof. If $g \in C^1([a,b],\mathbb{R})$, then by taking

$$u(t) := \frac{g(t) + g(a+b-t)}{2} - \frac{g(a) + g(b)}{2}, \ t \in [a,b]$$

we have u(a) = u(b) = 0 and by (1.3) we have

$$(2.3) \int_{a}^{b} \left| \frac{g(t) + g(a+b-t)}{2} - \frac{g(a) + g(b)}{2} \right|^{p} \\ \leq \frac{(b-a)^{p}}{(p-1) 2^{p} \pi_{p-1}^{p}} \int_{a}^{b} \left| g'(t) - g'(a+b-t) \right|^{p},$$

namely

$$(2.4) \quad \left(\int_{a}^{b} \left| \frac{g(t) + g(a+b-t)}{2} - \frac{g(a) + g(b)}{2} \right|^{p} \right)^{1/p} \\ \leq \frac{(b-a)}{2(p-1)^{1/p} \pi_{p-1}} \left(\int_{a}^{b} \left| g'(t) - g'(a+b-t) \right|^{p} \right)^{1/p}.$$

By Hölder's integral inequality we have for $p, q > 1, \frac{1}{p} + \frac{1}{q} = 1$

$$(2.5) \int_{a}^{b} \left| \frac{g(t) + g(a+b-t)}{2} - \frac{g(a) + g(b)}{2} \right| dt$$

$$\leq \left(\int_{a}^{b} dt \right)^{1/q} \left(\int_{a}^{b} \left| \frac{g(t) + g(a+b-t)}{2} - \frac{g(a) + g(b)}{2} \right|^{p} dt \right)^{1/p}$$

$$= (b-a)^{1/q} \left(\int_{a}^{b} \left| \frac{g(t) + g(a+b-t)}{2} - \frac{g(a) + g(b)}{2} \right|^{p} dt \right)^{1/p}$$

$$= (b-a)^{1-1/p} \left(\int_{a}^{b} \left| \frac{g(t) + g(a+b-t)}{2} - \frac{g(a) + g(b)}{2} \right|^{p} dt \right)^{1/p}.$$

By making use of the properties of modulus and integral, we also have

(2.6)
$$\int_{a}^{b} \left| \frac{g(t) + g(a+b-t)}{2} - \frac{g(a) + g(b)}{2} \right| dt$$

$$\geq \left| \int_{a}^{b} \left[\frac{g(t) + g(a+b-t)}{2} - \frac{g(a) + g(b)}{2} \right] \right| dt$$

$$= \left| \int_{a}^{b} g(t) dt - \frac{g(a) + g(b)}{2} (b-a) \right|.$$

By making use of (2.4)-(2.6) we get the desired result (2.1).

Further, we have:

Proposition 2. Let $g \in C^1([a,b],\mathbb{R})$. Then for p > 1 we have the trapezoid inequality

$$(2.7) \quad \left| \frac{g(a) + g(b)}{2} - \frac{1}{b - a} \int_{a}^{b} g(t) dt \right| \\ \leq \frac{b - a}{(p - 1)^{1/p} \pi_{p - 1}} \left(\frac{1}{b - a} \int_{a}^{b} \left| g'(t) - \frac{g(b) - g(a)}{b - a} \right|^{p} dt \right)^{1/p}.$$

In particular, for p = 2, we have [7]

(2.8)
$$\left| \frac{g(a) + g(b)}{2} - \frac{1}{b - a} \int_{a}^{b} g(t) dt \right| \leq \frac{b - a}{\pi} \left(\frac{1}{b - a} \int_{a}^{b} \left| g'(t) - \frac{g(b) - g(a)}{b - a} \right|^{2} dt \right)^{1/2}.$$

Proof. If $g \in C^1([a,b],\mathbb{R})$, then by taking

$$u(t) := g(t) - \frac{g(a)(b-t) + g(b)(t-a)}{b-a}, \ t \in [a,b]$$

we have u(a) = u(b) = 0 and by (1.3) we have

(2.9)
$$\int_{a}^{b} \left| g(t) - \frac{g(a)(b-t) + g(b)(t-a)}{b-a} \right|^{p} dt \\ \leq \frac{(b-a)^{p}}{(p-1)\pi_{p-1}^{p}} \int_{a}^{b} \left| g'(t) - \frac{g(b) - g(a)}{b-a} \right|^{p} dt,$$

which gives that

$$(2.10) \quad \left(\int_{a}^{b} \left| g\left(t\right) - \frac{g\left(a\right)\left(b-t\right) + g\left(b\right)\left(t-a\right)}{b-a} \right|^{p} dt \right)^{1/p} \\ \leq \frac{b-a}{\left(p-1\right)^{1/p} \pi_{p-1}} \left(\int_{a}^{b} \left| g'\left(t\right) - \frac{g\left(b\right) - g\left(a\right)}{b-a} \right|^{p} dt \right)^{1/p}.$$

By Hölder's integral inequality we have for $p, q > 1, \frac{1}{p} + \frac{1}{q} = 1$ that

(2.11)
$$\int_{a}^{b} \left| g(t) - \frac{g(a)(b-t) + g(b)(t-a)}{b-a} \right| dt$$

$$\leq \left(\int_{a}^{b} dt \right)^{1/q} \left(\int_{a}^{b} \left| g(t) - \frac{g(a)(b-t) + g(b)(t-a)}{b-a} \right|^{p} dt \right)^{1/p}$$

$$= (b-a)^{1/q} \left(\int_{a}^{b} \left| g(t) - \frac{g(a)(b-t) + g(b)(t-a)}{b-a} \right|^{p} dt \right)^{1/p} .$$

By making use of the properties of modulus and integral, we also have

(2.12)
$$\int_{a}^{b} \left| g(t) - \frac{g(a)(b-t) + g(b)(t-a)}{b-a} \right| dt$$

$$\geq \left| \int_{a}^{b} \left[g(t) - \frac{g(a)(b-t) + g(b)(t-a)}{b-a} \right] dt \right|$$

$$= \left| \int_{a}^{b} g(t) dt - \frac{g(a) + g(b)}{2} (b-a) \right| .$$

By making use of (2.10)-(2.12) we get the desired result (2.7).

We also have:

Proposition 3. Let $g \in C([a,b],\mathbb{R})$. Then for p > 1 we have the inequality

$$(2.13) \quad \left| \frac{b+a}{2} \int_{a}^{b} g(s) ds - \int_{a}^{b} t g(t) dt \right|$$

$$\leq \frac{(b-a)^{2}}{(p-1)^{1/p} \pi_{p-1}} \left(\frac{1}{b-a} \int_{a}^{b} \left| g(t) - \frac{1}{b-a} \int_{a}^{b} g(s) ds \right|^{p} dt \right)^{1/p}.$$

In particular, for p = 2, we have [7]

$$(2.14) \quad \left| \frac{b+a}{2} \int_{a}^{b} g(s) \, ds - \int_{a}^{b} t g(t) \, dt \right| \\ \leq \frac{(b-a)^{2}}{\pi} \left[\frac{1}{b-a} \int_{a}^{b} g^{2}(t) \, dt - \left(\frac{1}{b-a} \int_{a}^{b} g(s) \, ds \right)^{2} \right]^{1/2}.$$

Proof. Assume that $g:[a,b]\to\mathbb{C}$ is continuous, then by taking

$$u\left(t\right):=\int_{a}^{t}g\left(s\right)ds-\frac{t-a}{b-a}\int_{a}^{b}g\left(s\right)ds,\ t\in\left[a,b\right]$$

we have u(a) = u(b) = 0, $u \in C^1([a, b], \mathbb{C})$ and by (1.3) we get

$$\int_{a}^{b} \left| \int_{a}^{t} g\left(s\right) ds - \frac{t-a}{b-a} \int_{a}^{b} g\left(s\right) ds \right|^{p} dt$$

$$\leq \frac{\left(b-a\right)^{p}}{\left(p-1\right) \pi_{p-1}^{p}} \int_{a}^{b} \left| g\left(t\right) - \frac{1}{b-a} \int_{a}^{b} g\left(s\right) ds \right|^{p} dt.$$

This is equivalent to

$$(2.15) \quad \left(\int_{a}^{b} \left| \int_{a}^{t} g(s) ds - \frac{t-a}{b-a} \int_{a}^{b} g(s) ds \right|^{p} dt \right)^{1/p}$$

$$\leq \frac{b-a}{(p-1)^{1/p} \pi_{p-1}} \left(\int_{a}^{b} \left| g(t) - \frac{1}{b-a} \int_{a}^{b} g(s) ds \right|^{p} dt \right)^{1/p}.$$

By Hölder's integral inequality we also have for $p,\,q>1,\,\frac{1}{p}+\frac{1}{q}=1$ that

$$(2.16) \quad (b-a)^{1/q} \left(\int_{a}^{b} \left| \int_{a}^{t} g(s) \, ds - \frac{t-a}{b-a} \int_{a}^{b} g(s) \, ds \right|^{p} dt \right)^{1/p}$$

$$\geq \int_{a}^{b} \left| \left(\int_{a}^{t} g(s) \, ds - \frac{t-a}{b-a} \int_{a}^{b} g(s) \, ds \right) \right| dt$$

$$\geq \left| \int_{a}^{b} \left(\int_{a}^{t} g(s) \, ds - \frac{t-a}{b-a} \int_{a}^{b} g(s) \, ds \right) dt \right|.$$

Observe that, integrating by parts, we have

$$(2.17) \int_{a}^{b} \left(\int_{a}^{t} g(s) ds - \frac{t-a}{b-a} \int_{a}^{b} g(s) ds \right) dt$$

$$= \int_{a}^{b} \left(\int_{a}^{t} g(s) ds \right) dt - \frac{b-a}{2} \int_{a}^{b} g(s) ds$$

$$= b \int_{a}^{b} g(s) ds - \int_{a}^{b} tg(t) dt - \frac{b-a}{2} \int_{a}^{b} g(s) ds$$

$$= \frac{b+a}{2} \int_{a}^{b} g(s) ds - \int_{a}^{b} tg(t) dt.$$

By making use of (2.15)-(2.17) we get the desired result (2.13).

3. Inequalities for the Čebyšev Functional

For two Lebesgue integrable functions $f, g: [a,b] \to \mathbb{R}$, consider the Čebyšev functional:

$$(3.1) \qquad C\left(f,g\right):=\frac{1}{b-a}\int_{a}^{b}f(t)g(t)dt-\frac{1}{\left(b-a\right)^{2}}\int_{a}^{b}f(t)dt\int_{a}^{b}g(t)dt.$$

In 1935, Grüss [9] showed that

$$|C(f,g)| \le \frac{1}{4} (M-m) (N-n),$$

provided that there exists the real numbers m, M, n, N such that

$$(3.3) m \le f(t) \le M \text{ and } n \le g(t) \le N \text{ for a.e. } t \in [a, b].$$

The constant $\frac{1}{4}$ is best possible in (3.1) in the sense that it cannot be replaced by a smaller quantity.

Another, however less known result, even though it was obtained by Čebyšev in 1882, [3], states that

$$|C(f,g)| \le \frac{1}{12} (b-a)^2 ||f'||_{\infty} ||g'||_{\infty},$$

provided that f', g' exist and are continuous on [a, b] and $||f'||_{\infty} = \sup_{t \in [a, b]} |f'(t)|$. The constant $\frac{1}{12}$ cannot be improved in the general case.

The Čebyšev inequality (3.4) also holds if $f, g : [a, b] \to \mathbb{R}$ are assumed to be absolutely continuous and $f', g' \in L_{\infty}[a, b]$ while $||f'||_{\infty} = \operatorname{essup}_{t \in [a, b]} |f'(t)|$.

A mixture between Grüss' result (3.2) and Čebyšev's one (3.4) is the following inequality obtained by Ostrowski in 1970, [13]:

$$|C(f,g)| \le \frac{1}{8} (b-a) (M-m) \|g'\|_{\infty},$$

provided that f is Lebesgue integrable and satisfies (3.3) while g is absolutely continuous and $g' \in L_{\infty}[a, b]$. The constant $\frac{1}{8}$ is best possible in (3.5).

The case of *euclidean norms* of the derivative was considered by A. Lupaş in [12] in which he proved that

$$|C(f,g)| \le \frac{1}{\pi^2} (b-a) ||f'||_2 ||g'||_2,$$

provided that f, g are absolutely continuous and f', $g' \in L_2[a, b]$. The constant $\frac{1}{\pi^2}$ is the best possible.

We have:

Theorem 1. If $f:[a,b] \to \mathbb{R}$ is continuous, p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$ and $g:[a,b] \to \mathbb{C}$ is absolutely continuous with $g' \in L_q[a,b]$, then

$$(3.7) \quad |C(f,g)| \le \frac{(b-a)^{1/p}}{(p-1)^{1/p} \pi_{p-1}} \left(\frac{1}{b-a} \int_{a}^{b} \left| f(t) - \frac{1}{b-a} \int_{a}^{b} f(s) \, ds \right|^{p} dt \right)^{1/p} \times \left(\int_{a}^{b} \left| g'(t) \right|^{q} dt \right)^{1/q}.$$

In particular, for p = q = 2, we get

$$(3.8) \quad |C(f,g)| \le \frac{(b-a)^{1/2}}{\pi} \left(\frac{1}{b-a} \int_{a}^{b} g^{2}(t) dt - \left(\frac{1}{b-a} \int_{a}^{b} g(s) ds \right)^{2} \right)^{1/2} \times \left(\int_{a}^{b} |g'(t)|^{2} dt \right)^{1/2}.$$

Proof. Integrating by parts, we have

$$\frac{1}{b-a} \int_{a}^{b} \left(\int_{a}^{x} f(t) dt - \frac{x-a}{b-a} \int_{a}^{b} f(s) ds \right) g'(x) dx$$

$$= \frac{1}{b-a} \left[\left(\int_{a}^{x} f(t) dt - \frac{x-a}{b-a} \int_{a}^{b} f(s) ds \right) g(x) \right]_{a}^{b}$$

$$- \int_{a}^{b} g(x) \left(f(x) - \frac{1}{b-a} \int_{a}^{b} f(s) ds \right) dx$$

$$= -\frac{1}{b-a} \int_{a}^{b} f(x) g(x) dx + \frac{1}{b-a} \int_{a}^{b} f(s) ds \frac{1}{b-a} \int_{a}^{b} g(x) dx,$$

which gives that

(3.9)
$$C(f,g) = \frac{1}{b-a} \int_a^b \left(\frac{x-a}{b-a} \int_a^b f(s) \, ds - \int_a^x f(t) \, dt \right) g'(x) \, dx.$$

Using Hölder's integral inequality for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$ we have

$$(3.10) \quad |C(f,g)| = \left| \frac{1}{b-a} \int_{a}^{b} \left(\frac{x-a}{b-a} \int_{a}^{b} f(s) \, ds - \int_{a}^{x} f(t) \, dt \right) g'(x) \, dx \right|$$

$$\leq \frac{1}{b-a} \int_{a}^{b} \left| \frac{x-a}{b-a} \int_{a}^{b} f(s) \, ds - \int_{a}^{x} f(t) \, dt \right| |g'(x)| \, dx$$

$$\leq \frac{1}{b-a} \left(\int_{a}^{b} \left| \frac{x-a}{b-a} \int_{a}^{b} f(s) \, ds - \int_{a}^{x} f(t) \, dt \right|^{p} dx \right)^{1/p} \left(\int_{a}^{b} |g'(x)|^{1/q} \, dx \right)^{1/q}$$

$$=: I$$

Using (2.15) we have

$$(3.11) \quad I \leq \frac{1}{b-a} \left(\int_{a}^{b} \left| \int_{a}^{t} f(s) \, ds - \frac{t-a}{b-a} \int_{a}^{b} f(s) \, ds \right|^{p} dt \right)^{1/p} \\ \times \left(\int_{a}^{b} \left| g'(x) \right|^{q} dx \right)^{1/q} \\ \leq \frac{1}{b-a} \frac{b-a}{(p-1)^{1/p} \pi_{p-1}} \left(\int_{a}^{b} \left| f(t) - \frac{1}{b-a} \int_{a}^{b} f(s) \, ds \right|^{p} dt \right)^{1/p} \\ \times \left(\int_{a}^{b} \left| g'(x) \right|^{q} dx \right)^{1/q} \\ = \frac{(b-a)^{1/p}}{(p-1)^{1/p} \pi_{p-1}} \left(\frac{1}{b-a} \int_{a}^{b} \left| f(t) - \frac{1}{b-a} \int_{a}^{b} f(s) \, ds \right|^{p} dt \right)^{1/p} \\ \times \left(\int_{a}^{b} \left| g'(x) \right|^{q} dx \right)^{1/q} \\ \times \left(\int_{a}^{b} \left| g'(x) \right|^{q} dx \right)^{1/q}$$

for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, which proves (3.7).

This results can be used to obtain various inequalities by taking particular examples of functions f and g as follows.

We have the following trapezoid type inequality:

Proposition 4. Assume that $g:[a,b]\to\mathbb{C}$ has an absolutely continuous derivative with $g''\in L_q[a,b]$, where p,q>1 and $\frac{1}{p}+\frac{1}{q}=1$. Then

$$(3.12) \quad \left| \frac{g(a) + g(b)}{2} - \frac{1}{b - a} \int_{a}^{b} g(t) dt \right| \\ \leq \frac{b - a}{2(p - 1)^{1/p} (p + 1)^{1/p} \pi_{p - 1}} \left(\int_{a}^{b} |g''(t)|^{q} dt \right)^{1/q}.$$

Proof. We use the following identity that can be proved integrating by parts

$$\frac{g(a) + g(b)}{2} - \frac{1}{b - a} \int_{a}^{b} g(t) dt = \frac{1}{b - a} \int_{a}^{b} \left(t - \frac{a + b}{2} \right) g'(t) dt$$
$$= C \left(\ell - \frac{a + b}{2}, g' \right),$$

where $\ell(t) = t, t \in [a, b]$. Using (3.7) we have

$$\begin{split} \left| C \left(\ell - \frac{a+b}{2}, g' \right) \right| \\ & \leq \frac{(b-a)^{1/p}}{(p-1)^{1/p} \pi_{p-1}} \left(\frac{1}{b-a} \int_a^b \left| t - \frac{a+b}{2} - \frac{1}{b-a} \int_a^b \left(s - \frac{a+b}{2} \right) ds \right|^p dt \right)^{1/p} \\ & \times \left(\int_a^b \left| g''(x) \right|^q dx \right)^{1/q} \\ & = \frac{(b-a)^{1/p}}{(p-1)^{1/p} \pi_{p-1}} \left(\frac{1}{b-a} \int_a^b \left| t - \frac{a+b}{2} \right|^p dt \right)^{1/p} \left(\int_a^b \left| g''(x) \right|^q dx \right)^{1/q} \\ & = \frac{b-a}{2 \left(p-1 \right)^{1/p} \left(p+1 \right)^{1/p} \pi_{p-1}} \left(\int_a^b \left| g''(x) \right|^q dx \right)^{1/q}, \end{split}$$

which proves the desired inequality (3.12).

Let $\Phi:[m,M]\subset\mathbb{R}\to\mathbb{R}$ be a differentiable convex function on (m,M) and $f:[a,b]\to[m,M]$ be absolutely continuous so that $\Phi\circ f,\,f,\,\Phi'\circ f,\,(\Phi'\circ f)\,f\in L\,[a,b]$. If $f'\in L_\infty\,[a,b]$, then we have the Jensen's reverse inequality [6]

$$(3.13) \quad 0 \leq \frac{1}{b-a} \int_{a}^{b} \left(\Phi \circ f\right)(t) dt - \Phi\left(\frac{1}{b-a} \int_{a}^{b} f(t) dt\right)$$

$$\leq \frac{1}{b-a} \int_{a}^{b} \left(\Phi' \circ f\right)(t) f(t) dt - \frac{1}{b-a} \int_{a}^{b} \Phi' \circ f(t) dt \frac{1}{b-a} \int_{a}^{b} f(t) dt$$

$$= C\left(\Phi' \circ f, f\right).$$

We have the following reverse of Jensen inequality:

Proposition 5. Let $\Phi:[m,M]\subset\mathbb{R}\to\mathbb{R}$ be a differentiable convex function on (m,M) and $f:[a,b]\to[m,M]$ be absolutely continuous so that $\Phi\circ f,\ f,\ \Phi'\circ f,\ (\Phi'\circ f)\ f\in L\ [a,b]$.

(i) If $f' \in L_q[a, b]$, $\Phi' \circ f \in L_p[a, b]$ with p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$, then

$$(3.14) \quad 0 \leq \frac{1}{b-a} \int_{a}^{b} (\Phi \circ f)(t) dt - \Phi \left(\frac{1}{b-a} \int_{a}^{b} f(t) dt \right)$$

$$\leq \frac{(b-a)^{1/p}}{(p-1)^{1/p} \pi_{p-1}} \left(\frac{1}{b-a} \int_{a}^{b} \left| (\Phi' \circ f)(t) - \frac{1}{b-a} \int_{a}^{b} (\Phi' \circ f)(s) ds \right|^{p} dt \right)^{1/p}$$

$$\times \left(\int_{a}^{b} \left| f'(t) \right|^{q} dt \right)^{1/q}.$$

(ii) If Φ is twice differentiable and $(\Phi'' \circ f) f' \in L_q[a,b]$ with p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$, then

$$(3.15) \quad 0 \leq \frac{1}{b-a} \int_{a}^{b} (\Phi \circ f)(t) dt - \Phi \left(\frac{1}{b-a} \int_{a}^{b} f(t) dt \right)$$

$$\leq \frac{(b-a)^{1/p}}{(p-1)^{1/p} \pi_{p-1}} \left(\frac{1}{b-a} \int_{a}^{b} \left| f(t) - \frac{1}{b-a} \int_{a}^{b} f(s) ds \right|^{p} dt \right)^{1/p}$$

$$\times \left(\int_{a}^{b} \left| (\Phi'' \circ f)(t) f'(t) \right|^{q} dt \right)^{1/q}.$$

The proof follows by Theorem 1 for $C(\Phi' \circ f, f)$ and the inequality (3.13). We have the following mid-point type inequalities:

Corollary 1. Let $\Phi : [a,b] \subset \mathbb{R} \to \mathbb{R}$ be a differentiable convex function on (a,b). (i) If $\Phi' \in L_p[a,b]$ with p > 1, then

$$(3.16) \quad 0 \le \frac{1}{b-a} \int_{a}^{b} \Phi(t) dt - \Phi\left(\frac{a+b}{2}\right)$$

$$\le \frac{b-a}{(p-1)^{1/p} \pi_{p-1}} \left(\frac{1}{b-a} \int_{a}^{b} \left| \Phi'(t) - \frac{\Phi(b) - \Phi(a)}{b-a} \right|^{p} dt \right)^{1/p}.$$

(ii) If Φ is twice differentiable and $\Phi'' \in L_q[a,b]$ with p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$,

$$(3.17) \quad 0 \le \frac{1}{b-a} \int_{a}^{b} \Phi(t) dt - \Phi\left(\frac{a+b}{2}\right)$$

$$\le \frac{b-a}{2(p-1)^{1/p} (p+1)^{1/p} \pi_{p-1}} \left(\int_{a}^{b} |\Phi''(t)|^{q} dt\right)^{1/q}.$$

References

- M. W. Alomari, On Beesack-Wirtinger Inequality, Results Math., Online First 2017 Springer International Publishing DOI 10.1007/s00025-016-0644-6.
- [2] P. R. Beesack, Extensions of Wirtinger's inequality. Trans. R. Soc. Can. 53, 21-30 (1959)
- [3] P. L. Chebyshev, Sur les expressions approximatives des intègrals définis par les outres prises entre les même limites, *Proc. Math. Soc. Charkov*, **2** (1882), 93-98.

- [4] J. B. Diaz and F. T. Metcalf, Variations on Wirtinger's inequality, in: *Inequalities Academic Press*, New York, 1967, pp. 79–103.
- [5] P. Drábek and R. Manásevich, On the closed solution to some nonhomogeneous eigenvalue problems with p-Laplacian, Differential Integral Equations 12 (1999) 773–788.
- [6] S. S. Dragomir, A Grüss type inequality for isotonic linear functionals and applications. Demonstratio Math. 36 (2003), No. 3, 551-562. Preprint RGMIA Res. Rep. Coll. 5 (2002), Suplement, Art. 12. [Online http://rgmia.org/papers/v5e/GTIILFApp.pdf].
- [7] S. S. Dragomir, Some integral inequalities related to Wirtinger's result, Preprint RGMIA Res. Rep. Coll. 21 (2018), Art.
- [8] R. Giova, An estimate for the best constant in the L_p -Wirtinger inequality with weights, J. Func. Spaces Appl., Volume 6, Number 1 (2008), 1-16.
- [9] G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_a^b f(x)g(x)dx \frac{1}{(b-a)^2} \int_a^b f(x)dx \int_a^b g(x)dx$, Math. Z., 39(1935), 215-226.
- [10] J. Jaroš, On an integral inequality of the Wirtinger type, Appl. Math. Letters, 24 (2011) 1389–1392.
- [11] C. F. Lee, C. C. Yeh, C. H. Hong and R. P. Agarwal, Lyapunov and Wirtinger inequalities, Appl. Math. Lett. 17 (2004) 847–853.
- [12] A. Lupaş, The best constant in an integral inequality, Mathematica (Cluj, Romania), 15(38)(2) (1973), 219-222.
- [13] A. M. Ostrowski, On an integral inequality, Aequat. Math., 4 (1970), 358-373.
- [14] T. Ricciardi, A sharp weighted Wirtinger inequality, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 8 (1) (2005), 259–267.
- [15] C. A. Swanson, Wirtinger's inequality, SIAM J. Math. Anal. 9 (1978) 484-491.
- [16] S.-E. Takahasi, T. Miura and T. Hayata, On Wirtinger's inequality and its elementary proof. Math. Inequal. Appl. 10 (2007), no. 2, 311–319.
- [17] S. Takeuchi, Generalized elliptic functions and their application to a nonlinear eigenvalue problem with p-Laplacian, 2010, pp. 1–17. arXiv:1001.0377v2.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA