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GENERALIZATIONS OF OPIAL’S INEQUALITIES FOR TWO
FUNCTIONS AND APPLICATIONS

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. In this paper we establish some generalizations of Opial’s inequal-
ities for two functions. Applications related to the trapezoid weighted inequal-
ities and to Fejér’s inequality for convex functions are also provided. Some
Griiss’ type inequalities are also given.

1. INTRODUCTION
We recall the following Opial type inequalities:

Theorem 1. Assume that u : [a,b] C R — R is an absolutely continuous function
on the interval [a,b] and such that v’ € Laa,b].

(i) If u(a) =u(b) =0, then

(1.1) /|u e < X b_a/\u )2 dt,

with equality if and only if

c(t—a) ifa<t< ekl
u(t) =
c(b—t) if E <t <b,

where ¢ is an arbitrary constant;
(ii) Ifu(a) =0, then

(1.2) /|u |dt< _a/\u )2 dt,

with equality if and only if u (t) = ¢ (t — a) for some constant c.

The inequality (1.1) was obtained by Olech in [9] in which he gave a simplified
proof of an inequality originally due in a slightly less general form to Zdzislaw Opial
[10].

Embedded in Olech’s proof is the half-interval form of Opial’s inequality, also
discovered by Beesack [1], which is satisfied by those u vanishing only at a.

For various proofs of the above inequalities, see [5]-[8] and [12].

In this paper we establish some generalizations of Opial’s inequalities for two
functions. Applications related to the trapezoid weighted inequalities and to Fejér’s
inequality for convex functions are also provided. Some Griiss’ type inequalities are
also given.
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2. THE MAIN RESULTS
We have:

Theorem 2. Assume that f, g : [a,b] — C are absolutely continuous on [a,b] with
f/, g’ € Lo [a,b} .

(i) If g (a) =0, then

b b 1/2 b
(2.1) / I (B g (&) dt < ( / <ta>|f’<t>|2dt> < / <bt>g'<t>|2dt>
1
3

b b
< V (t_a)|f/(t)|2dt+/ (b—t)lg’(t)|2dt]-

1/2

1/2

b b
<3 [/ - 0lf OFd+ [ (¢l <t>|2dt] .
(iii) If g(a) =g (b) =0, then

b
(2.3) / (1) g (1)) dt

b 1/2 b 1/2
<(/ K(t)|f’<t>|2dt> (/ “gb—ug'(wﬁdt)
b b
g;[/ K(@1f @ de+ | “j”—tg’@n?dt],

where

t—aifa<t< ot
K (t) =

b—tif 4 <t <b.

Proof. (i) Since g (a) = 0, then g (t) = faf g’ (s)ds for t € [a,b] . We have

b b b
[ 17 @awld= [ 17 @ls@ld= [ ¢-aIF Ol - g old

/at g (s)ds

:/b(t—a)1/2f’(t)|(t—a)_1/2 dt =: A.
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Using Cauchy-Bunyakovsky-Schwarz (CBS) inequality, we have

b .\ /2
(24) A< (/ [(t — a)1/2 ! (t)|] dt>

b t 2 1/2
X (/ [(t— a)~V? / g (s)ds } dt)
b vz t
- (/ (t—a)lf <t>|2dt> (/ -0 |[ o s)as
2 t
< [N s

9 1/2
dt) =: B.

By (CBS) inequality we also have

/at g (s)ds

1/2

(25 B< (/ (t—a)lf <t>|2dt> (/ (/ o o) as) dt) "
Using integration by parts, we have
/: (/ o 61 as) dtzb/j % (s)l2ds—/:t|g’ () b
- [o-v o

and by (2.4) we get the first inequality in (2.1).
The last part follows by the elementary inequality

(26) VaB < (a+h), ap>0.

(t—a)"

which gives

(ii) Since g (b) =0, then g (t) = — ftb g’ (s)ds for t € [a,b]. We have
b b b
[ 17 @ald= [ 17 @lg@ld= [ 6= 17 @)@ -0l o]

/tb g (s)ds

:/b b—t)"21f (1) (b—t)"*/? dt =: C.

a

Using (CBS) inequality we also have

1/2
2.7 C< (/ab [(b_t)lm I (t)|rdt>
x (/b l(bt)l/Q /tbg/(s)ds
1/2
=</ab(b—t)|f’(t)|2dt> (/abw—t)l

5\ 1/2
| dt)

b
/tg'(s)ds

5 N 1/2
dt) =:D.
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By (CBS) inequality we also have

/tbg’ (s)ds

(-0

b
< / g () ds,
t

which gives

b 1/2 b b
(2.8) D§</ (b—t>|f'<t>|2dt> ( / ( / |g'<s>|2ds> dt)

Using integration by parts, we have

/ab (/tb s (S)|2d5> dt = —a /ab | (s)| dsh + /abtlg’ (t)]* dt

b
— [ t-als @

1/2

and by (2.7) and (2.8) we obtain (2.2).

(iii) If we write the inequality (2.1) on the interval [a, %2], we have

a+b

(2.9) / TP g0 de

a

< (/ (t-a)lf <t>|2dt> N (/ (“30-1)1o <t>|2dt> :

and if we write the inequality (2.2) on the interval [“7“’, b] , we have

b
(2.10) / () g () de

< (/b (b—1) I <t>|2dt> " (/b (t a?) ¢ <t>|2dt) "

2

If we add the inequalities (2.9) and (2.10) we get
[ 17w
a+b b 1/2
g(/ (t—a) | (@ |dt> (/ “* )|g/<t>|2dt>

b b 1/2
+</m<bt>|f |dt> (/ (¢t ‘L*b)g’(t)fdt)
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a+b

s
a

IN

b 1/2
t-alr P+ [ o-0lr <t>|2dt]

2

1/2

X

7 <a;b_t> sor dt+/b (t_a;b> Ig’(t)Ith]
[LbK(t)|fl(t)2dt‘| a l/ab a+b_t‘ |9/(t)|2dt]1/27

2
where for the last inequality we used the elementary (CBS) inequality

af+76 < (a2 +4%) " (8246 a, B, 7, 520,
The last part follows by (2.6). O

We have the following refinement of Opial inequalities (1.1) and (1.2):

Corollary 1. Assume that [ : [a,b] — C are absolutely continuous on [a,b] and
f/ S L2 [a, b] .
(i) If either f(a) =0 or f(b) =0, then

b 1/2 b 1/2
e [Irws |dt<</ (t—a)lf’(t)2dt> (/ (b—t>|f’<t>|2dt>
<300 / P .

(i) If f () = £ (5) = O, then

(2.12) /|f ()] dt
< V K(@)lf <t>|2dt] " V

) 1/2
at —t’|f dt]

b
<j-a [0l

The proof follows by (i) and (ii) of Theorem 2 for g = f. The statement (iii)
follows by (iii) of Theorem 2 for g = f and observing that

(2.13) K (t) + a;rb_t’:;(b_a) for any t € [a,b].
Remark 1. Since
K(t):%(b— ) — a—2|—b t|, for anyt € [a,b],
then
at+b

‘| )| dt

/b (>\f’<>|2dt+/
=3 —a/|f |dt+/

a+b

1 (19 0F - 1 @F) at
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and by (2.3) we get

(2.14) /|f (t)| dt
b b
<q-o [Irofass |

which shows that, if

- (i OF <17 ) a

b
(2.15) /“jbt'm’wdts/ ““’t\v )P d,
then
(2.16) /|f () de < X b—a/|f )2 dt.

A sufficient condition for (2.15) to happen is that |g' (t)| < |f' (t)| for a.e. t €
[a,b] .

The following result also holds:

Corollary 2. Assume that f : [a,b] — C is absolutely continuous on [a,b] with
f' € Ly [a,b] and h € Ly [a,b] with [ h(t)dt = 0. Then

(2.17)

. b e 1/2
S(/ K<t>|f’<t>|2dt> (/ a+b‘t"h F dt)
S;Vabmwu'(ﬂﬁdw/a

Proof. If we take in (2.3) f h(s)ds, t € [a,b], then we get

(2.18) / b

a+b

—t’h )| dt]

f’(t)//h(s)ds dt

<</abK<t>|f’<t>|2dt>1/2<L ‘”b—t'm |dt>1/2
g;[/abff(t>|f'<t>|2dt+/a

Also, by the modulus properties and integrating by parts, we have

(2.19) /ab /abf’(t)</ath(s)ds)dt
f(t)/:h(s)dsb—/abf(t) ) di| = /f

By making use of (2.18) and (2.19) we get the desired result (2.17). O

a+b

—t‘h )| dt]

dt >

I <t>/:h<s>ds
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Remark 2. If f : [a,b] — C is absolutely continuous on [a,b] with fff(t) dt =10
and f' € Ly [a,b], then by taking h = f in (2.17) we get

(2.20) /ab|f(t)|2dt < </abK(t) f' (t)Ith) " (/
S;V;K(t)lf’(t)IQdH/a

/a t‘|f ) dt < m[ax t‘/ If (&) dt
:5(b‘a)/a HORD

then by first inequality in (2.20) we get

(/:f<t>|2dt>2 S/abK(t)lf’(t)Ith/a

1 b
<o [Kolrora [ ot
which gives that

b b
(221) [lroras;o-o [ Kol oPe

Also, since
1/2 1/2
a+b "la+b
{17 |dt> <1l b</ : —t\dt)

1
= § (b - a) Hf“oo,[a,b] ?

then by the first inequality in (2.20) we get

b b 1/2
e2) [ FOrE50-0 1l (/ K(t)f’(t)lzdt> .

Corollary 3. If g(a) = g(b) =0 and h, ¢’ € Ly [a,b], then

(2.23) /|h ()] dt
< (/ K<t>|h<t>|2dt)l/2 (/b
S;be(tm(t)ﬁm/ab

The proof follows by the statement (iii) of Theorem 2 for f = [ h(s)ds

) 1/2
at —t‘f |dt>

a+b

—t‘f |dt].

Since
a+b

a+b

P

. 1/2
a—+ 2
s =l o) dt)

a+b
-l (t)ﬁlt].
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3. SOME TRAPEZOID TYPE INEQUALITIES
We have:

Proposition 1. Let h : [a,b] — C be absolutely continuous on [a,b] with h' €
Ly [a,b] and w : [a,b] — C such that w € Ly [a, b], then

bw wla — a b
/a )+ é”’ t)h(t)dth()*h(b)/aw(t)dt

(3.1) .

<5 ([K(tﬂw(t)ﬁdt)m (/b

Moreover, if w is symmetrical, namely w(a+b—1t) = w(t) for all t € [a,b],
then

a+b_
2

1/2
t’ W' (t) — I (a+b— t)|2dt> .

b b
(3.2) /w(t)h(t)dt—w/ w(t) dt

<! (/abKa)m(t)th)l/Q (/b

Proof. Consider the function g : [a,b] — C defined by

o(0) = h(t)—l—h(2a+b—t) B h(a)—;h(b), -

a+b
2

1/2
—t’ W (t) — I (a+b—t)|2dt> .

We have g (a) = g (b) = 0.
If we write the inequality (2.3) for f = [ w(t)dt, then we get

(3.3) /abw(t){ :

g( bK<t>w<t>|2dt)1/2 (/
1 ab 1/2 ab
_2</a K(t)|w(t)|2dt> (/a

By the modulus property, we have

) /ab (1) [h(t)+h(2a+b—t) 3 h(a)+h(b)”dt

h(t) +h(a+b—1t) h(a)+h(b)”dt
2

W (t) =k (a+b—t)
2

9 1/2
dt)

1/2
t’ W (t) — I (a+ b—t)|2dt> .

a+b
—t
-

a+b
2

2
b - a
§ / it {h(t)+h(2a+b o );rh(b)]dt
- ;Vabw(t)h(t)dH/abw(t)h(aw—t)dt] —h(a);h(b)/abw(t)dt .

By the change of variable u = a + b —t, t € [a,b], we have

/bw(t)h(a—i—b—t)dt: (s b t)h () dt

a
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and then by (3.3) and (3.4) we get the desired result (3.1). O

Corollary 4. With the assumptions of Proposition 1 and if h' is Lipschitzian with
constant L > 0, namely |h' (t) — b’ (s)| < L|t — s| for any t,s € [a,b], then

bw wa — a b
(3.5) /a )+ é*b t)h(t)dth();rh(b)/aw(t)dt
1/2
<\f(b—a)zL< bK(t)|w(t)|2dt> ,

where w € L [a,b].
In the case of symmetry for w, we have

/bw(t)h(t)dt—w/bw(t)dt

(3.6) .

In 1906, Fejér [3], while studying trigonometric polynomials, obtained the fol-
lowing inequalities which generalize that of Hermite & Hadamard:

Theorem 3 (Fejér’s Inequality). Consider the integral f; h(z)w (x)dz, where h
is a convex function in the interval (a,b) and w is a positive function in the same
interval such that

w(z)=w(a+b—=1), for any x € [a,]]

i.e., y =w(x) is a symmetric curve with respect to the straight line which contains
the point (% (a+0b) ,0) and is normal to the x-axis. Under those conditions the
following inequalities are valid:

b
(3.7) h (“‘2”’) < ffwzm)dx/a h(@)w (z) dz < M

If h is concave on (a,b), then the inequalities reverse in (3.7).
If w =1, then (3.7) becomes the well known Hermite-Hadamard inequality

(3.8) h<a+b>< L /abh(:c)d:cgh(a)Jrh(b).

2 “b—a 2

We have the following reverse of Fejér’s inequality:

Corollary 5. Let h : [a,b] — R be a convex function and w : [a,b] — (0,00) be
continuous, symmetrical on [a,b] and such that h' € Ly [a,b]. Then

h(@+hb) 1 b
(3.9 0< 5 Fo@ / h(z)w (x) do
1 b 2 “la+b 1/2
£2</ K<t>|w<t>|2dt> (/ : t‘|h'(t)h’(a+bt)|2dt> .
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Moreover, if I/ is L-Lipschitzian, then

h(a) +h() 1 b o (2) da
2 f:w(x)dz/a hlo)w(@)d

b 1/2
< g(b—a)zL (/ K () |w(t)|2dt> .

(3.10) 0<

We also have:

Proposition 2. Let h : [a,b] — C be absolutely continuous on [a,b] with h' €
Ly [a,b] and w : [a,b] — C such that w € Ly [a,b], then

[h (a) (b [Pwtydt— [Pw(t) tdt) + 1 (b) ( [Pw ) tdt —a [Pw (t) dt)}

(3.11) o
b
—/ w(t) h (1) dt
’ o N Pla+b no) - h@ )
g(/ K () | (8)] dt) </ : _t‘ QUL dt) .

Proof. Consider the function g : [a,b] — C defined by

h(a)(b—1t)+ h(b)(t—a)
b—a

g(t) = h(t) -

We have g (a) = g (b) = 0.
If we write the inequality (2.3) for f = [ w(t)dt, then we get

(3.12) /b h(a)(b—t)+h(b)(t—a)”dt

o b—a
1/2
<< "k |w(t)2dt> </b

By the modulus property, we have

, t€la,b).

w (t) [h (t) —

a+b_

t
2

/ab“’(“ [h(t)_h(a)(b—tzj;z(w(t—a)] "
N /abw(t) [h(t)_h(a)(b—tgi—;z(b)(t—a)]dt
_ /abw(t)h(t)dt
h(a) (bfjw(t) dt— [Pw(t) tdt) +h(b) (fjw(t) tdt —a [*w (t) dt)

)

b—a

which together with (3.12) produces the desired result (3.11). O
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Corollary 6. Let h : [a,b] — R be a convex function and w : [a,b] — (0,00) be
continuous and such that h' € Ly [a,b]. Then

(3.13) 0< h(a)[b— E(w, [avb})gi-;l(b) [E (w,[a,b]) — d —/bw(t)h(t) dt
X 1/2 m AT 1/2
Sfbwl(t)dt</ K(t)|w(t)2dt> (/ +b—t‘ h’(t)—% dt) ,
whe':e ,
1
E (w,[a,b]) := ffw(t)dt/a w (t) tdt.

4. SOME GRUSS’ TYPE INEQUALITIES

For two Lebesgue integrable functions f, g : [a,b] — R, consider the Cebysev
functional:

b b b
an o=y [ e ot [ [ oo

In 1935, Griiss [4] showed that
1
(42) O 9 < 3 (M —m) (N —n),
provided that there exists the real numbers m, M, n, N such that

(4.3) m<f@#) <M and n<g({t)<N forae t€/alb.

The constant i is best possible in (4.2) in the sense that it cannot be replaced by
a smaller quantity.

Another, however less known result, even though it was obtained by Cebysev in
1882, [2], states that

(14) CUa)l < 35171 ' oc (0= ),

provided that f’, g’ exist and are continuous on [a, b] and || f'||, = sup,ejq4 [f' ()]
The constant 1—12 cannot be improved in the general case.

The Cebysev inequality (4.4) also holds if f, g : [a,b] — R are assumed to be
absolutely continuous and f', g’ € Lo [a,b] while || f'| , = essupye(qp | ()]

A mixture between Griiss’ result (3.7) and Cebysev’s one (4.4) is the following
inequality obtained by Ostrowski in 1970, [11]:

(15) C ()l < 5 (6= a) (M = m) g

provided that f is Lebesgue integrable and satisfies (3.8) while g is absolutely con-
tinuous and ¢’ € L [a,b]. The constant & is best possible in (4.5).

The case of euclidean norms of the derivative was considered by A. Lupasg in [7]
in which he proved that

(4.6) CUaI < 119N (b —a),

provided that f, g are absolutely continuous and f’, g’ € Ls [a, b] . The constant 5
is the best possible.
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Consider
t—aifa<t<atd
== 20 1 b
K () = =5 (b—a)- “‘; _
b—tif 22 <t <.
for ¢t € [a,b].
We have:

Theorem 4. If f, g : [a,b] — C are such that f is absolutely continuous with
f' € La[a,b] and g € L [a,b], then
5 1/2
dt)

(4.7) |C(f 9)l
a+b
, 1/2
S(/ K(t)lf'(t)|2dt> B(g),

2

b
9= 5= [ alos

a

_t‘

b 1/2 b
< (/ K(t)f’(t)fdt) (/

where
V2 1 b 2 1 b 2 1/2
R o-a) (5 e OF - [Tawar] )
B(g) ==
%(b—a)Hg— bia f;g(s)ds o oe if g € Loo a, 1) .

Proof. We have the following Sonin identity

b b
@8 Clhe=p [ GO (g<t>—bi / g(s)ds> a

a

for any v € C, that can be easily proved by developing the right hand side of (4.8).
Observe that, if we take h (t) = g (t) — ;7 f: g(s)ds, then we have ff h(t)dt=0
and by Corollary 2 we get

1C(f,9)]

b 1/2 b
< (/ K<t>|f'<t>|2dt> (/

Observe that

. . 2 1/2
a-+b 1
(/a 5 —t' g(t)— = a/a g(s)ds dt)
9 1/2
+p M2 e[ 1 1
< —t L £ — ds| dt
< max | (b—a) b_a/a g (1) b_a/ag@)s
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which proves the first branch in the second inequality in (4.7).
We also have
, \ 1/2
a+b 1
—1 t) — ds| dt
[l -2 [ o

a

<lo-a 1/b<>oz
S5 0—a)lg—— agss[b},

which proves the second branch in the second inequality in (4.7). O
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