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SOME WEIGHTED VERSIONS OF STEKLOFF AND ALMANSI
INEQUALITIES WITH APPLICATIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some weighted versions of Stekloff and
Almansi inequalities. Applications for bounding the weighted Cebysev func-
tional are also given.

1. INTRODUCTION

It is well known that, see for instance [5], or [9], if u € C*([a,b],R), namely u
is continuous on [a, b] and has a derivative that is continuous on (a, b) and satisfies
u(a) = u(b) = 0, then the following Wirtinger type inequality is valid

(1.1) /bu2 war < _2“)2 /b ! () dt

™

with the equality holding if and only if u (t) = K sin {%_;)} for some constant
K eR.
If u € C'([a,b],R) satisfies the condition u(a) = 0, then also
b 2 b
4(b—
(1.2) / u? (t)dt < (72@/ [w (£)]” dt
a ™ a

w(t—a)

and the equality holds if and only if u (¢) = Lsin {2(177&)} for some constant L € R.

For some related Wirtinger type integral inequalities see [1], [3], [5] and [8]-[11].

In 1901, W. Stekloff, [13], proved that, if u € C* ([a,b],R) and fabu(t) dt =0,
then

(1.3) / bu2 (z)dx < ® _2“)2 / b [ (2))° da.

s

In addition, if u (a) = u (b), then, as proved by E. Almansi in 1905, [1], the inequality
(1.3) can be improved as follows

b —a? b )
(1.4) / u? (z) dx < (b4 2) / [v (z)]" da.

™

We can state the following result for complex functions A : [a,b] — C.

Theorem 1. If h € C* ([a,b],C) and [ h(t)dt = 0, then
b N2 b

(1.5) / b (2)[2 da < M/ W ()2 da.
a ™ a
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In addition, if h (a) = h(b), then

b —a)? )
(1.6) /\h(m)|2d:c§(b47r2) / W (2)|° da.

The proof follows by (1.3) and (1.4) applied for v = Reh and v = Im h and by
adding the corresponding inequalities.

In the recent paper [6] we obtained the following simple weighted version of
Wirtinger’s inequality

Theorem 2. Assume that w : [a,b] — (0,00) is continuous on [a,b] and f €
C1([a,b],C) is a function with complex values and f(a) = f(b) = 0, then

b b 2
(L.7) /\f dt<1</ w(s)ds> |fw((?)| dt

The equality holds in (3.14) iff

Wf(fw (s)ds

f ()= Ksin
(® lf:w(s)ds

If f(a) =0, then

b 2 b g 2
(1.8) / 7 () dt<4</ w(s)ds) 'J;}((tt)) dt

with equality iff

) ﬂ;w()d
f(t)KsmlW], K cC.

Motivated by the above results, we establish in this paper some weighted ver-
sions of Stekloff and Almansi inequalities (1.5) and (1.6) above. Applications for
bounding the weighted Cebysev functional are also given.

2. SOME RELATED INEQUALITIES

If we assume that g € C* ([a,b],C) and take
_ 1
h(t)=g(t):=5lgla+b—1t)—g (), t €a,b],

then [k (t)dt =0,

/|h (t)% dt =

b
/ lg(a+b—t)—g(t)dt

l g (a+b—1t) 2Re(g(a+b—t)g t))+lg(t)l2] dt

;[ ()2 dt — /abRe(g(ﬁbt)g(t))dt]

»Jk\i—‘ ,4;\.—x
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and

b b
1
[l @ra=1 [gars—n+g o

;V| |dt+/ Re( (a+b—1t)g ())dt]
and by (1.5) we get

(2.1) OS/ab|g(t)|2dt—/:Re(g(a—i—b—t)g(t))dt
[0 0f+ [ Re(s@rv-n3 <0a]

If we assume that g € C* ([a,b],C) with f g (t)dt =0, and if we take
1
Slglatb—1)+g(t)

ht) =)=
we have h (a) = h (b) and by (1.6) we have

(2.2) ;V g (¢ \dt+/a Re(g(a+b-1)g ())dt]
(blg;)z/bm/(t) g (a+b—t)dt

- V' / e(g(arb-1)y ())dt}

If ¢’ is Lipschitzian with the constant K, namely |g’ (t) — ¢’ (s)| < K |t — 5|, then
a+b

IN

1
§\gl(t)—g'(a+b—t)|§Kt— , L€ la,b].

By the inequality (2.2) we have

0</abg(t)2dt+/abRe( (a+b—1t)g ())dt

(b—a)® [C|g () =g (a+b—1t)| b—a)? , ("] a+b|
< <~ 7 —
<o ) 5 dt < 52 K ’ t 5 dt

and since , ) .
/ tia—i—b dt:(b_a),
, 2 12

hence we obtain the inequality
(2.3) 0< b\ (t)\Zdt—k bR ( (a+b—-1) (t))dt<(b_a)3K2
. = g ) elgl(a g S o .

If we assume that g € C* ([a,],C) and take h = g — 2 f;g(s) ds in (1.5),

then we get
b
/ - / s)ds / lg’ | dx,

dm<




4 S.S. DRAGOMIR

which is equivalent to

b b
(2.4) osb_la/Q|g<x>|2dw—‘bfa/a (2)d

If g € C'([a,b],C) with g(a) = g(b), then we have a better inequality than
(2.4), namely
—a / lg’ | dx.
Moreover, if we write the inequality (2.5) for g that is symmetrical on [a, b], then

we get
1 b b—a (%)~ 2
[ s@ar] <2 i@

In addition, if ¢’ is Lipschitzian with the constant K > 0, then we get from (2.6)
that

|d:v

g(z)d

(2.5) o<1/b| (@) do — | —
' I b

a

I

2.7) 0<7/\ o) de - |

Finally if g is symmetrical on [a,b] , namely g (a + b —t) = g (¢) for any t € [a, b],
¢’ is Lipschitzian with the constant K > 0, then we get from (2.7) that

1 ° ’
[ gwds

3. COMPOSITE INEQUALITIES

(b—a)'.

1 b 5 1
. < — - <
28 02— [P <

‘We have:

Theorem 3. Let g : [a,b] — [g(a),g(b)] be a continuous strictly increasing func-
tion that is of class C* on (a,b).

(i) If f € C" ([a,b],C) with 5;(0 € Ly [a,b] and [* f () g’ (t)dt =0, then

b /
(3.1) [Py o< lo (b / ‘f .
(ii) In addition, if f (a) = f (b), then we have the better mequality
(3.2) / F @) (t)dt < 47r2 / ‘f/ dt

Proof. (i) We write the inequality (1.5) for the function h = f og~! on the interval
[9(a),g(b)] to get

g(b) ) —a(a)? [9® ;2
63 [ les )@ e < COZLOL oy 6

(a) m

provided
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If f: [e,d] — C is absolutely continuous on [¢,d], then fog=t:[g(c),g(d)] — C
is absolutely continuous on [g (¢), g (d)] and using the chain rule and the derivative
of inverse functions we have

(3-4) (fog™) @ =(fog ) () (97") (2) =

for almost every (a.e.) z € [g(c),g (d)].
Using the inequality (3.3) we then get

a(®) 2 —a(a)? [9®
(3.5) /() (Fog™) (9 s < GO @) /()

(flog™") (2)
(g'og71)(2)

2

(flog™) (2) i

(90971 (2)

provided f;]((:) fogt(z)dz=0.
Observe also that, by the change of variable t = g=1 (2), z € [g(a),g(b)], we
have z = ¢ (t) that gives dz = ¢’ (¢) dt,

g(b) b
[ fegt@dn= [ rew @
g(a) a
and

g(b) 9 b 5
(3.6) /() (Fog™) ()| dz:/ F @R () dt

We also have

2
/g“’) (Feg )@, _ /b HGI ROl
ga) | (@ 0g71)(2) o 19 (1) g (t)
By making use of (3.5) we get (3.1).
(ii) The inequality (3.2) follows by (3.2) in a similar way. O

a). If we take g : [a,0] C (0,00) — R, g(¢) = Int and assume that f €
C1([a,b],C) is a function with complex values and

b
(3.7) / @dt =0,
then by (3.1) we get

(3.9) / ElG / 7 ()2 tat.

In addition, if f (a) (b), then

2
(3.9) / ‘f(tt)' dt < 1“4(3] /b|f’(t)|2tdt.

b). If we take g : [a,0] C R — (0,00), g(t) = expt and assume that f €
C1([a,b],C) is a function with complex values and

b
/ f () exptdt =0,

then by (3.1) we get

2 b
(3.10) / It exptdtg(eXpb;—;Xpa) / 1 () exp (—t) d.
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In addition, if f (a) = f (b), then

b
(3.11) /|f(t)|2eXptdt<(eXpb exp a) /|f 2 oxp (—t) dt.

c). If we take g : [a,b] C (0,00) — R, g(t) = t", r > 0 and assume that
f € C([a,b],C) is a function with complex values and

b
/ F)trdt =0,

then by (3.1) we get

b T 2 b
(312) [irapea<E28E Fipape-ra

In addition, if f (a) = f (b), then

b A
(313) [rarea<Eo0E Firope-a

If w : [a,b] — R is continuous and positive on the interval [a, b] , then the function
W :[a,b] — [0,00), W (z) := [ w(s)ds is strictly increasing and differentiable on
(a,b) . We have W’ (z) = w (x) for any = € (a,b).

Corollary 1. Assume that w : [a,b] — (0,00) is continuous on [a,b] and f €

C'([a,b],C).
()If\FeLQ[ab andff w(t)dt = 0, then

L P
(3.14) / |f(t t)ydt < — (/a w (s) ds) ey
(ii) In addition, if f (a) = f (b), then we have the better inequality
3.15 1 ’ d o | (t)|2dt
a1 [roregas s ([oee) (L0

4. SOME INEQUALITIES FOR THE WEIGHTED CEBYSEV FUNCTIONAL

Consider now the weighted Cebysev functional

b
(41) Cu(frg) = —— / w(t) f(£)g (1) dt

JPw(t)dt Ja
1 1

b b
A RCILL

where f, g, w: [a,b] — R and w (t) > 0 for a.e. t € [a, b] are measurable functions
such that the involved integrals exist and f; w(t)dt > 0.
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In [4], Cerone and Dragomir obtained, among others, the following inequalities:

(4.2) [Cu (f,9)]

1 1 b 1 b
<5 04-m) Wt/ w“)g“)‘fbw(s)ds/a w(s)g (s)ds| dt
1 1 b 1 b ik
< 3 (M —m) [f;w()dt/ () g(t)‘f;w<s>ds/a w ()9 (s) ds dt]
1 1 b
§(M m)fg[s;dg g(t)—w/a w(s)g(s)ds

for p > 1, provided —co < m < f(t) < M < oo for a.e. t € [a,b] and the
corresponding integrals are finite. The constant % is sharp in all the inequalities in
(4.2) in the sense that it cannot be replaced by a smaller constant.

In addition, if —co <n < g(t) < N < oo for a.e. t € [a,b], then the following
refinement of the celebrated Griiss inequality is obtained:

(4.3) |Cw (£, 9)

1 1 b 1 b
§(M m)f(fw(t)dt/a w (t) g(t)_fbw(s)ds/a w(s)g(s)ds|dt
1 1 b 1 b s
< 5 (M —m) f;w(t)dt/ a0~ ()ds/a“’(s)g(s)ds dt

< 3 (M —m) (N —n).

Here, the constants % and % are also sharp in the sense mentioned above.
We have:

Lemma 1. Assume that w : [a,b] — (0,00) is continuous on [a,b] and h €
C*([a,b],C) with h s € Ly [a,b]. Then

(4.4) 0<Cy (hyh)

2
1

b
:fbw(t)dt/a w (t) |h (1) dt —

a

1 b
WL w(t)h(t)dt

Si b (t)dt/b LAUT"

w2 w (t)

In addition, if h(a) = h(b), then

_ 1 /[ W)
(4.5) 0<Cy(h,h) < 4—/10 dt/|

(t)

Proof. Let
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then

b b 1 b
/Gf(t)w(t)dt:/a (h(t)—f;w(s)ds/aw(s)h(s)ds)w(t)dtzo.

From (3.14) we have

(4.6) W/b h(t)—fbwl(s)ds/abw@)h( Vds| w(t) dt
< ;wa(t) dt/ab Z}%‘th
and since 1 b 1 b 2
Ik ()ds/a h(t)fjw(s)ds/a w(s)h(s)ds| w(t)dt
:W/:wum(t)m_ W[lbw(t)h(t)dtQ,

hence the inequality (4.4) is proved.
The inequality (4.5) follows by (3.15) in a similar way and we omit the details. O

We have the following Griiss’ type inequality:
Theorem 4. Assume that w : [a,b] — (0,00) is continuous on [a,b] and f, g €

C1([a,b],C) with \J/%, \;—;j € Ly[a,b]. Then

A7) |Cu (£,9)] < [Cw (£, )] [Cu (9.9

b olr@P NP o) )Y
w2 fa w (t) dt fa w(t) dt fa w(t) dt ’
/2 ) 1/2
b lg'(t)
< 271'2 a < ) (fa |w(t)| dt)
~ | if either f = =g(b),

1/2 FNT 1/2
b9’ ()
471-2 fa dt <.f | w(t) > (fa | 'w(t)| dt)
fo(a)=f( ) and g(a) =g/(b).
Proof. The first inequality follows by the equality

1 b 1 b
Cu (fog) = fwd/ <f<t)m@ds/aw(s)f(s)ds>

a

1

b
X (g(t)—WA w(s)g(s)ds)w(t)dt

and by the Cauchy-Bunyakovsky-Schwarz inequality.
The rest follows by Lemma 1 O
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For w = 1 we consider the unweighted Cebysev functional

C(f.9): /f dt——/f dt—/ g () dt.

We have the follovvlng particular result:

Corollary 2. Assume that f, g € C([a,b],C) with f', ' € Ly [a,b]. Then
(48) [C(f.9l<[C(£.H)][C .91

1/2
%b—a(flf’ 2a)" (11 o ar) ",

Ab-a) (1 @Fa)” (g P a)”
e 10 40 o)

IA

o) (L1 oPa)” (1 P a)”
T8 mi o0

Remark 1. The first inequality in (4.8) in the case of real functions was obtained
by Lupasg in 1973, [10].

‘We observe that

¢ (f.9) 7/ it dt—bia/ (0 dt a/bg(t)dt
b_a/ e a+b_t) dt——/ F(t dt—/g(t)dt
- o +9(“+b [ rwat [wa

=C(f.9)

and

C(f"é):bia/abf() dt—i/f dti/é(t)dt
:bia/abf(t)g(t)+g(2a+b /f dti/ S

=C(f,g)-

Proposition 1. Assume that f, g € C*([a,b],C).
(i) If f' is Lipschitzian with the constant K and ¢’ € Lq [a,b], then

(4.9) e (7, )\_1{ K(b-a 5/2</|' |dt>

(ii) If f' is Lipschitzian with the constant K and ¢’ is Lipschitzian with the
constant L > 0, then

(4.10) ‘C(f,g)‘ < 48%[@ (b—a)*.

/2
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The inequality (4.9) follows by the second inequality in (4.8) for the functions
f and g while the inequality (4.10) follows by the third inequality in (4.8) for the
functions f and g.

Corollary 3. Assume that f, g € C'([a,b],C).
(i) If f is symmetrical on [a,b], f' is Lipschitzian with the constant K and
g € Ly[a,b], then
1/2

V3

(411) C(f.9)l < 1o

b
K=o [ 10 a

(ii) If f and g are symmetrical on [a,b], [’ is Lipschitzian with the constant K
and g’ is Lipschitzian with the constant L > 0, then

1
(112 CU9) <
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