
GENERALIZATIONS OF OPIAL�S INEQUALITIES FOR TWO
FUNCTIONS AND APPLICATIONS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish some generalizations of Opial�s inequal-
ities for two functions. Applications related to the trapezoid weighted inequal-
ities and to Fejér�s inequality for convex functions are also provided. Some
Grüss�type inequalities are also given.

1. Introduction

We recall the following Opial type inequalities:

Theorem 1. Assume that u : [a; b] � R! R is an absolutely continuous function
on the interval [a; b] and such that u0 2 L2 [a; b] :

(i) If u (a) = u (b) = 0; then

(1.1)
Z b

a

ju (t)u0 (t)j dt � 1

4
(b� a)

Z b

a

ju0 (t)j2 dt;

with equality if and only if

u (t) =

8<: c (t� a) if a � t � a+b
2 ;

c (b� t) if a+b2 < t � b;
where c is an arbitrary constant;

(ii) If u (a) = 0; then

(1.2)
Z b

a

ju (t)u0 (t)j dt � 1

2
(b� a)

Z b

a

ju0 (t)j2 dt;

with equality if and only if u (t) = c (t� a) for some constant c:

The inequality (1.1) was obtained by Olech in [9] in which he gave a simpli�ed
proof of an inequality originally due in a slightly less general form to Zdzislaw Opial
[10].
Embedded in Olech�s proof is the half-interval form of Opial�s inequality, also

discovered by Beesack [1], which is satis�ed by those u vanishing only at a.
For various proofs of the above inequalities, see [5]-[8] and [12].
In this paper we establish some generalizations of Opial�s inequalities for two

functions. Applications related to the trapezoid weighted inequalities and to Fejér�s
inequality for convex functions are also provided. Some Grüss�type inequalities are
also given.

1991 Mathematics Subject Classi�cation. 26D15; 26D10.
Key words and phrases. Opial�s inequality, Trapezoid inequality, Fejér�s inequality, Grüss�

inequality.

1

e5011831
Typewritten Text
Received 14/06/18

e5011831
Typewritten Text
RGMIA Res. Rep. Coll. 21 (2018), Art. 64, 13 pp.



2 S. S. DRAGOMIR

2. The Main Results

We have:

Theorem 2. Assume that f; g : [a; b]! C are absolutely continuous on [a; b] with
f 0; g0 2 L2 [a; b] :

(i) If g (a) = 0; then

Z b

a

jf 0 (t) g (t)j dt �
 Z b

a

(t� a) jf 0 (t)j2 dt
!1=2 Z b

a

(b� t) jg0 (t)j2 dt
!1=2

(2.1)

� 1

2

"Z b

a

(t� a) jf 0 (t)j2 dt+
Z b

a

(b� t) jg0 (t)j2 dt
#
:

(ii) If g (b) = 0, then

Z b

a

jf 0 (t) g (t)j dt �
 Z b

a

(b� t) jf 0 (t)j2 dt
!1=2 Z b

a

(t� a) jg0 (t)j2 dt
!1=2

(2.2)

� 1

2

"Z b

a

(b� t) jf 0 (t)j2 dt+
Z b

a

(t� a) jg0 (t)j2 dt
#
:

(iii) If g (a) = g (b) = 0, then

(2.3)
Z b

a

jf 0 (t) g (t)j dt

�
 Z b

a

K (t) jf 0 (t)j2 dt
!1=2 Z b

a

����a+ b2 � t
���� jg0 (t)j2 dt

!1=2

� 1

2

"Z b

a

K (t) jf 0 (t)j2 dt+
Z b

a

����a+ b2 � t
���� jg0 (t)j2 dt

#
;

where

K (t) :=

8<: t� a if a � t � a+b
2 ;

b� t if a+b2 < t � b:

Proof. (i) Since g (a) = 0; then g (t) =
R t
a
g0 (s) ds for t 2 [a; b] : We have

Z b

a

jf 0 (t) g (t)j dt =
Z b

a

jf 0 (t)j jg (t)j dt =
Z b

a

(t� a)1=2 jf 0 (t)j (t� a)�1=2 jg (t)j dt

=

Z b

a

(t� a)1=2 jf 0 (t)j (t� a)�1=2
����Z t

a

g0 (s) ds

���� dt =: A:
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Using Cauchy-Bunyakovsky-Schwarz (CBS) inequality, we have

(2.4) A �
 Z b

a

h
(t� a)1=2 jf 0 (t)j

i2
dt

!1=2

�
 Z b

a

�
(t� a)�1=2

����Z t

a

g0 (s) ds

�����2 dt
!1=2

=

 Z b

a

(t� a) jf 0 (t)j2 dt
!1=2 Z b

a

(t� a)�1
����Z t

a

g0 (s) ds

����2 dt
!1=2

=: B:

By (CBS) inequality we also have

(t� a)�1
����Z t

a

g0 (s) ds

����2 � Z t

a

jg0 (s)j2 ds;

which gives

(2.5) B �
 Z b

a

(t� a) jf 0 (t)j2 dt
!1=2 Z b

a

�Z t

a

jg0 (s)j2 ds
�
dt

!1=2
:

Using integration by parts, we haveZ b

a

�Z t

a

jg0 (s)j2 ds
�
dt = b

Z b

a

jg0 (s)j2 ds�
Z b

a

t jg0 (t)j2 dt

=

Z b

a

(b� t) jg0 (t)j2

and by (2.4) we get the �rst inequality in (2.1).
The last part follows by the elementary inequality

(2.6)
p
�� � 1

2
(�+ �) ; �; � � 0:

(ii) Since g (b) = 0; then g (t) = �
R b
t
g0 (s) ds for t 2 [a; b] : We haveZ b

a

jf 0 (t) g (t)j dt =
Z b

a

jf 0 (t)j jg (t)j dt =
Z b

a

(b� t)1=2 jf 0 (t)j (b� t)�1=2 jg (t)j dt

=

Z b

a

(b� t)1=2 jf 0 (t)j (b� t)�1=2
�����
Z b

t

g0 (s) ds

����� dt =: C:
Using (CBS) inequality we also have

(2.7) C �
 Z b

a

h
(b� t)1=2 jf 0 (t)j

i2
dt

!1=2

�

0@Z b

a

"
(b� t)�1=2

�����
Z b

t

g0 (s) ds

�����
#2
dt

1A1=2

=

 Z b

a

(b� t) jf 0 (t)j2 dt
!1=20@Z b

a

(b� t)�1
�����
Z b

t

g0 (s) ds

�����
2

dt

1A1=2

=: D:
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By (CBS) inequality we also have

(b� t)�1
�����
Z b

t

g0 (s) ds

�����
2

�
Z b

t

jg0 (s)j2 ds;

which gives

(2.8) D �
 Z b

a

(b� t) jf 0 (t)j2 dt
!1=2 Z b

a

 Z b

t

jg0 (s)j2 ds
!
dt

!1=2
:

Using integration by parts, we have

Z b

a

 Z b

t

jg0 (s)j2 ds
!
dt = �a

Z b

a

jg0 (s)j2 dsba +
Z b

a

t jg0 (t)j2 dt

=

Z b

a

(t� a) jg0 (t)j2 dt;

and by (2.7) and (2.8) we obtain (2.2).
(iii) If we write the inequality (2.1) on the interval

�
a; a+b2

�
; we have

(2.9)
Z a+b

2

a

jf 0 (t) g (t)j dt

�
 Z a+b

2

a

(t� a) jf 0 (t)j2 dt
!1=2 Z a+b

2

a

�
a+ b

2
� t
�
jg0 (t)j2 dt

!1=2

and if we write the inequality (2.2) on the interval
�
a+b
2 ; b

�
; we have

(2.10)
Z b

a+b
2

jf 0 (t) g (t)j dt

�
 Z b

a+b
2

(b� t) jf 0 (t)j2 dt
!1=2 Z b

a+b
2

�
t� a+ b

2

�
jg0 (t)j2 dt

!1=2
:

If we add the inequalities (2.9) and (2.10) we getZ b

a

jf 0 (t) g (t)j dt

�
 Z a+b

2

a

(t� a) jf 0 (t)j2 dt
!1=2 Z a+b

2

a

�
a+ b

2
� t
�
jg0 (t)j2 dt

!1=2

+

 Z b

a+b
2

(b� t) jf 0 (t)j2 dt
!1=2 Z b

a+b
2

�
t� a+ b

2

�
jg0 (t)j2 dt

!1=2
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�
"Z a+b

2

a

(t� a) jf 0 (t)j2 dt+
Z b

a+b
2

(b� t) jf 0 (t)j2 dt
#1=2

�
"Z a+b

2

a

�
a+ b

2
� t
�
jg0 (t)j2 dt+

Z b

a+b
2

�
t� a+ b

2

�
jg0 (t)j2 dt

#1=2

=

"Z b

a

K (t) jf 0 (t)j2 dt
#1=2 "Z b

a

����a+ b2 � t
���� jg0 (t)j2 dt

#1=2
;

where for the last inequality we used the elementary (CBS) inequality

�� + 
� �
�
�2 + 
2

�1=2 �
�2 + �2

�1=2
; �; �; 
; � � 0:

The last part follows by (2.6). �

We have the following re�nement of Opial inequalities (1.1) and (1.2):

Corollary 1. Assume that f : [a; b] ! C are absolutely continuous on [a; b] and
f 0 2 L2 [a; b] :

(i) If either f (a) = 0 or f (b) = 0; thenZ b

a

jf 0 (t) f (t)j dt �
 Z b

a

(t� a) jf 0 (t)j2 dt
!1=2 Z b

a

(b� t) jf 0 (t)j2 dt
!1=2

(2.11)

� 1

2
(b� a)

Z b

a

jf 0 (t)j2 dt:

(ii) If f (a) = f (b) = 0; then

(2.12)
Z b

a

jf 0 (t) f (t)j dt

�
"Z b

a

K (t) jf 0 (t)j2 dt
#1=2 "Z b

a

����a+ b2 � t
���� jf 0 (t)j2 dt

#1=2

� 1

4
(b� a)

Z b

a

jf 0 (t)j2 dt:

The proof follows by (i) and (ii) of Theorem 2 for g = f: The statement (iii)
follows by (iii) of Theorem 2 for g = f and observing that

(2.13) K (t) +

����a+ b2 � t
���� = 1

2
(b� a) for any t 2 [a; b] :

Remark 1. Since

K (t) =
1

2
(b� a)�

����a+ b2 � t
���� ; for any t 2 [a; b] ;

then Z b

a

K (t) jf 0 (t)j2 dt+
Z b

a

����a+ b2 � t
���� jg0 (t)j2 dt

=
1

2
(b� a)

Z b

a

jf 0 (t)j2 dt+
Z b

a

����a+ b2 � t
���� �jg0 (t)j2 � jf 0 (t)j2� dt
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and by (2.3) we get

(2.14)
Z b

a

jf 0 (t) g (t)j dt

� 1

4
(b� a)

Z b

a

jf 0 (t)j2 dt+ 1
2

Z b

a

����a+ b2 � t
���� �jg0 (t)j2 � jf 0 (t)j2� dt;

which shows that, if

(2.15)
Z b

a

����a+ b2 � t
���� jg0 (t)j2 dt � Z b

a

����a+ b2 � t
���� jf 0 (t)j2 dt;

then

(2.16)
Z b

a

jf 0 (t) g (t)j dt � 1

4
(b� a)

Z b

a

jf 0 (t)j2 dt:

A su¢ cient condition for (2.15) to happen is that jg0 (t)j � jf 0 (t)j for a.e. t 2
[a; b] :

The following result also holds:

Corollary 2. Assume that f : [a; b] ! C is absolutely continuous on [a; b] with
f 0 2 L2 [a; b] and h 2 L2 [a; b] with

R b
a
h (t) dt = 0: Then

(2.17)

�����
Z b

a

f (t)h (t) dt

�����
�
 Z b

a

K (t) jf 0 (t)j2 dt
!1=2 Z b

a

����a+ b2 � t
���� jh (t)j2 dt

!1=2

� 1

2

"Z b

a

K (t) jf 0 (t)j2 dt+
Z b

a

����a+ b2 � t
���� jh (t)j2 dt

#
:

Proof. If we take in (2.3) g (t) =
R t
a
h (s) ds, t 2 [a; b] ; then we get

(2.18)
Z b

a

����f 0 (t)Z t

a

h (s) ds

���� dt
�
 Z b

a

K (t) jf 0 (t)j2 dt
!1=2 Z b

a

����a+ b2 � t
���� jh (t)j2 dt

!1=2

� 1

2

"Z b

a

K (t) jf 0 (t)j2 dt+
Z b

a

����a+ b2 � t
���� jh (t)j2 dt

#
:

Also, by the modulus properties and integrating by parts, we have

(2.19)
Z b

a

����f 0 (t)Z t

a

h (s) ds

���� dt �
�����
Z b

a

f 0 (t)

�Z t

a

h (s) ds

�
dt

�����
=

�����f (t)
Z t

a

h (s) ds

����b
a

�
Z b

a

f (t)h (t) dt

����� =
�����
Z b

a

f (t)h (t) dt

����� :
By making use of (2.18) and (2.19) we get the desired result (2.17). �
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Remark 2. If f : [a; b] ! C is absolutely continuous on [a; b] with
R b
a
f (t) dt = 0

and f 0 2 L2 [a; b] ; then by taking h = �f in (2.17) we get

(2.20)
Z b

a

jf (t)j2 dt �
 Z b

a

K (t) jf 0 (t)j2 dt
!1=2 Z b

a

����a+ b2 � t
���� jf (t)j2 dt

!1=2

� 1

2

"Z b

a

K (t) jf 0 (t)j2 dt+
Z b

a

����a+ b2 � t
���� jf (t)j2 dt

#
:

Since Z b

a

����a+ b2 � t
���� jf (t)j2 dt � max

t2[a;b]

����a+ b2 � t
���� Z b

a

jf (t)j2 dt

=
1

2
(b� a)

Z b

a

jf (t)j2 dt;

then by �rst inequality in (2.20) we get Z b

a

jf (t)j2 dt
!2

�
Z b

a

K (t) jf 0 (t)j2 dt
Z b

a

����a+ b2 � t
���� jf (t)j2 dt

� 1

2
(b� a)

Z b

a

K (t) jf 0 (t)j2 dt
Z b

a

jf (t)j2 dt;

which gives that

(2.21)
Z b

a

jf (t)j2 dt � 1

2
(b� a)

Z b

a

K (t) jf 0 (t)j2 dt:

Also, since Z b

a

����a+ b2 � t
���� jf (t)j2 dt

!1=2
� kfk1;[a;b]

 Z b

a

����a+ b2 � t
���� dt
!1=2

=
1

2
(b� a) kfk1;[a;b] ;

then by the �rst inequality in (2.20) we get

(2.22)
Z b

a

jf (t)j2 dt � 1

2
(b� a) kfk1;[a;b]

 Z b

a

K (t) jf 0 (t)j2 dt
!1=2

:

Corollary 3. If g (a) = g (b) = 0 and h; g0 2 L2 [a; b], then

(2.23)
Z b

a

jh (t) g (t)j dt

�
 Z b

a

K (t) jh (t)j2 dt
!1=2 Z b

a

����a+ b2 � t
���� jg0 (t)j2 dt

!1=2

� 1

2

"Z b

a

K (t) jh (t)j2 dt+
Z b

a

����a+ b2 � t
���� jg0 (t)j2 dt

#
:

The proof follows by the statement (iii) of Theorem 2 for f =
R
a
h (s) ds:
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3. Some Trapezoid Type Inequalities

We have:

Proposition 1. Let h : [a; b] ! C be absolutely continuous on [a; b] with h0 2
L2 [a; b] and w : [a; b]! C such that w 2 L2 [a; b] ; then

(3.1)

�����
Z b

a

w (t) + w (a+ b� t)
2

h (t) dt� h (a) + h (b)
2

Z b

a

w (t) dt

�����
� 1

2

 Z b

a

K (t) jw (t)j2 dt
!1=2 Z b

a

����a+ b2 � t
���� jh0 (t)� h0 (a+ b� t)j2 dt

!1=2
:

Moreover, if w is symmetrical, namely w (a+ b� t) = w (t) for all t 2 [a; b] ;
then

(3.2)

�����
Z b

a

w (t)h (t) dt� h (a) + h (b)
2

Z b

a

w (t) dt

�����
� 1

2

 Z b

a

K (t) jw (t)j2 dt
!1=2 Z b

a

����a+ b2 � t
���� jh0 (t)� h0 (a+ b� t)j2 dt

!1=2
:

Proof. Consider the function g : [a; b]! C de�ned by

g (t) :=
h (t) + h (a+ b� t)

2
� h (a) + h (b)

2
; t 2 [a; b] :

We have g (a) = g (b) = 0:
If we write the inequality (2.3) for f =

R
a
w (t) dt; then we get

(3.3)
Z b

a

����w (t) �h (t) + h (a+ b� t)2
� h (a) + h (b)

2

����� dt
�
 Z b

a

K (t) jw (t)j2 dt
!1=2 Z b

a

����a+ b2 � t
���� ����h0 (t)� h0 (a+ b� t)2

����2 dt
!1=2

=
1

2

 Z b

a

K (t) jw (t)j2 dt
!1=2 Z b

a

����a+ b2 � t
���� jh0 (t)� h0 (a+ b� t)j2 dt

!1=2
:

By the modulus property, we have

(3.4)
Z b

a

����w (t) �h (t) + h (a+ b� t)2
� h (a) + h (b)

2

����� dt
�
�����
Z b

a

w (t)

�
h (t) + h (a+ b� t)

2
� h (a) + h (b)

2

�
dt

�����
=

�����12
"Z b

a

w (t)h (t) dt+

Z b

a

w (t)h (a+ b� t) dt
#
� h (a) + h (b)

2

Z b

a

w (t) dt

����� :
By the change of variable u = a+ b� t; t 2 [a; b] ; we haveZ b

a

w (t)h (a+ b� t) dt =
Z b

a

w (a+ b� t)h (t) dt
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and then by (3.3) and (3.4) we get the desired result (3.1). �

Corollary 4. With the assumptions of Proposition 1 and if h0 is Lipschitzian with
constant L > 0; namely jh0 (t)� h0 (s)j � L jt� sj for any t; s 2 [a; b] ; then

(3.5)

�����
Z b

a

w (t) + w (a+ b� t)
2

h (t) dt� h (a) + h (b)
2

Z b

a

w (t) dt

�����
�
p
2

8
(b� a)2 L

 Z b

a

K (t) jw (t)j2 dt
!1=2

;

where w 2 L2 [a; b] :
In the case of symmetry for w; we have

(3.6)

�����
Z b

a

w (t)h (t) dt� h (a) + h (b)
2

Z b

a

w (t) dt

�����
�
p
2

8
(b� a)2 L

 Z b

a

K (t) jw (t)j2 dt
!1=2

:

In 1906, Fejér [3], while studying trigonometric polynomials, obtained the fol-
lowing inequalities which generalize that of Hermite & Hadamard:

Theorem 3 (Fejér�s Inequality). Consider the integral
R b
a
h (x)w (x) dx, where h

is a convex function in the interval (a; b) and w is a positive function in the same
interval such that

w (x) = w (a+ b� x) ; for any x 2 [a; b]

i.e., y = w (x) is a symmetric curve with respect to the straight line which contains
the point

�
1
2 (a+ b) ; 0

�
and is normal to the x-axis. Under those conditions the

following inequalities are valid:

(3.7) h

�
a+ b

2

�
� 1R b

a
w (x) dx

Z b

a

h (x)w (x) dx � h (a) + h (b)

2
:

If h is concave on (a; b), then the inequalities reverse in (3.7).
If w � 1; then (3.7) becomes the well known Hermite-Hadamard inequality

(3.8) h

�
a+ b

2

�
� 1

b� a

Z b

a

h (x) dx � h (a) + h (b)

2
:

We have the following reverse of Fejér�s inequality:

Corollary 5. Let h : [a; b] ! R be a convex function and w : [a; b] ! (0;1) be
continuous, symmetrical on [a; b] and such that h0 2 L2 [a; b] : Then

(3.9) 0 � h (a) + h (b)

2
� 1R b

a
w (x) dx

Z b

a

h (x)w (x) dx

� 1

2

 Z b

a

K (t) jw (t)j2 dt
!1=2 Z b

a

����a+ b2 � t
���� jh0 (t)� h0 (a+ b� t)j2 dt

!1=2
:
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Moreover, if h0 is L-Lipschitzian, then

(3.10) 0 � h (a) + h (b)

2
� 1R b

a
w (x) dx

Z b

a

h (x)w (x) dx

�
p
2

8
(b� a)2 L

 Z b

a

K (t) jw (t)j2 dt
!1=2

:

We also have:

Proposition 2. Let h : [a; b] ! C be absolutely continuous on [a; b] with h0 2
L2 [a; b] and w : [a; b]! C such that w 2 L2 [a; b] ; then

(3.11)

������
h
h (a)

�
b
R b
a
w (t) dt�

R b
a
w (t) tdt

�
+ h (b)

�R b
a
w (t) tdt� a

R b
a
w (t) dt

�i
b� a

�
Z b

a

w (t)h (t) dt

�����
�
 Z b

a

K (t) jw (t)j2 dt
!1=2 Z b

a

����a+ b2 � t
���� ����h0 (t)� h (b)� h (a)b� a

����2 dt
!1=2

:

Proof. Consider the function g : [a; b]! C de�ned by

g (t) := h (t)� h (a) (b� t) + h (b) (t� a)
b� a ; t 2 [a; b] :

We have g (a) = g (b) = 0:
If we write the inequality (2.3) for f =

R
a
w (t) dt; then we get

(3.12)
Z b

a

����w (t) �h (t)� h (a) (b� t) + h (b) (t� a)b� a

����� dt
�
 Z b

a

K (t) jw (t)j2 dt
!1=2 Z b

a

����a+ b2 � t
���� ����h0 (t)� h (b)� h (a)b� a

����2 dt
!1=2

:

By the modulus property, we haveZ b

a

����w (t) �h (t)� h (a) (b� t) + h (b) (t� a)b� a

����� dt
�
�����
Z b

a

w (t)

�
h (t)� h (a) (b� t) + h (b) (t� a)

b� a

�
dt

�����
=

�����
Z b

a

w (t)h (t) dt

�
h (a)

�
b
R b
a
w (t) dt�

R b
a
w (t) tdt

�
+ h (b)

�R b
a
w (t) tdt� a

R b
a
w (t) dt

�
b� a

������ ;
which together with (3.12) produces the desired result (3.11). �
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Corollary 6. Let h : [a; b] ! R be a convex function and w : [a; b] ! (0;1) be
continuous and such that h0 2 L2 [a; b] : Then

(3.13) 0 � h (a) [b� E (w; [a; b])] + h (b) [E (w; [a; b])� a]
b� a �

Z b

a

w (t)h (t) dt

� 1R b
a
w (t) dt

 Z b

a

K (t) jw (t)j2 dt
!1=2 Z b

a

����a+ b2 � t
���� ����h0 (t)� h (b)� h (a)b� a

����2 dt
!1=2

;

where

E (w; [a; b]) :=
1R b

a
w (t) dt

Z b

a

w (t) tdt:

4. Some Grüss�Type Inequalities

For two Lebesgue integrable functions f; g : [a; b] ! R, consider the µCeby�ev
functional :

(4.1) C (f; g) :=
1

b� a

Z b

a

f(t)g(t)dt� 1

(b� a)2
Z b

a

f(t)dt

Z b

a

g(t)dt:

In 1935, Grüss [4] showed that

(4.2) jC (f; g)j � 1

4
(M �m) (N � n) ;

provided that there exists the real numbers m; M; n; N such that

(4.3) m � f (t) �M and n � g (t) � N for a.e. t 2 [a; b] :
The constant 1

4 is best possible in (4.2) in the sense that it cannot be replaced by
a smaller quantity.
Another, however less known result, even though it was obtained by µCeby�ev in

1882, [2], states that

(4.4) jC (f; g)j � 1

12
kf 0k1 kg

0k1 (b� a)
2
;

provided that f 0; g0 exist and are continuous on [a; b] and kf 0k1 = supt2[a;b] jf 0 (t)j :
The constant 1

12 cannot be improved in the general case.
The µCeby�ev inequality (4.4) also holds if f; g : [a; b] ! R are assumed to be

absolutely continuous and f 0; g0 2 L1 [a; b] while kf 0k1 = essupt2[a;b] jf 0 (t)j :
A mixture between Grüss�result (3.7) and µCeby�ev�s one (4.4) is the following

inequality obtained by Ostrowski in 1970, [11]:

(4.5) jC (f; g)j � 1

8
(b� a) (M �m) kg0k1 ;

provided that f is Lebesgue integrable and satis�es (3.8) while g is absolutely con-
tinuous and g0 2 L1 [a; b] : The constant 18 is best possible in (4.5).
The case of euclidean norms of the derivative was considered by A. Lupaş in [7]

in which he proved that

(4.6) jC (f; g)j � 1

�2
kf 0k2 kg

0k2 (b� a) ;

provided that f; g are absolutely continuous and f 0; g0 2 L2 [a; b] : The constant 1
�2

is the best possible.
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Consider

K (t) :=

8<: t� a if a � t � a+b
2 ;

b� t if a+b2 < t � b:
=
1

2
(b� a)�

����a+ b2 � t
���� ;

for t 2 [a; b] :
We have:

Theorem 4. If f; g : [a; b] ! C are such that f is absolutely continuous with
f 0 2 L2 [a; b] and g 2 L2 [a; b], then

(4.7) jC (f; g)j

�
 Z b

a

K (t) jf 0 (t)j2 dt
!1=20@Z b

a

����a+ b2 � t
����
�����g (t)� 1

b� a

Z b

a

g(s)ds

�����
2

dt

1A1=2

�
 Z b

a

K (t) jf 0 (t)j2 dt
!1=2

B (g) ;

where

B (g) :=

8>>>><>>>>:
p
2
2 (b� a)

�
1
b�a

R b
a
jg (t)j2 dt�

��� 1
b�a

R b
a
g (t) dt

���2�1=2 ;
1
2 (b� a)




g � 1
b�a

R b
a
g(s)ds





[a;b];1

if g 2 L1 [a; b] :

Proof. We have the following Sonin identity

(4.8) C (f; g) =
1

b� a

Z b

a

(f (t)� 
)
 
g (t)� 1

b� a

Z b

a

g(s)ds

!
dt

for any 
 2 C, that can be easily proved by developing the right hand side of (4.8).
Observe that, if we take h (t) = g (t)� 1

b�a
R b
a
g(s)ds; then we have

R b
a
h (t) dt = 0

and by Corollary 2 we get

jC (f; g)j

�
 Z b

a

K (t) jf 0 (t)j2 dt
!1=20@Z b

a

����a+ b2 � t
����
�����g (t)� 1

b� a

Z b

a

g(s)ds

�����
2

dt

1A1=2

:

Observe that0@Z b

a

����a+ b2 � t
����
�����g (t)� 1

b� a

Z b

a

g(s)ds

�����
2

dt

1A1=2

� max
t2[a;b]

����a+ b2 � t
����1=2 (b� a)1=2

0@ 1

b� a

Z b

a

�����g (t)� 1

b� a

Z b

a

g(s)ds

�����
2

dt

1A1=2

=

p
2

2
(b� a)

0@ 1

b� a

Z b

a

jg (t)j2 dt�
����� 1

b� a

Z b

a

g (t) dt

�����
2
1A1=2

;
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which proves the �rst branch in the second inequality in (4.7).
We also have0@Z b

a

����a+ b2 � t
����
�����g (t)� 1

b� a

Z b

a

g(s)ds

�����
2

dt

1A1=2

� 1

2
(b� a)






g � 1

b� a

Z b

a

g(s)ds







[a;b];1

;

which proves the second branch in the second inequality in (4.7). �
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