p-NORMS GENERALIZATIONS OF OPIAL'S INEQUALITIES FOR TWO FUNCTIONS AND APPLICATIONS

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

In this paper we establish some p-norms generalizations of Opial's inequalities for two functions. Applications related to the trapezoid weighted inequalities and to Fejér's inequality for convex functions are also provided. Some Grüss' type inequalities for p-norms are given as well.

1. Introduction

We recall the following Opial type inequalities:
Theorem 1. Assume that $u:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ is an absolutely continuous function on the interval $[a, b]$ and such that $u^{\prime} \in L_{2}[a, b]$.
(i) If $u(a)=u(b)=0$, then

$$
\begin{equation*}
\int_{a}^{b}\left|u(t) u^{\prime}(t)\right| d t \leq \frac{1}{4}(b-a) \int_{a}^{b}\left|u^{\prime}(t)\right|^{2} d t \tag{1.1}
\end{equation*}
$$

with equality if and only if

$$
u(t)= \begin{cases}c(t-a) & \text { if } a \leq t \leq \frac{a+b}{2} \\ c(b-t) & \text { if } \frac{a+b}{2}<t \leq b\end{cases}
$$

where c is an arbitrary constant;
(ii) If $u(a)=0$, then

$$
\begin{equation*}
\int_{a}^{b}\left|u(t) u^{\prime}(t)\right| d t \leq \frac{1}{2}(b-a) \int_{a}^{b}\left|u^{\prime}(t)\right|^{2} d t \tag{1.2}
\end{equation*}
$$

with equality if and only if $u(t)=c(t-a)$ for some constant c.
The inequality (1.1) was obtained by Olech in [10] in which he gave a simplified proof of an inequality originally due in a slightly less general form to Zdzislaw Opial [11].

Embedded in Olech's proof is the half-interval form of Opial's inequality, also discovered by Beesack [1], which is satisfied by those u vanishing only at a.

For various proofs of the above inequalities, see [6]-[9] and [13].
In the recent paper [3] we obtained the following generalization of Opial's inequalities for two functions:

Theorem 2. Assume that $f, g:[a, b] \rightarrow \mathbb{C}$ are absolutely continuous on $[a, b]$ with $f^{\prime}, g^{\prime} \in L_{2}[a, b]$.

[^0]RGMIA Res. Rep. Coll. 21 (2018), Art. 65, 13 pp.
(i) If $g(a)=0$, then

$$
\begin{align*}
\int_{a}^{b}\left|f^{\prime}(t) g(t)\right| d t & \leq\left(\int_{a}^{b}(t-a)\left|f^{\prime}(t)\right|^{2} d t\right)^{1 / 2}\left(\int_{a}^{b}(b-t)\left|g^{\prime}(t)\right|^{2} d t\right)^{1 / 2} \tag{1.3}\\
& \leq \frac{1}{2}\left[\int_{a}^{b}(t-a)\left|f^{\prime}(t)\right|^{2} d t+\int_{a}^{b}(b-t)\left|g^{\prime}(t)\right|^{2} d t\right]
\end{align*}
$$

(ii) If $g(b)=0$, then

$$
\begin{align*}
\int_{a}^{b}\left|f^{\prime}(t) g(t)\right| d t & \leq\left(\int_{a}^{b}(b-t)\left|f^{\prime}(t)\right|^{2} d t\right)^{1 / 2}\left(\int_{a}^{b}(t-a)\left|g^{\prime}(t)\right|^{2} d t\right)^{1 / 2} \tag{1.4}\\
& \leq \frac{1}{2}\left[\int_{a}^{b}(b-t)\left|f^{\prime}(t)\right|^{2} d t+\int_{a}^{b}(t-a)\left|g^{\prime}(t)\right|^{2} d t\right]
\end{align*}
$$

(iii) If $g(a)=g(b)=0$, then

$$
\begin{align*}
& \int_{a}^{b}\left|f^{\prime}(t) g(t)\right| d t \tag{1.5}\\
& \quad \leq\left(\int_{a}^{b} K(t)\left|f^{\prime}(t)\right|^{2} d t\right)^{1 / 2}\left(\int_{a}^{b}\left|\frac{a+b}{2}-t\right|\left|g^{\prime}(t)\right|^{2} d t\right)^{1 / 2} \\
&
\end{align*}
$$

where

$$
K(t):=\left\{\begin{array}{l}
t-a \text { if } a \leq t \leq \frac{a+b}{2} \\
b-t \text { if } \frac{a+b}{2}<t \leq b
\end{array}\right.
$$

In this paper we establish some p-norms generalizations of Opial's inequalities for two functions. Applications related to the trapezoid weighted inequalities and to Fejér's inequality for convex functions are also provided. Some Grüss' type inequalities for p-norms are given as well.

2. The Main Results

We have the following natural generalization of Theorem 2:
Theorem 3. Assume that $f, g:[a, b] \rightarrow \mathbb{C}$ are absolutely continuous on $[a, b]$ with $f^{\prime} \in L_{p}[a, b]$ and $g^{\prime} \in L_{q}[a, b]$ for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$.
(i) If $g(a)=0$, then

$$
\begin{align*}
\int_{a}^{b}\left|f^{\prime}(t) g(t)\right| d t & \leq\left(\int_{a}^{b}(t-a)\left|f^{\prime}(t)\right|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}(b-t)\left|g^{\prime}(t)\right|^{q} d t\right)^{1 / q} \tag{2.1}\\
& \leq \frac{1}{p} \int_{a}^{b}(t-a)\left|f^{\prime}(t)\right|^{p} d t+\frac{1}{q} \int_{a}^{b}(b-t)\left|g^{\prime}(t)\right|^{q} d t
\end{align*}
$$

(ii) If $g(b)=0$, then

$$
\begin{align*}
\int_{a}^{b}\left|f^{\prime}(t) g(t)\right| d t & \leq\left(\int_{a}^{b}(b-t)\left|f^{\prime}(t)\right|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}(t-a)\left|g^{\prime}(t)\right|^{q} d t\right)^{1 / q} \tag{2.2}\\
& \leq \frac{1}{p} \int_{a}^{b}(b-t)\left|f^{\prime}(t)\right|^{p} d t+\frac{1}{q} \int_{a}^{b}(t-a)\left|g^{\prime}(t)\right|^{q} d t
\end{align*}
$$

(iii) If $g(a)=g(b)=0$, then

$$
\begin{align*}
& \int_{a}^{b}\left|f^{\prime}(t) g(t)\right| d t \tag{2.3}\\
& \qquad \begin{array}{l}
\leq\left(\int_{a}^{b} K(t)\left|f^{\prime}(t)\right|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}\left|\frac{a+b}{2}-t\right|\left|g^{\prime}(t)\right|^{q} d t\right)^{1 / q} \\
\\
\quad \leq \frac{1}{p} \int_{a}^{b} K(t)\left|f^{\prime}(t)\right|^{p} d t+\frac{1}{q} \int_{a}^{b}\left|\frac{a+b}{2}-t\right|\left|g^{\prime}(t)\right|^{q} d t,
\end{array}
\end{align*}
$$

where K is defined in Theorem 2.
Proof. (i) Since $g(a)=0$, then $g(t)=\int_{a}^{t} g^{\prime}(s) d s$ for $t \in[a, b]$. We have

$$
\begin{aligned}
\int_{a}^{b}\left|f^{\prime}(t) g(t)\right| d t & =\int_{a}^{b}\left|f^{\prime}(t)\right||g(t)| d t=\int_{a}^{b}(t-a)^{1 / p}\left|f^{\prime}(t)\right|(t-a)^{-1 / p}|g(t)| d t \\
& =\int_{a}^{b}(t-a)^{1 / p}\left|f^{\prime}(t)\right|(t-a)^{-1 / p}\left|\int_{a}^{t} g^{\prime}(s) d s\right| d t=: A .
\end{aligned}
$$

Using Hölder's inequality for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, we have

$$
\begin{align*}
& A \leq\left(\int_{a}^{b}\left[(t-a)^{1 / p}\left|f^{\prime}(t)\right|\right]^{p} d t\right)^{1 / p} \tag{2.4}\\
& \quad \times\left(\int_{a}^{b}\left[(t-a)^{-1 / p}\left|\int_{a}^{t} g^{\prime}(s) d s\right|\right]^{q} d t\right)^{1 / q} \\
& =\left(\int_{a}^{b}(t-a)\left|f^{\prime}(t)\right|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}\left[(t-a)^{-1 / p}\left|\int_{a}^{t} g^{\prime}(s) d s\right|\right]^{q} d t\right)^{1 / q}=: B .
\end{align*}
$$

By Hölder's inequality for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ we also have

$$
(t-a)^{-1 / p}\left|\int_{a}^{t} g^{\prime}(s) d s\right| \leq\left(\int_{a}^{t}\left|g^{\prime}(s)\right|^{q} d s\right)^{1 / q}
$$

that implies

$$
\left[(t-a)^{-1 / p}\left|\int_{a}^{t} g^{\prime}(s) d s\right|\right]^{q} \leq \int_{a}^{t}\left|g^{\prime}(s)\right|^{q} d s
$$

which gives

$$
\begin{equation*}
B \leq\left(\int_{a}^{b}(t-a)\left|f^{\prime}(t)\right|^{2} d t\right)^{1 / 2}\left(\int_{a}^{b}\left(\int_{a}^{t}\left|g^{\prime}(s)\right|^{q} d s\right) d t\right)^{1 / 2} . \tag{2.5}
\end{equation*}
$$

Using integration by parts, we have

$$
\int_{a}^{b}\left(\int_{a}^{t}\left|g^{\prime}(s)\right|^{q} d s\right) d t=\int_{a}^{b}(b-t)\left|g^{\prime}(t)\right|^{q}
$$

and by (2.4) we get the first inequality in (2.1).
The last part follows by the elementary Young's inequality

$$
\begin{equation*}
\alpha^{1 / p} \beta^{1 / q} \leq \frac{1}{p} \alpha+\frac{1}{q} \beta, \alpha, \beta \geq 0 \tag{2.6}
\end{equation*}
$$

(ii) Since $g(b)=0$, then $g(t)=-\int_{t}^{b} g^{\prime}(s) d s$ for $t \in[a, b]$. We have

$$
\begin{aligned}
\int_{a}^{b}\left|f^{\prime}(t) g(t)\right| d t & =\int_{a}^{b}\left|f^{\prime}(t)\right||g(t)| d t=\int_{a}^{b}(b-t)^{1 / p}\left|f^{\prime}(t)\right|(b-t)^{-1 / p}|g(t)| d t \\
& =\int_{a}^{b}(b-t)^{1 / p}\left|f^{\prime}(t)\right|(b-t)^{-1 / p}\left|\int_{t}^{b} g^{\prime}(s) d s\right| d t=: C
\end{aligned}
$$

Using Hölder's inequality for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ we also have

$$
\begin{align*}
C \leq & \left(\int_{a}^{b}\left[(b-t)^{1 / p}\left|f^{\prime}(t)\right|\right]^{p} d t\right)^{1 / p} \tag{2.7}\\
& \times\left(\int_{a}^{b}\left[(b-t)^{-1 / p}\left|\int_{t}^{b} g^{\prime}(s) d s\right|\right]^{q} d t\right)^{1 / q} \\
= & \left(\int_{a}^{b}(b-t)\left|f^{\prime}(t)\right|^{p} d t\right)^{1 / p}\left(\left[(b-t)^{-1 / p}\left|\int_{t}^{b} g^{\prime}(s) d s\right|\right]^{q} d t\right)^{1 / 2}=: D .
\end{align*}
$$

By Hölder's inequality for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ we also have

$$
(b-t)^{-1 / p}\left|\int_{t}^{b} g^{\prime}(s) d s\right| \leq\left(\int_{t}^{b}\left|g^{\prime}(s)\right|^{q} d s\right)^{1 / q}
$$

which gives

$$
\begin{equation*}
D \leq\left(\int_{a}^{b}(b-t)\left|f^{\prime}(t)\right|^{2} d t\right)^{1 / 2}\left(\int_{a}^{b}\left(\int_{t}^{b}\left|g^{\prime}(s)\right|^{q} d s\right) d t\right)^{1 / 2} \tag{2.8}
\end{equation*}
$$

Using integration by parts, we have

$$
\int_{a}^{b}\left(\int_{t}^{b}\left|g^{\prime}(s)\right|^{q} d s\right) d t=\int_{a}^{b}(t-a)\left|g^{\prime}(t)\right|^{q} d t
$$

and by (2.7) and (2.8) we obtain (2.2).
(iii) If we write the inequality (2.1) on the interval $\left[a, \frac{a+b}{2}\right]$, we have

$$
\begin{align*}
\int_{a}^{\frac{a+b}{2}} & \left|f^{\prime}(t) g(t)\right| d t \tag{2.9}\\
& \leq\left(\int_{a}^{\frac{a+b}{2}}(t-a)\left|f^{\prime}(t)\right|^{p} d t\right)^{1 / p}\left(\int_{a}^{\frac{a+b}{2}}\left(\frac{a+b}{2}-t\right)\left|g^{\prime}(t)\right|^{q} d t\right)^{1 / q}
\end{align*}
$$

and if we write the inequality (2.2) on the interval $\left[\frac{a+b}{2}, b\right]$, we have

$$
\begin{align*}
\int_{\frac{a+b}{2}}^{b} & \left|f^{\prime}(t) g(t)\right| d t \tag{2.10}\\
& \quad \leq\left(\int_{\frac{a+b}{2}}^{b}(b-t)\left|f^{\prime}(t)\right|^{p} d t\right)^{1 / p}\left(\int_{\frac{a+b}{2}}^{b}\left(t-\frac{a+b}{2}\right)\left|g^{\prime}(t)\right|^{q} d t\right)^{1 / q}
\end{align*}
$$

If we add the inequalities (2.9) and (2.10) we get

$$
\begin{aligned}
& \int_{a}^{b}\left|f^{\prime}(t) g(t)\right| d t \\
& \leq\left(\int_{a}^{\frac{a+b}{2}}(t-a)\left|f^{\prime}(t)\right|^{p} d t\right)^{1 / p}\left(\int_{a}^{\frac{a+b}{2}}\left(\frac{a+b}{2}-t\right)\left|g^{\prime}(t)\right|^{q} d t\right)^{1 / q} \\
& +\left(\int_{\frac{a+b}{2}}^{b}(b-t)\left|f^{\prime}(t)\right|^{p} d t\right)^{1 / p}\left(\int_{\frac{a+b}{2}}^{b}\left(t-\frac{a+b}{2}\right)\left|g^{\prime}(t)\right|^{q} d t\right)^{1 / q} \\
& \leq\left[\int_{a}^{\frac{a+b}{2}}(t-a)\left|f^{\prime}(t)\right|^{p} d t+\int_{\frac{a+b}{2}}^{b}(b-t)\left|f^{\prime}(t)\right|^{p} d t\right]^{1 / p} \\
& \times\left[\int_{a}^{\frac{a+b}{2}}\left(\frac{a+b}{2}-t\right)\left|g^{\prime}(t)\right|^{q} d t+\int_{\frac{a+b}{2}}^{b}\left(t-\frac{a+b}{2}\right)\left|g^{\prime}(t)\right|^{q} d t\right]^{1 / q} \\
& =\left[\int_{a}^{b} K(t)\left|f^{\prime}(t)\right|^{p} d t\right]^{1 / p}\left[\int_{a}^{b}\left|\frac{a+b}{2}-t\right|\left|g^{\prime}(t)\right|^{q} d t\right]^{1 / q},
\end{aligned}
$$

where for the last inequality we used the elementary Hölder inequality for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$

$$
\alpha \beta+\gamma \delta \leq\left(\alpha^{p}+\gamma^{p}\right)^{1 / p}\left(\beta^{q}+\delta^{q}\right)^{1 / q}, \alpha, \beta, \gamma, \delta \geq 0
$$

The last part follows by (2.6).

Remark 1. If we take $p=q=2$ in Theorem 3, then we get Theorem 2.
Corollary 1. Assume that $f:[a, b] \rightarrow \mathbb{C}$ are absolutely continuous on $[a, b]$ and $f^{\prime} \in L_{p}[a, b] \cap L_{q}[a, b]$ for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$.
(i) If $f(a)=0$, then

$$
\begin{align*}
\int_{a}^{b}\left|f^{\prime}(t) f(t)\right| d t & \leq\left(\int_{a}^{b}(t-a)\left|f^{\prime}(t)\right|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}(b-t)\left|f^{\prime}(t)\right|^{q} d t\right)^{1 / q} \tag{2.11}\\
& \leq \frac{1}{p} \int_{a}^{b}(t-a)\left|f^{\prime}(t)\right|^{p} d t+\frac{1}{q} \int_{a}^{b}(b-t)\left|f^{\prime}(t)\right|^{q} d t
\end{align*}
$$

(ii) If $f(b)=0$, then

$$
\begin{align*}
\int_{a}^{b}\left|f^{\prime}(t) g(t)\right| d t & \leq\left(\int_{a}^{b}(b-t)\left|f^{\prime}(t)\right|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}(t-a)\left|f^{\prime}(t)\right|^{q} d t\right)^{1 / q} \tag{2.12}\\
& \leq \frac{1}{p} \int_{a}^{b}(b-t)\left|f^{\prime}(t)\right|^{p} d t+\frac{1}{q} \int_{a}^{b}(t-a)\left|f^{\prime}(t)\right|^{q} d t
\end{align*}
$$

(iii) If $f(a)=f(b)=0$, then

$$
\begin{align*}
& \int_{a}^{b}\left|f^{\prime}(t) f(t)\right| d t \tag{2.13}\\
& \qquad \begin{aligned}
& \leq\left(\int_{a}^{b} K(t)\left|f^{\prime}(t)\right|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}\left|\frac{a+b}{2}-t\right|\left|f^{\prime}(t)\right|^{q} d t\right)^{1 / q} \\
& \leq \frac{1}{p} \int_{a}^{b} K(t)\left|f^{\prime}(t)\right|^{p} d t+\frac{1}{q} \int_{a}^{b}\left|\frac{a+b}{2}-t\right|\left|f^{\prime}(t)\right|^{q} d t
\end{aligned}
\end{align*}
$$

Remark 2. If we take in Corollary $1 p=q=2$, then we get the refinement of Opial's inequality (2.1)

$$
\begin{align*}
\int_{a}^{b}\left|f^{\prime}(t) f(t)\right| d t & \leq\left(\int_{a}^{b}(t-a)\left|f^{\prime}(t)\right|^{2} d t\right)^{1 / 2}\left(\int_{a}^{b}(b-t)\left|f^{\prime}(t)\right|^{2} d t\right)^{1 / 2} \tag{2.14}\\
& \leq \frac{1}{2}(b-a) \int_{a}^{b}\left|f^{\prime}(t)\right|^{2} d t
\end{align*}
$$

if either $f(a)=0$ or $f(b)=0$.
If $f(a)=f(b)=0$, then we have the refinement of (1.1)

$$
\begin{align*}
& \int_{a}^{b}\left|f^{\prime}(t) f(t)\right| d t \tag{2.15}\\
& \qquad \begin{aligned}
& \leq\left[\int_{a}^{b} K(t)\left|f^{\prime}(t)\right|^{2} d t\right]^{1 / 2}\left[\int_{a}^{b}\left|\frac{a+b}{2}-t\right|\left|f^{\prime}(t)\right|^{2} d t\right]^{1 / 2} \\
& \leq \frac{1}{4}(b-a) \int_{a}^{b}\left|f^{\prime}(t)\right|^{2} d t
\end{aligned}
\end{align*}
$$

Corollary 2. Assume that $f:[a, b] \rightarrow \mathbb{C}$ is absolutely continuous on $[a, b]$ with $f^{\prime} \in L_{p}[a, b]$ and $h \in L_{q}[a, b]$ with $\int_{a}^{b} h(t) d t=0$ for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) h(t) d t\right| \tag{2.16}\\
& \quad \leq\left(\int_{a}^{b} K(t)\left|f^{\prime}(t)\right|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}\left|\frac{a+b}{2}-t\right||h(t)|^{q} d t\right)^{1 / q} \\
& \quad \leq \frac{1}{p} \int_{a}^{b} K(t)\left|f^{\prime}(t)\right|^{p} d t+\frac{1}{q} \int_{a}^{b}\left|\frac{a+b}{2}-t\right||h(t)|^{q} d t
\end{align*}
$$

Proof. If we take in (2.3) $g(t)=\int_{a}^{t} h(s) d s, t \in[a, b]$, then we get

$$
\begin{align*}
& \int_{a}^{b}\left|f^{\prime}(t) \int_{a}^{t} h(s) d s\right| d t \tag{2.17}\\
& \leq\left(\int_{a}^{b} K(t)\left|f^{\prime}(t)\right|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}\left|\frac{a+b}{2}-t\right||h(t)|^{q} d t\right)^{1 / q} \\
& \leq \frac{1}{p} \int_{a}^{b} K(t)\left|f^{\prime}(t)\right|^{p} d t+\frac{1}{q} \int_{a}^{b}\left|\frac{a+b}{2}-t\right||h(t)|^{q} d t
\end{align*}
$$

Also, by the modulus properties and integrating by parts, we have

$$
\begin{align*}
& \int_{a}^{b}\left|f^{\prime}(t) \int_{a}^{t} h(s) d s\right| d t \geq\left|\int_{a}^{b} f^{\prime}(t)\left(\int_{a}^{t} h(s) d s\right) d t\right| \tag{2.18}\\
&=\left|f(t) \int_{a}^{t} h(s) d s\right|_{a}^{b}-\int_{a}^{b} f(t) h(t) d t\left|=\left|\int_{a}^{b} f(t) h(t) d t\right|\right.
\end{align*}
$$

By making use of (2.17) and (2.18) we get the desired result (2.16).

Corollary 3. If $g(a)=g(b)=0$ and $h \in L_{p}[a, b], g^{\prime} \in L_{q}[a, b]$ for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\begin{align*}
& \int_{a}^{b}|h(t) g(t)| d t \tag{2.19}\\
& \qquad \begin{aligned}
& \leq\left(\int_{a}^{b} K(t)|h(t)|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}\left|\frac{a+b}{2}-t\right|\left|g^{\prime}(t)\right|^{q} d t\right)^{1 / q} \\
& \leq \frac{1}{p} \int_{a}^{b} K(t)|h(t)|^{p} d t+\frac{1}{q} \int_{a}^{b}\left|\frac{a+b}{2}-t\right|\left|g^{\prime}(t)\right|^{q} d t
\end{aligned}
\end{align*}
$$

The proof follows by the statement (iii) of Theorem 3 for $f=\int_{a} h(s) d s$.

3. Some Trapezoid Type Inequalities

We have:
Proposition 1. Let $h:[a, b] \rightarrow \mathbb{C}$ be absolutely continuous on $[a, b]$ nd $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. If $h^{\prime} \in L_{q}[a, b]$ and $w:[a, b] \rightarrow \mathbb{C}$ with $w \in L_{p}[a, b]$, then

$$
\begin{align*}
& \text { 1) }\left|\int_{a}^{b} \frac{w(t)+w(a+b-t)}{2} h(t) d t-\frac{h(a)+h(b)}{2} \int_{a}^{b} w(t) d t\right| \tag{3.1}\\
& \leq \frac{1}{2}\left(\int_{a}^{b} K(t)|w(t)|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}\left|\frac{a+b}{2}-t\right|\left|h^{\prime}(t)-h^{\prime}(a+b-t)\right|^{q} d t\right)^{1 / q} .
\end{align*}
$$

Moreover, if w is symmetrical, namely $w(a+b-t)=w(t)$ for all $t \in[a, b]$, then

$$
\begin{align*}
& \quad\left|\int_{a}^{b} w(t) h(t) d t-\frac{h(a)+h(b)}{2} \int_{a}^{b} w(t) d t\right| \tag{3.2}\\
& \leq \frac{1}{2}\left(\int_{a}^{b} K(t)|w(t)|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}\left|\frac{a+b}{2}-t\right|\left|h^{\prime}(t)-h^{\prime}(a+b-t)\right|^{q} d t\right)^{1 / q} .
\end{align*}
$$

Proof. Consider the function $g:[a, b] \rightarrow \mathbb{C}$ defined by

$$
g(t):=\frac{h(t)+h(a+b-t)}{2}-\frac{h(a)+h(b)}{2}, t \in[a, b] .
$$

We have $g(a)=g(b)=0$.
If we write the inequality (2.3) for $f=\int_{a} w(t) d t$, then we get

$$
\begin{align*}
& \int_{a}^{b}\left|w(t)\left[\frac{h(t)+h(a+b-t)}{2}-\frac{h(a)+h(b)}{2}\right]\right| d t \tag{3.3}\\
\leq & \left(\int_{a}^{b} K(t)|w(t)|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}\left|\frac{a+b}{2}-t\right|\left|\frac{h^{\prime}(t)-h^{\prime}(a+b-t)}{2}\right|^{q} d t\right)^{1 / q} \\
= & \frac{1}{2}\left(\int_{a}^{b} K(t)|w(t)|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}\left|\frac{a+b}{2}-t\right|\left|h^{\prime}(t)-h^{\prime}(a+b-t)\right|^{q} d t\right)^{1 / q} .
\end{align*}
$$

By the modulus property, we have

$$
\begin{align*}
& \text { 4) } \int_{a}^{b}\left|w(t)\left[\frac{h(t)+h(a+b-t)}{2}-\frac{h(a)+h(b)}{2}\right]\right| d t \tag{3.4}\\
& \geq\left|\int_{a}^{b} w(t)\left[\frac{h(t)+h(a+b-t)}{2}-\frac{h(a)+h(b)}{2}\right] d t\right| \\
& =\left|\frac{1}{2}\left[\int_{a}^{b} w(t) h(t) d t+\int_{a}^{b} w(t) h(a+b-t) d t\right]-\frac{h(a)+h(b)}{2} \int_{a}^{b} w(t) d t\right| .
\end{align*}
$$

By the change of variable $u=a+b-t, t \in[a, b]$, we have

$$
\int_{a}^{b} w(t) h(a+b-t) d t=\int_{a}^{b} w(a+b-t) h(t) d t
$$

and then by (3.3) and (3.4) we get the desired result (3.1).
Corollary 4. With the assumptions of Proposition 1 and if h^{\prime} is Lipschitzian with constant $L>0$, namely $\left|h^{\prime}(t)-h^{\prime}(s)\right| \leq L|t-s|$ for any $t, s \in[a, b]$, then

$$
\begin{align*}
\left\lvert\, \int_{a}^{b} \frac{w(t)+w(a+b-t)}{2}\right. & \left.h(t) d t-\frac{h(a)+h(b)}{2} \int_{a}^{b} w(t) d t \right\rvert\, \tag{3.5}\\
& \leq \frac{(b-a)^{1+2 / q}}{2^{1+1 / q}(q+2)^{1 / q}} L\left(\int_{a}^{b} K(t)|w(t)|^{p} d t\right)^{1 / p}
\end{align*}
$$

In the case of symmetry for w, we have

$$
\begin{align*}
& \left|\int_{a}^{b} w(t) h(t) d t-\frac{h(a)+h(b)}{2} \int_{a}^{b} w(t) d t\right| \tag{3.6}\\
& \leq \frac{(b-a)^{1+2 / q}}{2^{1+1 / q}(q+2)^{1 / q}} L\left(\int_{a}^{b} K(t)|w(t)|^{p} d t\right)^{1 / p}
\end{align*}
$$

In 1906, Fejér [4], while studying trigonometric polynomials, obtained the following inequalities which generalize that of Hermite \& Hadamard:

Theorem 4 (Fejér's Inequality). Consider the integral $\int_{a}^{b} h(x) w(x) d x$, where h is a convex function in the interval (a, b) and w is a positive function in the same interval such that

$$
w(x)=w(a+b-x), \text { for any } x \in[a, b]
$$

i.e., $y=w(x)$ is a symmetric curve with respect to the straight line which contains the point $\left(\frac{1}{2}(a+b), 0\right)$ and is normal to the x-axis. Under those conditions the following inequalities are valid:

$$
\begin{equation*}
h\left(\frac{a+b}{2}\right) \leq \frac{1}{\int_{a}^{b} w(x) d x} \int_{a}^{b} h(x) w(x) d x \leq \frac{h(a)+h(b)}{2} \tag{3.7}
\end{equation*}
$$

If h is concave on (a, b), then the inequalities reverse in (3.7).
If $w \equiv 1$, then (3.7) becomes the well known Hermite-Hadamard inequality

$$
\begin{equation*}
h\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} h(x) d x \leq \frac{h(a)+h(b)}{2} \tag{3.8}
\end{equation*}
$$

We have the following reverse of Fejér's inequality:
Corollary 5. Let $h:[a, b] \rightarrow \mathbb{R}$ be a convex function and $w:[a, b] \rightarrow(0, \infty)$ be continuous, symmetrical on $[a, b]$ and such that $h^{\prime} \in L_{q}[a, b]$, where $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
\begin{align*}
& \text { 9) } 0 \leq \frac{h(a)+h(b)}{2}-\frac{1}{\int_{a}^{b} w(x) d x} \int_{a}^{b} h(x) w(x) d x \tag{3.9}\\
& \leq \frac{1}{2}\left(\int_{a}^{b} K(t)|w(t)|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}\left|\frac{a+b}{2}-t\right|\left|h^{\prime}(t)-h^{\prime}(a+b-t)\right|^{q} d t\right)^{1 / q}
\end{align*}
$$

Moreover, if h^{\prime} is L-Lipschitzian, then

$$
\begin{align*}
& 0 \leq \frac{h(a)+h(b)}{2}-\frac{1}{\int_{a}^{b} w(x) d x} \int_{a}^{b} h(x) w(x) d x \tag{3.10}\\
& \leq \frac{(b-a)^{1+2 / q}}{2^{1+1 / q}(q+2)^{1 / q}} L\left(\int_{a}^{b} K(t)|w(t)|^{p} d t\right)^{1 / p}
\end{align*}
$$

We also have:

Proposition 2. Assume that $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. Let $h:[a, b] \rightarrow \mathbb{C}$ be absolutely continuous on $[a, b]$ with $h^{\prime} \in L_{q}[a, b]$ and $w:[a, b] \rightarrow \mathbb{C}$ such that $w \in L_{p}[a, b]$, then

$$
\begin{align*}
& \text { 1) } \begin{array}{l}
\left\lvert\, \frac{\left[h(a)\left(b \int_{a}^{b} w(t) d t-\int_{a}^{b} w(t) t d t\right)+h(b)\left(\int_{a}^{b} w(t) t d t-a \int_{a}^{b} w(t) d t\right)\right]}{b-a}\right. \\
-\int_{a}^{b} w(t) h(t) d t \mid \\
\leq\left(\int_{a}^{b} K(t)|w(t)|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}\left|\frac{a+b}{2}-t\right|\left|h^{\prime}(t)-\frac{h(b)-h(a)}{b-a}\right|^{q} d t\right)^{1 / q} .
\end{array} . \tag{3.11}
\end{align*}
$$

Proof. Consider the function $g:[a, b] \rightarrow \mathbb{C}$ defined by

$$
g(t):=h(t)-\frac{h(a)(b-t)+h(b)(t-a)}{b-a}, t \in[a, b] .
$$

We have $g(a)=g(b)=0$.
If we write the inequality (2.3) for $f=\int_{a} w(t) d t$, then we get

$$
\begin{align*}
& \int_{a}^{b}\left|w(t)\left[h(t)-\frac{h(a)(b-t)+h(b)(t-a)}{b-a}\right]\right| d t \tag{3.12}\\
\leq & \left(\int_{a}^{b} K(t)|w(t)|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}\left|\frac{a+b}{2}-t\right|\left|h^{\prime}(t)-\frac{h(b)-h(a)}{b-a}\right|^{q} d t\right)^{1 / q} .
\end{align*}
$$

By the modulus property, we have

$$
\begin{aligned}
& \int_{a}^{b}\left|w(t)\left[h(t)-\frac{h(a)(b-t)+h(b)(t-a)}{b-a}\right]\right| d t \\
& \geq\left|\int_{a}^{b} w(t)\left[h(t)-\frac{h(a)(b-t)+h(b)(t-a)}{b-a}\right] d t\right| \\
& =\mid \int_{a}^{b} w(t) h(t) d t \\
& \left.-\frac{h(a)\left(b \int_{a}^{b} w(t) d t-\int_{a}^{b} w(t) t d t\right)+h(b)\left(\int_{a}^{b} w(t) t d t-a \int_{a}^{b} w(t) d t\right)}{b-a} \right\rvert\,
\end{aligned}
$$

which together with (3.12) produces the desired result (3.11).
Corollary 6. Assume that $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. Let $h:[a, b] \rightarrow \mathbb{R}$ be a convex function and $w:[a, b] \rightarrow(0, \infty)$ be continuous and such that $h^{\prime} \in L_{q}[a, b]$. Then

$$
\begin{equation*}
0 \leq \frac{h(a)[b-E(w,[a, b])]+h(b)[E(w,[a, b])-a]}{b-a}-\int_{a}^{b} w(t) h(t) d t \tag{3.13}
\end{equation*}
$$

$$
\leq \frac{1}{\int_{a}^{b} w(t) d t}\left(\int_{a}^{b} K(t)|w(t)|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}\left|\frac{a+b}{2}-t\right|\left|h^{\prime}(t)-\frac{h(b)-h(a)}{b-a}\right|^{q} d t\right)^{1 / q}
$$

where

$$
E(w,[a, b]):=\frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t) t d t
$$

4. Some Grüss' Type Inequalities

For two Lebesgue integrable functions $f, g:[a, b] \rightarrow \mathbb{R}$, consider the Čebyšev functional:

$$
\begin{equation*}
C(f, g):=\frac{1}{b-a} \int_{a}^{b} f(t) g(t) d t-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(t) d t \int_{a}^{b} g(t) d t \tag{4.1}
\end{equation*}
$$

In 1935, Grüss [5] showed that ${ }^{6}$

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{4}(M-m)(N-n) \tag{4.2}
\end{equation*}
$$

provided that there exists the real numbers m, M, n, N such that

$$
\begin{equation*}
m \leq f(t) \leq M \quad \text { and } \quad n \leq g(t) \leq N \quad \text { for a.e. } t \in[a, b] \tag{4.3}
\end{equation*}
$$

The constant $\frac{1}{4}$ is best possible in (4.2) in the sense that it cannot be replaced by a smaller quantity.

Another, however less known result, even though it was obtained by Čebyšev in 1882, [2], states that

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{12}\left\|f^{\prime}\right\|_{\infty}\left\|g^{\prime}\right\|_{\infty}(b-a)^{2} \tag{4.4}
\end{equation*}
$$

provided that f^{\prime}, g^{\prime} exist and are continuous on $[a, b]$ and $\left\|f^{\prime}\right\|_{\infty}=\sup _{t \in[a, b]}\left|f^{\prime}(t)\right|$. The constant $\frac{1}{12}$ cannot be improved in the general case.

The Čebyšev inequality (4.4) also holds if $f, g:[a, b] \rightarrow \mathbb{R}$ are assumed to be absolutely continuous and $f^{\prime}, g^{\prime} \in L_{\infty}[a, b]$ while $\left\|f^{\prime}\right\|_{\infty}=\operatorname{essup}_{t \in[a, b]}\left|f^{\prime}(t)\right|$.

A mixture between Grüss' result (3.7) and Čebyšev's one (4.4) is the following inequality obtained by Ostrowski in 1970, [12]:

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{8}(b-a)(M-m)\left\|g^{\prime}\right\|_{\infty} \tag{4.5}
\end{equation*}
$$

provided that f is Lebesgue integrable and satisfies (3.8) while g is absolutely continuous and $g^{\prime} \in L_{\infty}[a, b]$. The constant $\frac{1}{8}$ is best possible in (4.5).

The case of euclidean norms of the derivative was considered by A. Lupaş in [8] in which he proved that

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{\pi^{2}}\left\|f^{\prime}\right\|_{2}\left\|g^{\prime}\right\|_{2}(b-a) \tag{4.6}
\end{equation*}
$$

provided that f, g are absolutely continuous and $f^{\prime}, g^{\prime} \in L_{2}[a, b]$. The constant $\frac{1}{\pi^{2}}$ is the best possible.

Consider

$$
K(t):=\left\{\begin{array}{c}
t-a \text { if } a \leq t \leq \frac{a+b}{2}, \\
b-t \text { if } \frac{a+b}{2}<t \leq b
\end{array}=\frac{1}{2}(b-a)-\left|\frac{a+b}{2}-t\right|\right.
$$

for $t \in[a, b]$.
We have:

Theorem 5. Assume that $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. If $f, g:[a, b] \rightarrow \mathbb{C}$ are such that f is absolutely continuous with $f^{\prime} \in L_{p}[a, b]$ and $g \in L_{q}[a, b]$, then

$$
\begin{align*}
\leq\left(\int_{a}^{b} K(t)\left|f^{\prime}(t)\right|^{p} d t\right)^{1 / p}\left(\int_{a}^{b} \left\lvert\, \frac{a+b}{2}-\right.\right. & t\left|\left|g(t)-\frac{1}{b-a} \int_{a}^{b} g(s) d s\right|^{q} d t\right)^{1 / q} \tag{4.7}\\
& \leq\left(\int_{a}^{b} K(t)\left|f^{\prime}(t)\right|^{p} d t\right)^{1 / p} B(g)
\end{align*}
$$

where

$$
B(g):=\left\{\begin{array}{l}
\frac{1}{2^{1 / q}}(b-a)^{2 / q}\left(\frac{1}{b-a} \int_{a}^{b}\left|g(t)-\frac{1}{b-a} \int_{a}^{b} g(s) d s\right|^{q} d t\right)^{1 / q}, \\
\frac{1}{2^{2 / q}}(b-a)^{2 / q}\left\|g-\frac{1}{b-a} \int_{a}^{b} g(s) d s\right\|_{[a, b], \infty} \text { if } g \in L_{\infty}[a, b]
\end{array}\right.
$$

Proof. We have the following Sonin identity

$$
\begin{equation*}
C(f, g)=\frac{1}{b-a} \int_{a}^{b}(f(t)-\gamma)\left(g(t)-\frac{1}{b-a} \int_{a}^{b} g(s) d s\right) d t \tag{4.8}
\end{equation*}
$$

for any $\gamma \in \mathbb{C}$, that can be easily proved by developing the right hand side of (4.8).
Observe that, if we take $h(t)=g(t)-\frac{1}{b-a} \int_{a}^{b} g(s) d s$, then we have $\int_{a}^{b} h(t) d t=0$ and by Corollary 2 we get

$$
\begin{aligned}
& |C(f, g)| \\
& \leq\left(\int_{a}^{b} K(t)\left|f^{\prime}(t)\right|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}\left|\frac{a+b}{2}-t\right|\left|g(t)-\frac{1}{b-a} \int_{a}^{b} g(s) d s\right|^{q} d t\right)^{1 / q}
\end{aligned}
$$

Observe that

$$
\begin{aligned}
& \left(\int_{a}^{b}\left|\frac{a+b}{2}-t\right|\left|g(t)-\frac{1}{b-a} \int_{a}^{b} g(s) d s\right|^{q} d t\right)^{1 / q} \\
& \leq \max _{t \in[a, b]}\left|\frac{a+b}{2}-t\right|^{1 / q}(b-a)^{1 / q}\left(\frac{1}{b-a} \int_{a}^{b}\left|g(t)-\frac{1}{b-a} \int_{a}^{b} g(s) d s\right|^{q} d t\right)^{1 / q} \\
& =\frac{1}{2^{1 / q}}(b-a)^{2 / q}\left(\frac{1}{b-a} \int_{a}^{b}\left|g(t)-\frac{1}{b-a} \int_{a}^{b} g(s) d s\right|^{q} d t\right)^{1 / q}
\end{aligned}
$$

which proves the first branch in the second inequality in (4.7).
We also have

$$
\begin{aligned}
\left(\left.\int_{a}^{b}\left|\frac{a+b}{2}-t\right| \right\rvert\, g(t)-\frac{1}{b-a}\right. & \left.\left.\int_{a}^{b} g(s) d s\right|^{q} d t\right)^{1 / q} \\
& \leq \frac{1}{2^{2 / q}}(b-a)^{2 / q}\left\|g-\frac{1}{b-a} \int_{a}^{b} g(s) d s\right\|_{[a, b], \infty}
\end{aligned}
$$

which proves the second branch in the second inequality in (4.7).

References

[1] P. R. Beesack, On an integral inequality of Z. Opial. Trans. Am. Math. Soc. 104 (1962), 470-475.
[2] P. L. Chebyshev, Sur les expressions approximatives des intègrals dèfinis par les outres prises entre les même limites, Proc. Math. Soc. Charkov, 2 (1882), 93-98.
[3] S. S. Dragomir, Generalizations of Opial's inequalities for two functions and applications, Preprint RGMIA Res. Rep. Coll. 21 (2018), Art.
[4] L. Fejér, Über die Fourierreihen, II, (In Hungarian) Math. Naturwiss, Anz. Ungar. Akad. Wiss., 24 (1906), 369-390.
[5] G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x$ -$\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x$, Math. Z., 39(1935), 215-226.
[6] L.-G. Hua, On an inequality of Opial. Sci. Sinica 14 (1965), 789-790.
[7] N. Levinson, On an inequality of Opial and Beesack. Proc. Amer. Math. Soc. 15 (1964), 565-566.
[8] A. Lupaş, The best constant in an integral inequality, Mathematica (Cluj, Romania), $\mathbf{1 5}(\mathbf{3 8})(2)$ (1973), 219-222.
[9] C. L. Mallows, An even simpler proof of Opial's inequality. Proc. Amer. Math. Soc. 16 (1965), 173.
[10] C. Olech, A simple proof of a certain result of Z. Opial. Ann. Polon. Math. 8 (1960), 61-63.
[11] Z. Opial, Sur une inégalité. Ann. Polon. Math. 8 (1960), 29-32.
[12] A. M. Ostrowski, On an integral inequality, Aequat. Math., 4 (1970), 358-373.
[13] R. N. Pederson, On an inequality of Opial, Beesack and Levinson. Proc. Amer. Math. Soc. 16 (1965), 174.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15; 26D10.
 Key words and phrases. Opial's inequality, Trapezoid inequality, Fejér's inequality, Grüss' inequality.

