SOME WEIGHTED VERSIONS OF STEKLOFF AND ALMANSI INEQUALITIES WITH APPLICATIONS

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

In this paper we establish some weighted versions of Stekloff and Almansi inequalities. Applications for bounding the weighted Čebyšev functional are also given.

1. Introduction

It is well known that, see for instance [5], or [9], if $u \in C^{1}([a, b], \mathbb{R})$, namely u is continuous on $[a, b]$ and has a derivative that is continuous on (a, b) and satisfies $u(a)=u(b)=0$, then the following Wirtinger type inequality is valid

$$
\begin{equation*}
\int_{a}^{b} u^{2}(t) d t \leq \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b}\left[u^{\prime}(t)\right]^{2} d t \tag{1.1}
\end{equation*}
$$

with the equality holding if and only if $u(t)=K \sin \left[\frac{\pi(t-a)}{b-a}\right]$ for some constant $K \in \mathbb{R}$.

If $u \in C^{1}([a, b], \mathbb{R})$ satisfies the condition $u(a)=0$, then also

$$
\begin{equation*}
\int_{a}^{b} u^{2}(t) d t \leq \frac{4(b-a)^{2}}{\pi^{2}} \int_{a}^{b}\left[u^{\prime}(t)\right]^{2} d t \tag{1.2}
\end{equation*}
$$

and the equality holds if and only if $u(t)=L \sin \left[\frac{\pi(t-a)}{2(b-a)}\right]$ for some constant $L \in \mathbb{R}$.
For some related Wirtinger type integral inequalities see [1], [3], [5] and [8]-[11].
In 1901, W. Stekloff, [13], proved that, if $u \in C^{1}([a, b], \mathbb{R})$ and $\int_{a}^{b} u(t) d t=0$, then

$$
\begin{equation*}
\int_{a}^{b} u^{2}(x) d x \leq \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b}\left[u^{\prime}(x)\right]^{2} d x \tag{1.3}
\end{equation*}
$$

In addition, if $u(a)=u(b)$, then, as proved by E. Almansi in 1905, [1], the inequality (1.3) can be improved as follows

$$
\begin{equation*}
\int_{a}^{b} u^{2}(x) d x \leq \frac{(b-a)^{2}}{4 \pi^{2}} \int_{a}^{b}\left[u^{\prime}(x)\right]^{2} d x \tag{1.4}
\end{equation*}
$$

We can state the following result for complex functions $h:[a, b] \rightarrow \mathbb{C}$.
Theorem 1. If $h \in C^{1}([a, b], \mathbb{C})$ and $\int_{a}^{b} h(t) d t=0$, then

$$
\begin{equation*}
\int_{a}^{b}|h(x)|^{2} d x \leq \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b}\left|h^{\prime}(x)\right|^{2} d x \tag{1.5}
\end{equation*}
$$

[^0]RGMIA Res. Rep. Coll. 21 (2018), Art. 68, 10 pp.

In addition, if $h(a)=h(b)$, then

$$
\begin{equation*}
\int_{a}^{b}|h(x)|^{2} d x \leq \frac{(b-a)^{2}}{4 \pi^{2}} \int_{a}^{b}\left|h^{\prime}(x)\right|^{2} d x \tag{1.6}
\end{equation*}
$$

The proof follows by (1.3) and (1.4) applied for $u=\operatorname{Re} h$ and $u=\operatorname{Im} h$ and by adding the corresponding inequalities.

In the recent paper [6] we obtained the following simple weighted version of Wirtinger's inequality

Theorem 2. Assume that $w:[a, b] \rightarrow(0, \infty)$ is continuous on $[a, b]$ and $f \in$ $C^{1}([a, b], \mathbb{C})$ is a function with complex values and $f(a)=f(b)=0$, then

$$
\begin{equation*}
\int_{a}^{b}|f(t)|^{2} w(t) d t \leq \frac{1}{\pi^{2}}\left(\int_{a}^{b} w(s) d s\right)^{2} \int_{a}^{b} \frac{\left|f^{\prime}(t)\right|^{2}}{w(t)} d t \tag{1.7}
\end{equation*}
$$

The equality holds in (3.14) iff

$$
f(t)=K \sin \left[\frac{\pi \int_{a}^{t} w(s) d s}{\int_{a}^{b} w(s) d s}\right], K \in \mathbb{C} .
$$

If $f(a)=0$, then

$$
\begin{equation*}
\int_{a}^{b}|f(t)|^{2} w(t) d t \leq \frac{4}{\pi^{2}}\left(\int_{a}^{b} w(s) d s\right)^{2} \int_{a}^{b} \frac{\left|f^{\prime}(t)\right|^{2}}{w(t)} d t \tag{1.8}
\end{equation*}
$$

with equality iff

$$
f(t)=K \sin \left[\frac{\pi \int_{a}^{t} w(s) d s}{2 \int_{a}^{b} w(s) d s}\right], K \in \mathbb{C} .
$$

Motivated by the above results, we establish in this paper some weighted versions of Stekloff and Almansi inequalities (1.5) and (1.6) above. Applications for bounding the weighted Čebyšev functional are also given.

2. Some Related Inequalities

If we assume that $g \in C^{1}([a, b], \mathbb{C})$ and take

$$
h(t)=\tilde{g}(t):=\frac{1}{2}[g(a+b-t)-g(t)], t \in[a, b],
$$

then $\int_{a}^{b} h(t) d t=0$,

$$
\begin{aligned}
\int_{a}^{b}|h(t)|^{2} d t & =\frac{1}{4} \int_{a}^{b}|g(a+b-t)-g(t)|^{2} d t \\
& =\frac{1}{4}\left[\int_{a}^{b}|g(a+b-t)|^{2}-2 \operatorname{Re}(g(a+b-t) \overline{g(t)})+|g(t)|^{2}\right] d t \\
& =\frac{1}{2}\left[\int_{a}^{b}|g(t)|^{2} d t-\int_{a}^{b} \operatorname{Re}(g(a+b-t) \overline{g(t)}) d t\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{a}^{b}\left|g^{\prime}(t)\right|^{2} d t & =\frac{1}{4} \int_{a}^{b}\left|g^{\prime}(a+b-t)+g^{\prime}(t)\right|^{2} d t \\
& =\frac{1}{2}\left[\int_{a}^{b}\left|g^{\prime}(t)\right|^{2} d t+\int_{a}^{b} \operatorname{Re}\left(g^{\prime}(a+b-t) \overline{g^{\prime}(t)}\right) d t\right]
\end{aligned}
$$

and by (1.5) we get

$$
\begin{align*}
0 & \leq \int_{a}^{b}|g(t)|^{2} d t-\int_{a}^{b} \operatorname{Re}(g(a+b-t) \overline{g(t)}) d t \tag{2.1}\\
& \leq \frac{(b-a)^{2}}{\pi^{2}}\left[\int_{a}^{b}\left|g^{\prime}(t)\right|^{2}+\int_{a}^{b} \operatorname{Re}\left(g^{\prime}(a+b-t) \overline{g^{\prime}(t)}\right) d t\right]
\end{align*}
$$

If we assume that $g \in C^{1}([a, b], \mathbb{C})$ with $\int_{a}^{b} g(t) d t=0$, and if we take

$$
h(t)=\breve{g}(t):=\frac{1}{2}[g(a+b-t)+g(t)]
$$

we have $h(a)=h(b)$ and by (1.6) we have

$$
\begin{align*}
0 & \leq \frac{1}{2}\left[\int_{a}^{b}|g(t)|^{2} d t+\int_{a}^{b} \operatorname{Re}(g(a+b-t) \overline{g(t)}) d t\right] \tag{2.2}\\
& \leq \frac{(b-a)^{2}}{16 \pi^{2}} \int_{a}^{b}\left|g^{\prime}(t)-g^{\prime}(a+b-t)\right|^{2} d t \\
& =\frac{(b-a)^{2}}{8 \pi^{2}}\left[\int_{a}^{b}\left|g^{\prime}(t)\right|^{2}-\int_{a}^{b} \operatorname{Re}\left(g^{\prime}(a+b-t) \overline{g^{\prime}(t)}\right) d t\right]
\end{align*}
$$

If g^{\prime} is Lipschitzian with the constant K, namely $\left|g^{\prime}(t)-g^{\prime}(s)\right| \leq K|t-s|$, then

$$
\frac{1}{2}\left|g^{\prime}(t)-g^{\prime}(a+b-t)\right| \leq K\left|t-\frac{a+b}{2}\right|, t \in[a, b]
$$

By the inequality (2.2) we have

$$
\begin{aligned}
0 & \leq \int_{a}^{b}|g(t)|^{2} d t+\int_{a}^{b} \operatorname{Re}(g(a+b-t) \overline{g(t)}) d t \\
& \leq \frac{(b-a)^{2}}{2 \pi^{2}} \int_{a}^{b}\left|\frac{g^{\prime}(t)-g^{\prime}(a+b-t)}{2}\right|^{2} d t \leq \frac{(b-a)^{2}}{2 \pi^{2}} K^{2} \int_{a}^{b}\left|t-\frac{a+b}{2}\right|^{2} d t
\end{aligned}
$$

and since

$$
\int_{a}^{b}\left|t-\frac{a+b}{2}\right|^{2} d t=\frac{(b-a)^{3}}{12}
$$

hence we obtain the inequality

$$
\begin{equation*}
0 \leq \int_{a}^{b}|g(t)|^{2} d t+\int_{a}^{b} \operatorname{Re}(g(a+b-t) \overline{g(t)}) d t \leq \frac{(b-a)^{3}}{24 \pi^{2}} K^{2} \tag{2.3}
\end{equation*}
$$

If we assume that $g \in C^{1}([a, b], \mathbb{C})$ and take $h=g-\frac{1}{b-a} \int_{a}^{b} g(s) d s$ in (1.5), then we get

$$
\int_{a}^{b}\left|g(x)-\frac{1}{b-a} \int_{a}^{b} g(s) d s\right|^{2} d x \leq \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b}\left|g^{\prime}(x)\right|^{2} d x
$$

which is equivalent to

$$
\begin{equation*}
0 \leq \frac{1}{b-a} \int_{a}^{b}|g(x)|^{2} d x-\left|\frac{1}{b-a} \int_{a}^{b} g(x) d x\right|^{2} \leq \frac{b-a}{\pi^{2}} \int_{a}^{b}\left|g^{\prime}(x)\right|^{2} d x \tag{2.4}
\end{equation*}
$$

If $g \in C^{1}([a, b], \mathbb{C})$ with $g(a)=g(b)$, then we have a better inequality than (2.4), namely

$$
\begin{equation*}
0 \leq \frac{1}{b-a} \int_{a}^{b}|g(x)|^{2} d x-\left|\frac{1}{b-a} \int_{a}^{b} g(x) d x\right|^{2} \leq \frac{b-a}{4 \pi^{2}} \int_{a}^{b}\left|g^{\prime}(x)\right|^{2} d x \tag{2.5}
\end{equation*}
$$

Moreover, if we write the inequality (2.5) for \breve{g} that is symmetrical on $[a, b]$, then we get

$$
\begin{equation*}
0 \leq \frac{1}{b-a} \int_{a}^{b}|\breve{g}(x)|^{2} d x-\left|\frac{1}{b-a} \int_{a}^{b} g(x) d x\right|^{2} \leq \frac{b-a}{4 \pi^{2}} \int_{a}^{b}\left|\widetilde{g^{\prime}}(x)\right|^{2} d x . \tag{2.6}
\end{equation*}
$$

In addition, if g^{\prime} is Lipschitzian with the constant $K>0$, then we get from (2.6) that

$$
\begin{equation*}
0 \leq \frac{1}{b-a} \int_{a}^{b}|\breve{g}(x)|^{2} d x-\left|\frac{1}{b-a} \int_{a}^{b} g(x) d x\right|^{2} \leq \frac{1}{48 \pi^{2}} K^{2}(b-a)^{4} \tag{2.7}
\end{equation*}
$$

Finally if g is symmetrical on $[a, b]$, namely $g(a+b-t)=g(t)$ for any $t \in[a, b]$, g^{\prime} is Lipschitzian with the constant $K>0$, then we get from (2.7) that

$$
\begin{equation*}
0 \leq \frac{1}{b-a} \int_{a}^{b}|g(x)|^{2} d x-\left|\frac{1}{b-a} \int_{a}^{b} g(x) d x\right|^{2} \leq \frac{1}{48 \pi^{2}} K^{2}(b-a)^{4} \tag{2.8}
\end{equation*}
$$

3. Composite Inequalities

We have:
Theorem 3. Let $g:[a, b] \rightarrow[g(a), g(b)]$ be a continuous strictly increasing function that is of class C^{1} on (a, b).
(i) If $f \in C^{1}([a, b], \mathbb{C})$ with $\frac{f^{\prime}}{\sqrt{g^{\prime}(t)}} \in L_{2}[a, b]$ and $\int_{a}^{b} f(t) g^{\prime}(t) d t=0$, then

$$
\begin{equation*}
\int_{a}^{b}|f(t)|^{2} g^{\prime}(t) d t \leq \frac{[g(b)-g(a)]^{2}}{\pi^{2}} \int_{a}^{b} \frac{\left|f^{\prime}(t)\right|^{2}}{g^{\prime}(t)} d t \tag{3.1}
\end{equation*}
$$

(ii) In addition, if $f(a)=f(b)$, then we have the better inequality

$$
\begin{equation*}
\int_{a}^{b}|f(t)|^{2} g^{\prime}(t) d t \leq \frac{[g(b)-g(a)]^{2}}{4 \pi^{2}} \int_{a}^{b} \frac{\left|f^{\prime}(t)\right|^{2}}{g^{\prime}(t)} d t \tag{3.2}
\end{equation*}
$$

Proof. (i) We write the inequality (1.5) for the function $h=f \circ g^{-1}$ on the interval $[g(a), g(b)]$ to get

$$
\begin{equation*}
\int_{g(a)}^{g(b)}\left|\left(f \circ g^{-1}\right)(z)\right|^{2} d z \leq \frac{(g(b)-g(a))^{2}}{\pi^{2}} \int_{g(a)}^{g(b)}\left|\left(f \circ g^{-1}\right)^{\prime}(z)\right|^{2} d z, \tag{3.3}
\end{equation*}
$$

provided

$$
\int_{g(a)}^{g(b)} f \circ g^{-1}(z) d z=0
$$

If $f:[c, d] \rightarrow \mathbb{C}$ is absolutely continuous on $[c, d]$, then $f \circ g^{-1}:[g(c), g(d)] \rightarrow \mathbb{C}$ is absolutely continuous on $[g(c), g(d)]$ and using the chain rule and the derivative of inverse functions we have

$$
\begin{equation*}
\left(f \circ g^{-1}\right)^{\prime}(z)=\left(f^{\prime} \circ g^{-1}\right)(z)\left(g^{-1}\right)^{\prime}(z)=\frac{\left(f^{\prime} \circ g^{-1}\right)(z)}{\left(g^{\prime} \circ g^{-1}\right)(z)} \tag{3.4}
\end{equation*}
$$

for almost every (a.e.) $z \in[g(c), g(d)]$.
Using the inequality (3.3) we then get

$$
\begin{equation*}
\int_{g(a)}^{g(b)}\left|\left(f \circ g^{-1}\right)(z)\right|^{2} d z \leq \frac{(g(b)-g(a))^{2}}{\pi^{2}} \int_{g(a)}^{g(b)}\left|\frac{\left(f^{\prime} \circ g^{-1}\right)(z)}{\left(g^{\prime} \circ g^{-1}\right)(z)}\right|^{2} d z \tag{3.5}
\end{equation*}
$$

provided $\int_{g(a)}^{g(b)} f \circ g^{-1}(z) d z=0$.
Observe also that, by the change of variable $t=g^{-1}(z), z \in[g(a), g(b)]$, we have $z=g(t)$ that gives $d z=g^{\prime}(t) d t$,

$$
\int_{g(a)}^{g(b)} f \circ g^{-1}(z) d x=\int_{a}^{b} f(t) h^{\prime}(t) d t
$$

and

$$
\begin{equation*}
\int_{g(a)}^{g(b)}\left|\left(f \circ g^{-1}\right)(z)\right|^{2} d z=\int_{a}^{b}|f(t)|^{2} g^{\prime}(t) d t \tag{3.6}
\end{equation*}
$$

We also have

$$
\int_{g(a)}^{g(b)}\left|\frac{\left(f^{\prime} \circ g^{-1}\right)(z)}{\left(g^{\prime} \circ g^{-1}\right)(z)}\right|^{2} d z=\int_{a}^{b}\left|\frac{f^{\prime}(t)}{g^{\prime}(t)}\right|^{2} g^{\prime}(t) d t=\int_{a}^{b} \frac{\left|f^{\prime}(t)\right|^{2}}{g^{\prime}(t)} d t
$$

By making use of (3.5) we get (3.1).
(ii) The inequality (3.2) follows by (3.2) in a similar way.
a). If we take $g:[a, b] \subset(0, \infty) \rightarrow \mathbb{R}, g(t)=\ln t$ and assume that $f \in$ $C^{1}([a, b], \mathbb{C})$ is a function with complex values and

$$
\begin{equation*}
\int_{a}^{b} \frac{f(t)}{t} d t=0 \tag{3.7}
\end{equation*}
$$

then by (3.1) we get

$$
\begin{equation*}
\int_{a}^{b} \frac{|f(t)|^{2}}{t} d t \leq \frac{\left[\ln \left(\frac{b}{a}\right)\right]^{2}}{\pi^{2}} \int_{a}^{b}\left|f^{\prime}(t)\right|^{2} t d t \tag{3.8}
\end{equation*}
$$

In addition, if $f(a)=f(b)$, then

$$
\begin{equation*}
\int_{a}^{b} \frac{|f(t)|^{2}}{t} d t \leq \frac{\left[\ln \left(\frac{b}{a}\right)\right]^{2}}{4 \pi^{2}} \int_{a}^{b}\left|f^{\prime}(t)\right|^{2} t d t \tag{3.9}
\end{equation*}
$$

b). If we take $g:[a, b] \subset \mathbb{R} \rightarrow(0, \infty), g(t)=\exp t$ and assume that $f \in$ $C^{1}([a, b], \mathbb{C})$ is a function with complex values and

$$
\int_{a}^{b} f(t) \exp t d t=0
$$

then by (3.1) we get

$$
\begin{equation*}
\int_{a}^{b}|f(t)|^{2} \exp t d t \leq \frac{(\exp b-\exp a)^{2}}{\pi^{2}} \int_{a}^{b}\left|f^{\prime}(t)\right|^{2} \exp (-t) d t \tag{3.10}
\end{equation*}
$$

In addition, if $f(a)=f(b)$, then

$$
\begin{equation*}
\int_{a}^{b}|f(t)|^{2} \exp t d t \leq \frac{(\exp b-\exp a)^{2}}{4 \pi^{2}} \int_{a}^{b}\left|f^{\prime}(t)\right|^{2} \exp (-t) d t \tag{3.11}
\end{equation*}
$$

c). If we take $g:[a, b] \subset(0, \infty) \rightarrow \mathbb{R}, g(t)=t^{r}, r>0$ and assume that $f \in C^{1}([a, b], \mathbb{C})$ is a function with complex values and

$$
\int_{a}^{b} f(t) t^{r} d t=0
$$

then by (3.1) we get

$$
\begin{equation*}
\int_{a}^{b}|f(t)|^{2} t^{r-1} d t \leq \frac{\left(b^{r}-a^{r}\right)^{2}}{r^{2} \pi^{2}} \int_{a}^{b}\left|f^{\prime}(t)\right|^{2} t^{1-r} d t \tag{3.12}
\end{equation*}
$$

In addition, if $f(a)=f(b)$, then

$$
\begin{equation*}
\int_{a}^{b}|f(t)|^{2} t^{r-1} d t \leq \frac{\left(b^{r}-a^{r}\right)^{2}}{4 r^{2} \pi^{2}} \int_{a}^{b}\left|f^{\prime}(t)\right|^{2} t^{1-r} d t \tag{3.13}
\end{equation*}
$$

If $w:[a, b] \rightarrow \mathbb{R}$ is continuous and positive on the interval $[a, b]$, then the function $W:[a, b] \rightarrow[0, \infty), W(x):=\int_{a}^{x} w(s) d s$ is strictly increasing and differentiable on (a, b). We have $W^{\prime}(x)=w(x)$ for any $x \in(a, b)$.

Corollary 1. Assume that $w:[a, b] \rightarrow(0, \infty)$ is continuous on $[a, b]$ and $f \in$ $C^{1}([a, b], \mathbb{C})$.
(i) If $\frac{f^{\prime}}{\sqrt{w}} \in L_{2}[a, b]$ and $\int_{a}^{b} f(t) w(t) d t=0$, then

$$
\begin{equation*}
\int_{a}^{b}|f(t)|^{2} w(t) d t \leq \frac{1}{\pi^{2}}\left(\int_{a}^{b} w(s) d s\right)^{2} \int_{a}^{b} \frac{\left|f^{\prime}(t)\right|^{2}}{w(t)} d t \tag{3.14}
\end{equation*}
$$

(ii) In addition, if $f(a)=f(b)$, then we have the better inequality

$$
\begin{equation*}
\int_{a}^{b}|f(t)|^{2} w(t) d t \leq \frac{1}{4 \pi^{2}}\left(\int_{a}^{b} w(s) d s\right)^{2} \int_{a}^{b} \frac{\left|f^{\prime}(t)\right|^{2}}{w(t)} d t \tag{3.15}
\end{equation*}
$$

4. Some Inequalities for the Weighted Čebyšev Functional

Consider now the weighted Čebyšev functional

$$
\begin{align*}
C_{w}(f, g):= & \frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t) f(t) g(t) d t \tag{4.1}\\
& \quad-\frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t) f(t) d t \frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t) g(t) d t
\end{align*}
$$

where $f, g, w:[a, b] \rightarrow \mathbb{R}$ and $w(t) \geq 0$ for a.e. $t \in[a, b]$ are measurable functions such that the involved integrals exist and $\int_{a}^{b} w(t) d t>0$.

In [4], Cerone and Dragomir obtained, among others, the following inequalities:

$$
\begin{array}{r}
\leq \frac{1}{2}(M-m) \frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t)\left|g(t)-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(s) g(s) d s\right| d t \tag{4.2}\\
\leq \frac{1}{2}(M-m)\left[\frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t)\left|g(t)-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(s) g(s) d s\right|^{p} d t\right]^{\frac{1}{p}} \\
\leq \frac{1}{2}(M-m) \operatorname{essup}_{t \in[a, b]}\left|g(t)-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(s) g(s) d s\right|
\end{array}
$$

for $p>1$, provided $-\infty<m \leq f(t) \leq M<\infty$ for a.e. $t \in[a, b]$ and the corresponding integrals are finite. The constant $\frac{1}{2}$ is sharp in all the inequalities in (4.2) in the sense that it cannot be replaced by a smaller constant.

In addition, if $-\infty<n \leq g(t) \leq N<\infty$ for a.e. $t \in[a, b]$, then the following refinement of the celebrated Grüss inequality is obtained:

$$
\begin{equation*}
\left|C_{w}(f, g)\right| \tag{4.3}
\end{equation*}
$$

$$
\begin{aligned}
& \leq \frac{1}{2}(M-m) \frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t)\left|g(t)-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(s) g(s) d s\right| d t \\
\leq & \frac{1}{2}(M-m)\left[\frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t)\left|g(t)-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(s) g(s) d s\right|^{2} d t\right]^{\frac{1}{2}} \\
& \leq \frac{1}{4}(M-m)(N-n)
\end{aligned}
$$

Here, the constants $\frac{1}{2}$ and $\frac{1}{4}$ are also sharp in the sense mentioned above.
We have:
Lemma 1. Assume that $w:[a, b] \rightarrow(0, \infty)$ is continuous on $[a, b]$ and $h \in$ $C^{1}([a, b], \mathbb{C})$ with $\frac{h^{\prime}}{\sqrt{w}} \in L_{2}[a, b]$. Then

$$
\begin{align*}
0 \leq & C_{w}(h, \bar{h}) \tag{4.4}\\
= & \frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t)|h(t)|^{2} d t-\left|\frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t) h(t) d t\right|^{2} \\
& \leq \frac{1}{\pi^{2}} \int_{a}^{b} w(t) d t \int_{a}^{b} \frac{\left|h^{\prime}(t)\right|^{2}}{w(t)} d t
\end{align*}
$$

In addition, if $h(a)=h(b)$, then

$$
\begin{equation*}
0 \leq C_{w}(h, \bar{h}) \leq \frac{1}{4 \pi^{2}} \int_{a}^{b} w(t) d t \int_{a}^{b} \frac{\left|h^{\prime}(t)\right|^{2}}{w(t)} d t \tag{4.5}
\end{equation*}
$$

Proof. Let

$$
f(t):=h(t)-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(s) h(s) d s
$$

then

$$
\int_{a}^{b} f(t) w(t) d t=\int_{a}^{b}\left(h(t)-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(s) h(s) d s\right) w(t) d t=0
$$

From (3.14) we have

$$
\begin{align*}
& \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b}\left|h(t)-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(s) h(s) d s\right|^{2} w(t) d t \tag{4.6}\\
& \leq \frac{1}{\pi^{2}} \int_{a}^{b} w(t) d t \int_{a}^{b} \frac{\left|h^{\prime}(t)\right|^{2}}{w(t)} d t
\end{align*}
$$

and since

$$
\begin{aligned}
& \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b}\left|h(t)-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(s) h(s) d s\right|^{2} w(t) d t \\
& =\frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t)|h(t)|^{2} d t-\left|\frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t) h(t) d t\right|^{2}
\end{aligned}
$$

hence the inequality (4.4) is proved.
The inequality (4.5) follows by (3.15) in a similar way and we omit the details.
We have the following Grüss' type inequality:
Theorem 4. Assume that $w:[a, b] \rightarrow(0, \infty)$ is continuous on $[a, b]$ and $f, g \in$ $C^{1}([a, b], \mathbb{C})$ with $\frac{f^{\prime}}{\sqrt{w}}, \frac{g^{\prime}}{\sqrt{w}} \in L_{2}[a, b]$. Then

$$
\begin{align*}
&\left|C_{w}(f, g)\right| \leq\left[C_{w}(f, \bar{f})\right]^{1 / 2}\left[C_{w}(g, \bar{g})\right]^{1 / 2} \tag{4.7}\\
& \leq\left\{\begin{array}{l}
\frac{1}{\pi^{2}} \int_{a}^{b} w(t) d t\left(\int_{a}^{b} \frac{\left|f^{\prime}(t)\right|^{2}}{w(t)} d t\right)^{1 / 2}\left(\int_{a}^{b} \frac{\left|g^{\prime}(t)\right|^{2}}{w(t)} d t\right)^{1 / 2}, \\
\frac{1}{2 \pi^{2}} \int_{a}^{b} w(t) d t\left(\int_{a}^{b} \frac{\left|f^{\prime}(t)\right|^{2}}{w(t)} d t\right)^{1 / 2}\left(\int_{a}^{b} \frac{\left|g^{\prime}(t)\right|^{2}}{w(t)} d t\right)^{1 / 2} \\
\text { if either } f(a)=f(b) \text { or } g(a)=g(b), \\
\frac{1}{4 \pi^{2}} \int_{a}^{b} w(t) d t\left(\int_{a}^{b} \frac{\left|f^{\prime}(t)\right|^{2}}{w(t)} d t\right)^{1 / 2}\left(\int_{a}^{b} \frac{\left|g^{\prime}(t)\right|^{2}}{w(t)} d t\right)^{1 / 2} \\
\text { if } f(a)=f(b) \text { and } g(a)=g(b) .
\end{array}\right.
\end{align*}
$$

Proof. The first inequality follows by the equality

$$
\begin{aligned}
C_{w}(f, g)=\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b}(f(t) & \left.-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(s) f(s) d s\right) \\
& \times\left(g(t)-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(s) g(s) d s\right) w(t) d t
\end{aligned}
$$

and by the Cauchy-Bunyakovsky-Schwarz inequality.
The rest follows by Lemma 1

For $w \equiv 1$ we consider the unweighted Čebyšev functional

$$
C(f, g):=\frac{1}{b-a} \int_{a}^{b} f(t) g(t) d t-\frac{1}{b-a} \int_{a}^{b} f(t) d t \frac{1}{b-a} \int_{a}^{b} g(t) d t
$$

We have the following particular result:
Corollary 2. Assume that $f, g \in C^{1}([a, b], \mathbb{C})$ with $f^{\prime}, g^{\prime} \in L_{2}[a, b]$. Then

$$
\begin{align*}
&|C(f, g)| \leq[C(f, \bar{f})]^{1 / 2}[C(g, \bar{g})]^{1 / 2} \tag{4.8}\\
& \leq\left\{\begin{array}{l}
\frac{1}{\pi^{2}}(b-a)\left(\int_{a}^{b}\left|f^{\prime}(t)\right|^{2} d t\right)^{1 / 2}\left(\int_{a}^{b}\left|g^{\prime}(t)\right|^{2} d t\right)^{1 / 2} \\
\frac{1}{2 \pi^{2}}(b-a)\left(\int_{a}^{b}\left|f^{\prime}(t)\right|^{2} d t\right)^{1 / 2}\left(\int_{a}^{b}\left|g^{\prime}(t)\right|^{2} d t\right)^{1 / 2} \\
\text { if either } f(a)=f(b) \text { or } g(a)=g(b) \\
\frac{1}{4 \pi^{2}}(b-a)\left(\int_{a}^{b}\left|f^{\prime}(t)\right|^{2} d t\right)^{1 / 2}\left(\int_{a}^{b}\left|g^{\prime}(t)\right|^{2} d t\right)^{1 / 2} \\
\text { if } f(a)=f(b) \text { and } g(a)=g(b)
\end{array}\right.
\end{align*}
$$

Remark 1. The first inequality in (4.8) in the case of real functions was obtained by Lupas in 1973, [10].

We observe that

$$
\begin{aligned}
C(\breve{f}, g) & =\frac{1}{b-a} \int_{a}^{b} \breve{f}(t) g(t) d t-\frac{1}{b-a} \int_{a}^{b} \breve{f}(t) d t \frac{1}{b-a} \int_{a}^{b} g(t) d t \\
& =\frac{1}{b-a} \int_{a}^{b} \frac{f(t)+f(a+b-t)}{2} g(t) d t-\frac{1}{b-a} \int_{a}^{b} f(t) d t \frac{1}{b-a} \int_{a}^{b} g(t) d t \\
& =\frac{1}{b-a} \int_{a}^{b} f(t) \frac{g(t)+g(a+b-t)}{2} d t-\frac{1}{b-a} \int_{a}^{b} f(t) d t \frac{1}{b-a} \int_{a}^{b} g(t) d t \\
& =C(f, \breve{g})
\end{aligned}
$$

and

$$
\begin{aligned}
C(\breve{f}, \breve{g}) & =\frac{1}{b-a} \int_{a}^{b} \breve{f}(t) \breve{g}(t) d t-\frac{1}{b-a} \int_{a}^{b} \breve{f}(t) d t \frac{1}{b-a} \int_{a}^{b} \breve{g}(t) d t \\
& =\frac{1}{b-a} \int_{a}^{b} \breve{f}(t) \frac{g(t)+g(a+b-t)}{2} d t-\frac{1}{b-a} \int_{a}^{b} f(t) d t \frac{1}{b-a} \int_{a}^{b} g(t) d t \\
& =C(\breve{f}, g)
\end{aligned}
$$

Proposition 1. Assume that $f, g \in C^{1}([a, b], \mathbb{C})$.
(i) If f^{\prime} is Lipschitzian with the constant K and $g^{\prime} \in L_{2}[a, b]$, then

$$
\begin{equation*}
|C(\breve{f}, g)| \leq \frac{\sqrt{3}}{12 \pi^{2}} K(b-a)^{5 / 2}\left(\int_{a}^{b}\left|g^{\prime}(t)\right|^{2} d t\right)^{1 / 2} \tag{4.9}
\end{equation*}
$$

(ii) If f^{\prime} is Lipschitzian with the constant K and g^{\prime} is Lipschitzian with the constant $L>0$, then

$$
\begin{equation*}
|C(\breve{f}, g)| \leq \frac{1}{48 \pi^{2}} K L(b-a)^{4} \tag{4.10}
\end{equation*}
$$

The inequality (4.9) follows by the second inequality in (4.8) for the functions \breve{f} and g while the inequality (4.10) follows by the third inequality in (4.8) for the functions \breve{f} and \breve{g}.

Corollary 3. Assume that $f, g \in C^{1}([a, b], \mathbb{C})$.
(i) If f is symmetrical on $[a, b], f^{\prime}$ is Lipschitzian with the constant K and $g^{\prime} \in L_{2}[a, b]$, then

$$
\begin{equation*}
|C(f, g)| \leq \frac{\sqrt{3}}{12 \pi^{2}} K(b-a)^{5 / 2}\left(\int_{a}^{b}\left|g^{\prime}(t)\right|^{2} d t\right)^{1 / 2} \tag{4.11}
\end{equation*}
$$

(ii) If f and g are symmetrical on $[a, b], f^{\prime}$ is Lipschitzian with the constant K and g^{\prime} is Lipschitzian with the constant $L>0$, then

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{48 \pi^{2}} K L(b-a)^{4} \tag{4.12}
\end{equation*}
$$

References

[1] E. Almansi, Sopra una delle esperienze di Plateau. (Italian) Ann. Mat. Pura Appl. 12 (1905), No. 3, 1-17.
[2] M. W. Alomari, On Beesack-Wirtinger Inequality, Results Math., Online First 2017 Springer International Publishing DOI 10.1007/s00025-016-0644-6.
[3] P. R. Beesack, Extensions of Wirtinger's inequality. Trans. R. Soc. Can. 53, 21-30 (1959)
[4] P. Cerone and S. S. Dragomir, A refinement of the Grüss inequality and applications, Tamkang J. Math., 38(1) (2007), 37-49. Preprint RGMIA Res. Rep. Coll., 5(2) (2002), Article 14. [Online: http://rgmia.vu.edu.au/v5n2.html].
[5] J. B. Diaz and F. T. Metcalf, Variations on Wirtinger's inequality, in: Inequalities Academic Press, New York, 1967, pp. 79-103.
[6] S. S. Dragomir, Integral inequalities related to Wirtinger's result, Preprint RGMIA Res. Rep. Coll., $\mathbf{2 1}$ (2018), Art. 59, [Online http://rgmia.org/papers/v21/v21a59.pdf].
[7] L. Fejér, Über die Fourierreihen, II, (In Hungarian) Math. Naturwiss, Anz. Ungar. Akad. Wiss., 24 (1906), 369-390.
[8] R. Giova, An estimate for the best constant in the L_{p}-Wirtinger inequality with weights, J. Func. Spaces Appl.,Volume 6, Number 1 (2008), 1-16.
[9] J. Jaroš, On an integral inequality of the Wirtinger type, Appl. Math. Letters, 24 (2011) 1389-1392.
[10] A. Lupaş, The best constant in an integral inequality, Mathematica (Cluj, Romania), $15(\mathbf{3 8})(2)(1973), 219-222$.
[11] T. Ricciardi, A sharp weighted Wirtinger inequality, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 8 (1) (2005), 259-267.
[12] C. F. Lee, C. C. Yeh, C. H. Hong and R. P. Agarwal, Lyapunov and Wirtinger inequalities, Appl. Math. Lett. 17 (2004) 847-853.
[13] W. Stekloff, Problème de refroidissement d'une barre hétérogène. (French) Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 3 (1901), No. 3, 281-313.
[14] C. A. Swanson, Wirtinger's inequality, SIAM J. Math. Anal. 9 (1978) 484-491.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15; 26D10.
 Key words and phrases. Wirtinger's inequality, Stekloff inequality, Almansi inequality, Grüss' inequality.

