
WEIGHTED INTEGRAL INEQUALITIES RELATED TO OPIAL�S
RESULT

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish some weighted versions of certain Opial
type integral inequalities. Applications related to the trapezoid unweighted
and weighted inequalities and to Fejér�s inequality for convex functions are
also provided.

1. Introduction

We recall the following Opial type inequalities:

Theorem 1. Assume that u : [a; b] � R! R is an absolutely continuous function
on the interval [a; b] and such that u0 2 L2 [a; b] :

(i) If u (a) = u (b) = 0; then

(1.1)
Z b

a

ju (t)u0 (t)j dt � 1

4
(b� a)

Z b

a

ju0 (t)j2 dt;

with equality if and only if

u (t) =

8<: c (t� a) if a � t � a+b
2 ;

c (b� t) if a+b2 < t � b
where c is an arbitrary constant;

(ii) If u (a) = 0; then

(1.2)
Z b

a

ju (t)u0 (t)j dt � 1

2
(b� a)

Z b

a

ju0 (t)j2 dt;

with equality if and only if u (t) = c (t� a) for some constant c;
(iii) If

R b
a
u (t) dt = 0; then the inequality (1.1) holds with equality if and only if

u (t) = c

�
t� a+ b

2

�
for any constant c:

The inequality (1.1) was obtained by Olech in [6] in which he gave a simpli�ed
proof of an inequality originally due in a slightly less general form to Zdzislaw Opial
[7].
Embedded in Olech�s proof is the half-interval form of Opial�s inequality, also

discovered by Beesack [1], which is satis�ed by those u vanishing only at a.
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2 S. S. DRAGOMIR

The inequality (1.1) in the case (iii), namely in the case that u satis�es the
condition

R b
a
u (t) dt = 0 was obtained by Brown and Plum in [4].

As mentioned in [4] the inequality (1.1) also holds if u (a) + u (b) = 0:
In 1969, D. W. Boyd [2] obtained the following generalization of Opial inequality.
Let

(1.3) K (p) :=

8><>:
1
2 if p = 1;
2�p
2p

�
1
p

�2(p�1)
I�p (p) if p 2 (1; 2) ;

4
�2 if p = 2;

where

I (p) :=

Z 1

0

�
1 +

2 (p� 1)
2� p t

��2
[1 + (p� 1) t]

1�p
p dt:

We have:

Theorem 2. Assume that u : [a; b] ! R is absolutely continuous on [a; b] and
p 2 [1; 2] :

(i) If either u (a) = 0 or u (b) = 0; then [2]

(1.4)
Z b

a

ju (t)u0 (t)jp � K (p) (b� a)
 Z b

a

ju0 (t)j2 dt
!p
:

(ii) If u (a) = u (b) = 0; then

(1.5)
Z b

a

ju (t)u0 (t)jp � 1

2
K (p) (b� a)

 Z b

a

ju0 (t)j2 dt
!p
:

As observed in [3], the inequality (1.5) follows from (1.4) written on the intervals�
a; a+b2

�
and

�
a+b
2 ; b

�
and adding the corresponding inequalities.

In this paper we establish some weighted versions of the Opial type integral
inequalities above. Applications related to the trapezoid unweighted and weighted
inequalities and to Fejér�s inequality for convex functions are also provided.

2. Some Composite Inequalities

We have:

Theorem 3. Let g : [a; b] ! [g (a) ; g (b)] be a continuous strictly increasing func-
tion that is of class C1 on (a; b) : Assume that f : [a; b] � R! R is an absolutely
continuous function on the interval [a; b] and such that f 0

[g0]1=2
2 L2 [a; b] :

(i) If f (a) = f (b) = 0; then

(2.1)
Z b

a

jf (t) f 0 (t)j dt � 1

4
[g (b)� g (a)]

Z b

a

[f 0 (t)]
2

g0 (t)
dt;

with equality if and only if

f (t) =

8>><>>:
c (g (t)� g (a)) if a � t � g�1

�
g(a)+g(b)

2

�
;

c (g (b)� g (t)) if g�1
�
g(a)+g(b)

2

�
< t � b

where c is an arbitrary constant;
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(ii) If f (a) = 0; then

(2.2)
Z b

a

jf (t) f 0 (t)j dt � 1

2
[g (b)� g (a)]

Z b

a

[f 0 (t)]
2

g0 (t)
dt;

with equality if and only if f (t) = c (g (t)� g (a)) ; t 2 [a; b] for some con-
stant c;

(iii) If
R b
a
f (t) g0 (t) dt = 0; then the inequality (1.1) holds with equality if and

only if

f (t) = c

�
g (t)� g (a) + g (b)

2

�
; t 2 [a; b]

for any constant c:

Proof. (i) Consider the function u := f � g�1 : [g (a) ; g (b)] ! R. The function u
is absolutely continuous on [g (a) ; g (b)] ; u (g (a)) = f � g�1 (g (a)) = f (a) = 0 and
u (g (b)) = f � g�1 (g (b)) = f (b) = 0:
Using the chain rule and the derivative of inverse functions we have

(2.3)
�
f � g�1

�0
(z) =

�
f 0 � g�1

�
(z)
�
g�1

�0
(z) =

�
f 0 � g�1

�
(z)

(g0 � g�1) (z)

for almost every (a.e.) z 2 [g (a) ; g (b)] :
If we apply the inequality (1.1) for the function u = f � g�1 on the interval

[g (a) ; g (b)] ; then we get

(2.4)
Z g(b)

g(a)

�����f � g�1 (z)
�
f 0 � g�1

�
(z)

(g0 � g�1) (z)

����� dz
� 1

4
[g (b)� g (a)]

Z g(b)

g(a)

�����
�
f 0 � g�1

�
(z)

(g0 � g�1) (z)

�����
2

dz:

If we make the change of variable t = g�1 (z) ; z 2 [g (a) ; g (b)] ; then z = g (t) ;
dz = g0 (t) dt;Z g(b)

g(a)

�����f � g�1 (z)
�
f 0 � g�1

�
(z)

(g0 � g�1) (z)

����� dz =
Z b

a

����f (t) f 0 (t)g0 (t)

���� g0 (t) dt
=

Z b

a

jf (t) f 0 (t)j dt

and Z g(b)

g(a)

�����
�
f 0 � g�1

�
(z)

(g0 � g�1) (z)

�����
2

dz =

Z b

a

����f 0 (t)g0 (t)

����2 g0 (t) dt = Z b

a

[f 0 (t)]

g0 (t)

2

dt:

By utilising (2.4), we then get the desired inequality (2.1).
Now, by Theorem 1, the equality case holds in (2.4) i¤

f � g�1 (z) =

8<: c (z � g (a)) if g (a) � z � g(a)+g(b)
2 ;

c (g (b)� z) if g(a)+g(b)2 < z � g (b) :
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If we take in this equality z = g (t) ; t 2 [a; b] ; then we have

f (t) =

8<: c (g (t)� g (a)) if g (a) � g (t) � g(a)+g(b)
2 ;

c (g (b)� g (t)) if g(a)+g(b)2 < g (t) � g (b)

=

8>><>>:
c (g (t)� g (a)) if a � t � g�1

�
g(a)+g(b)

2

�
;

c (g (b)� g (t)) if g�1
�
g(a)+g(b)

2

�
< t � b

;

and the case of equality is proved.
(ii) and (iii) follow in a similar way and the details are omitted. �

In what follows we consider the identity function ` (t) = t:
a). If we take g : [a; b] � (0;1) ! R, g (t) = ln t and assume that f is an

absolutely continuous function with f(a) = f(b) = 0 and `1=2f 0 2 L2 [a; b] ; then by
(2.1) we get

(2.5)
Z b

a

jf (t) f 0 (t)j dt � 1

4
ln

�
b

a

�Z b

a

t [f 0 (t)]
2
dt;

with equality if and only if

f (t) =

8<: c ln
�
t
a

�
if a � t �

p
ab;

c ln
�
b
t

�
if
p
ab < t � b:

where c is an arbitrary constant.
If f (a) = 0; then by (2.2)

(2.6)
Z b

a

jf (t) f 0 (t)j dt � 1

2
ln

�
b

a

�Z b

a

t [f 0 (t)]
2
dt;

with equality if and only if f (t) = c ln
�
t
a

�
; t 2 [a; b] for some constant c:

If
R b
a
f(t)
t dt = 0; then by (2.1) we have

(2.7)
Z b

a

jf (t) f 0 (t)j dt � 1

4
ln

�
b

a

�Z b

a

t [f 0 (t)]
2
dt;

with equality i¤

f (t) = c ln

�
tp
ab

�
; t 2 [a; b] :

b). If we take g : [a; b] � R ! (0;1), g (t) = exp t and assume that f is an
absolutely continuous function with f(a) = f(b) = 0 and exp

�
� 1
2`
�
f 0 2 L2 [a; b] ;

then by (2.1) we get

(2.8)
Z b

a

jf (t) f 0 (t)j dt � 1

4
(exp b� exp a)

Z b

a

exp (�t) [f 0 (t)]2 dt;

with equality if and only if

f (t) =

8>><>>:
c (exp t� exp a) if a � t � ln

�
exp a+exp b

2

�
;

c (exp b� exp t) if ln
�
exp a+exp b

2

�
< t � b:
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If f (a) = 0; then by (2.2)

(2.9)
Z b

a

jf (t) f 0 (t)j dt � 1

2
(exp b� exp a)

Z b

a

exp (�t) [f 0 (t)]2 dt;

with equality if and only if

f (t) = c (exp t� exp a) ; t 2 [a; b] :

If
R b
a
f (t) exp tdt = 0; then the inequality (2.8) holds with equality if and only if

f (t) = c

�
exp t� exp a+ exp b

2

�
; t 2 [a; b] :

c). If we take g : [a; b] � (0;1) ! R, g (t) = tr; r > 0 and assume that f is
an absolutely continuous function with f(a) = f(b) = 0 and `(1�r)=2f 0 2 L2 [a; b] ;
then by (2.1) we get

(2.10)
Z b

a

jf (t) f 0 (t)j dt � 1

4r
(br � ar)

Z b

a

[f 0 (t)]
2

tr�1
dt;

with equality i¤

f (t) =

8><>:
c (tr � ar) if a � t �

�
ar+br

2

�1=r
;

c (br � tr) if
�
ar+br

2

�1=r
< t � b:

If f (a) = 0; then

(2.11)
Z b

a

jf (t) f 0 (t)j dt � 1

2r
(br � ar)

Z b

a

[f 0 (t)]
2

tr�1
dt;

with equality if and only if f (t) = c (tr � ar) ; t 2 [a; b] for some constant c:
If
R b
a
f (t) tr�1dt = 0; then the inequality (2.10) holds with equality if and only

if

f (t) = c

�
tr � a

r + br

2

�
; t 2 [a; b]

for any constant c:
If w : [a; b]! R is continuous and positive on the interval [a; b] ; then the function

W : [a; b]! [0;1); W (x) :=
R x
a
w (s) ds is strictly increasing and di¤erentiable on

(a; b) : We have W 0 (x) = w (x) for any x 2 (a; b) :

Corollary 1. Assume that w : [a; b] ! (0;1) is continuous on [a; b] and that
f : [a; b] � R! R is an absolutely continuous function on the interval [a; b] and
such that f 0

w1=2
2 L2 [a; b] :

(i) If f (a) = f (b) = 0; then

(2.12)
Z b

a

jf (t) f 0 (t)j dt � 1

4

Z b

a

w (s) ds

Z b

a

[f 0 (t)]
2

w (t)
dt;

with equality if and only if

f (t) =

8>><>>:
c
R t
a
w (s) ds if a � t �W�1

�
1
2

R b
a
w (s) ds

�
;

c
R b
t
w (s) ds if W�1

�
1
2

R b
a
w (s) ds

�
< t � b

where c is an arbitrary constant;
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(ii) If f (a) = 0; then

(2.13)
Z b

a

jf (t) f 0 (t)j dt � 1

2

Z b

a

w (s) ds

Z b

a

[f 0 (t)]
2

w (t)
dt;

with equality if and only if f (t) = c
R t
a
w (s) ds; t 2 [a; b] for some constant

c;

(iii) If
R b
a
f (t)w (t) dt = 0; then the inequality (2.1) holds with equality if and

only if

f (t) = c

 Z t

a

w (s) ds� 1
2

Z b

a

w (s) ds

!
; t 2 [a; b]

for any constant c:

Remark 1. The inequalities (2.12) and (2.13) were obtained by a di¤erent argu-
ment and for w = 1

p in [1].

Further we have:

Theorem 4. Let g : [a; b] ! [g (a) ; g (b)] be a continuous strictly increasing func-
tion that is of class C1 on (a; b) : Assume that f : [a; b] � R! R is an ab-
solutely continuous function on the interval [a; b] and such that f 0

[g0]1=2
2 L2 [a; b]

and p 2 [1; 2] :
(i) If f (a) = f (b) = 0; then

(2.14)
Z b

a

jf (t) f 0 (t)jp

[g0 (t)]
p�1 dt � 1

2
[g (b)� g (a)]K (p)

 Z b

a

[f 0 (t)]
2

g0 (t)
dt

!p
;

where K (p) is de�ned by (1.3).
(ii) If either f (a) = 0 or f (b) = 0; then

(2.15)
Z b

a

jf (t) f 0 (t)jp

[g0 (t)]
p�1 dt � [g (b)� g (a)]K (p)

 Z b

a

[f 0 (t)]
2

g0 (t)
dt

!p
:

Proof. (i) Consider the function u := f � g�1 : [g (a) ; g (b)] ! R. The function u
is absolutely continuous on [g (a) ; g (b)] ; u (g (a)) = f � g�1 (g (a)) = f (a) = 0 and
u (g (b)) = f � g�1 (g (b)) = f (b) = 0:
If we apply the inequality (1.5) for the function u = f � g�1 on the interval

[g (a) ; g (b)] ; then we get

(2.16)
Z g(b)

g(a)

�����f � g�1 (z)
�
f 0 � g�1

�
(z)

(g0 � g�1) (z)

�����
p

dz

� 1

2
[g (b)� g (a)]K (p)

0@Z g(b)

g(a)

�����
�
f 0 � g�1

�
(z)

(g0 � g�1) (z)

�����
2

dz

1Ap

:
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If we make the change of variable t = g�1 (z) ; z 2 [g (a) ; g (b)] ; then z = g (t) ;
dz = g0 (t) dt;Z g(b)

g(a)

�����f � g�1 (z)
�
f 0 � g�1

�
(z)

(g0 � g�1) (z)

�����
p

dz =

Z b

a

����f (t) f 0 (t)g0 (t)

����p g0 (t) dt
=

Z b

a

jf (t) f 0 (t)jp

[g0 (t)]
p�1 dt

and Z g(b)

g(a)

�����
�
f 0 � g�1

�
(z)

(g0 � g�1) (z)

�����
2

dz =

Z b

a

����f 0 (t)g0 (t)

����2 g0 (t) dt = Z b

a

[f 0 (t)]

g0 (t)

2

dt:

By utilising (2.16) we get the desired result (2.14).
(ii) Follows in a similar way from (1.4). �

Corollary 2. Assume that w : [a; b] ! (0;1) is continuous on [a; b] and that
f : [a; b] � R! R is an absolutely continuous function on the interval [a; b] and
such that f 0

w1=2
2 L2 [a; b] :

(i) If f (a) = f (b) = 0; then

(2.17)
Z b

a

jf (t) f 0 (t)jp

wp�1 (t)
dt � 1

2
K (p)

Z b

a

w (t) dt

 Z b

a

[f 0 (t)]
2

w (t)
dt

!p
:

(ii) If either f (a) = 0 or f (b) = 0; then

(2.18)
Z b

a

jf (t) f 0 (t)jp

wp�1 (t)
dt � K (p)

Z b

a

w (t) dt

 Z b

a

[f 0 (t)]
2

w (t)
dt

!p
:

3. Applications

We have:

Proposition 1. Assume that w : [a; b] ! (0;1) is continuous on [a; b] and that
h : [a; b] � R! R is an absolutely continuous function on the interval [a; b] with
h (b) 6= h (a) and such that h0

w1=2
2 L2 [a; b] : Then

(3.1)

�����h (a) + h (b)2
� 1R b

a
w (s) ds

Z b

a

w (s)h (s) ds

�����
� 1

4

R b
a
w (s) ds

jh (b)� h (a)j

Z b

a

[h0 (t)]
2

w (t)
dt:

Proof. Consider the function

f (t) := h (t)� 1R b
a
w (s) ds

Z b

a

w (s)h (s) ds; t 2 [a; b] :

Then Z b

a

 
h (t)� 1R b

a
w (s) ds

Z b

a

w (s)h (s) ds

!
w (t) dt = 0;
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and by the statement (iii) of Corollary 1 we haveZ b

a

�����
 
h (t)� 1R b

a
w (s) ds

Z b

a

w (s)h (s) ds

!
h0 (t)

����� dt(3.2)

� 1

4

Z b

a

w (s) ds

Z b

a

[h0 (t)]
2

w (t)
dt:

By the modulus and integral properties, we also haveZ b

a

�����
 
h (t)� 1R b

a
w (s) ds

Z b

a

w (s)h (s) ds

!
h0 (t)

����� dt(3.3)

�
�����
Z b

a

 
h (t)� 1R b

a
w (s) ds

Z b

a

w (s)h (s) ds

!
h0 (t) dt

�����
=

�����
Z b

a

h (t)h0 (t) dt� 1R b
a
w (s) ds

Z b

a

w (s)h (s) ds

Z b

a

h0 (t) dt

�����
=

�����12 �h2 (b)� h2 (a)�� 1R b
a
w (s) ds

Z b

a

w (s)h (s) ds (h (b)� h (a))
�����

= jh (b)� h (a)j
�����h (a) + h (b)2

� 1R b
a
w (s) ds

Z b

a

w (s)h (s) ds

����� :
By utilising (3.2) and (3.3) we get the desired result (3.1). �

Corollary 3. Assume that h : [a; b] � R! R is an absolutely continuous function
on the interval [a; b] with h (b) 6= h (a) and such that h0 2 L2 [a; b] : Then

(3.4)

�����h (a) + h (b)2
� 1

b� a

Z b

a

h (s) ds

�����
� 1

4

b� a
jh (b)� h (a)j

Z b

a

[h0 (t)]
2
dt:

In 1906, Fejér [5], while studying trigonometric polynomials, obtained the fol-
lowing inequalities which generalize that of Hermite & Hadamard:

Theorem 5 (Fejér�s Inequality). Consider the integral
R b
a
h (x)w (x) dx, where h

is a convex function in the interval (a; b) and w is a positive function in the same
interval such that

w (x) = w (a+ b� x) ; for any x 2 [a; b]

i.e., y = w (x) is a symmetric curve with respect to the straight line which contains
the point

�
1
2 (a+ b) ; 0

�
and is normal to the x-axis. Under those conditions the

following inequalities are valid:

(3.5) h

�
a+ b

2

�
� 1R b

a
w (x) dx

Z b

a

h (x)w (x) dx � h (a) + h (b)

2
:

If h is concave on (a; b), then the inequalities reverse in (3.5).
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If w � 1; then (3.5) becomes the well known Hermite-Hadamard inequality

(3.6) h

�
a+ b

2

�
� 1

b� a

Z b

a

h (x) dx � h (a) + h (b)

2
:

We have the following reverse of Fejér�s inequality:

Corollary 4. Let h : [a; b] ! R be a convex function with h (b) 6= h (a) and w :

[a; b] ! (0;1) be continuous, symmetrical on [a; b] and such that h0

w1=2
2 L2 [a; b] :

Then

(3.7) 0 � h (a) + h (b)

2
� 1R b

a
w (s) ds

Z b

a

w (t)h (t) dt

� 1

4

R b
a
w (s) ds

jh (b)� h (a)j

Z b

a

[h0 (t)]
2

w (t)
dt:

In particular, we have the following reverse of the Hermite-Hadamard inequality

(3.8) 0 � h (a) + h (b)

2
� 1

b� a

Z b

a

h (t) dt

� 1

4

b� a
jh (b)� h (a)j

Z b

a

[h0 (t)]
2
dt:
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