CERTAIN PROPERTIES OF THE NIELSEN'S β-FUNCTION

KWARA NANTOMAH

Abstract

In this paper, we present some properties of the Nielsen's β function. The obtained results are analogous to some known works involving the gamma and digamma functions.

1. Introduction

In 1974, Gautschi [3] presented an interesting inequality involving the classical Euler's Gamma function, $\Gamma(x)$. He proved that, for $x>0$, the harmonic mean of $\Gamma(x)$ and $\Gamma(1 / x)$ is always greater than or equal to 1 . That is,

$$
\begin{equation*}
1 \leq \frac{2 \Gamma(x) \Gamma(1 / x)}{\Gamma(x)+\Gamma(1 / x)}, \quad x>0 \tag{1}
\end{equation*}
$$

with equality if $x=1$. As a direct consequence of (1), the inequalities

$$
\begin{equation*}
2 \leq \Gamma(x)+\Gamma(1 / x), \quad x>0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \leq \Gamma(x) \Gamma(1 / x), \quad x>0 \tag{3}
\end{equation*}
$$

are obtained. Then recently, Alzer and Jameson [1] established a striking companion of (1) which involves the digamma function, $\psi(x)$. They proved that the inequality

$$
\begin{equation*}
-\gamma \leq \frac{2 \psi(x) \psi(1 / x)}{\psi(x)+\psi(1 / x)}, \quad x>0 \tag{4}
\end{equation*}
$$

holds, with equality if $x=1$, where $\gamma=0.57721, \ldots$ is the Euler-Mascheroni constant. In addition, they proved that

$$
\begin{equation*}
P(x)=\psi(x)+\psi(1 / x) \tag{5}
\end{equation*}
$$

is strictly concave on $(0, \infty)$ and that

$$
\begin{gather*}
\psi(x)+\psi(1 / x)<-2 \gamma, \quad x>0, x \neq 1 . \tag{6}\\
\psi(1+y) \psi(1-y)<\gamma^{2}, \quad y \in(0,1) . \tag{7}\\
\psi(x) \psi(1 / x)<\gamma^{2}, \quad x>0, x \neq 1 . \tag{8}
\end{gather*}
$$

Also, in [11], it was established among other things that the function

$$
\begin{equation*}
h_{1}=\psi\left(x+\frac{1}{2}\right)-\psi(x)-\frac{1}{2 x}, \tag{9}
\end{equation*}
$$

[^0]RGMIA Res. Rep. Coll. 21 (2018), Art. 71, 7 pp.
is strictly decreasing and convex on $(0, \infty)$. Motivated by the result (9), Mortici [6] proved that the generalized function

$$
\begin{equation*}
f_{a}=\psi(x+a)-\psi(x)-\frac{a}{x}, \quad a \in(0,1) \tag{10}
\end{equation*}
$$

is strictly completely monotonic on $(0, \infty)$.
Inspired by the above results, the purpose of this paper is to establish analogous results for the Nielsen's β-function.

2. Preliminary Definitions

The Nielsen's β-function may be defined by any of the following equivalent forms (see [2], [4], [7], [10]).

$$
\begin{align*}
\beta(x) & =\int_{0}^{1} \frac{t^{x-1}}{1+t} d t, \quad x>0 \tag{11}\\
& =\int_{0}^{\infty} \frac{e^{-x t}}{1+e^{-t}} d t, \quad x>0 \tag{12}\\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k+x}, \quad x>0 \tag{13}\\
& =\frac{1}{2}\left\{\psi\left(\frac{x+1}{2}\right)-\psi\left(\frac{x}{2}\right)\right\}, \quad x>0 \tag{14}
\end{align*}
$$

where $\psi(x)=\frac{d}{d x} \ln \Gamma(x)$ is the digamma or psi function and $\Gamma(x)$ is the Euler's Gamma function. It is known to satisfy the properties:

$$
\begin{align*}
\beta(x+1) & =\frac{1}{x}-\beta(x), \tag{15}\\
\beta(x)+\beta(1-x) & =\frac{\pi}{\sin \pi x} . \tag{16}
\end{align*}
$$

Some particular values of the function are $\beta(1)=\ln 2, \beta\left(\frac{1}{2}\right)=\frac{\pi}{2}, \beta\left(\frac{3}{2}\right)=2-\frac{\pi}{2}$ and $\beta(2)=1-\ln 2$.
By differentiating n-times of (11), (12), (13), (14) and (15), one obtains

$$
\begin{align*}
\beta^{(n)}(x) & =\int_{0}^{1} \frac{(\ln t)^{n} t^{x-1}}{1+t} d t, \quad x>0 \tag{17}\\
& =(-1)^{n} \int_{0}^{\infty} \frac{t^{n} e^{-x t}}{1+e^{-t}} d t, \quad x>0 \tag{18}\\
& =(-1)^{n} n!\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k+x)^{n+1}}, \quad x>0 \tag{19}\\
& =\frac{1}{2^{n+1}}\left\{\psi^{(n)}\left(\frac{x+1}{2}\right)-\psi^{(n)}\left(\frac{x}{2}\right)\right\}, \quad x>0 \tag{20}\\
\beta^{(n)}(x+1) & =\frac{(-1)^{n} n!}{x^{n+1}}-\beta^{(n)}(x), \quad x>0 \tag{21}
\end{align*}
$$

where $n \in \mathbb{N}_{0}$ and $\beta^{(0)}(x)=\beta(x)$.

For additional information on this special function, one may refer to [7], [8], [9] and the related references therein.

3. Main Results

Lemma 3.1. The function $x \beta(x)$ is decreasing and convex on $(0, \infty)$. Consequently, the inequalities

$$
\begin{equation*}
\beta(x)+x \beta^{\prime}(x)<0, \quad x>0 \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \beta^{\prime}(x)+x \beta^{\prime \prime}(x)>0, \quad x>0 \tag{23}
\end{equation*}
$$

are satisfied.
Proof. In Theorem 3 of [9], the function $x\left|\beta^{(m)}(x)\right|, x>0, m \in \mathbb{N}_{0}$ was proved to be completely monotonic. Thus, $x \beta(x)$, the case where $m=0$, is completely monotonic. Since every completely monotonic function is decreasing and convex [5], we conclude that $x \beta(x)$ is decreasing and convex. This give rise to inequalities (22) and (23).

Theorem 3.2. The function

$$
\begin{equation*}
Q(x)=\beta(x)+\beta(1 / x) \tag{24}
\end{equation*}
$$

is strictly convex on $(0, \infty)$.
Proof. By direct differentiation, and by applying (23), we obtain

$$
\begin{aligned}
Q^{\prime}(x) & =\beta^{\prime}(x)-\frac{1}{x^{2}} \beta^{\prime}(1 / x) \\
Q^{\prime \prime}(x) & =\beta^{\prime \prime}(x)+\frac{2}{x^{3}} \beta^{\prime}(1 / x)+\frac{1}{x^{4}} \beta^{\prime \prime}(1 / x) \\
& =\beta^{\prime \prime}(x)+\frac{1}{x^{3}}\left[2 \beta^{\prime}(1 / x)+\frac{1}{x} \beta^{\prime \prime}(1 / x)\right]>0
\end{aligned}
$$

which completes the proof.
Theorem 3.3. The inequality

$$
\begin{equation*}
\beta(x)+\beta(1 / x) \geq 2 \ln 2 \tag{25}
\end{equation*}
$$

holds for $x>0$.
Proof. Since $Q^{\prime \prime}(x)>0$, then $\left(Q^{\prime}(x)\right)^{\prime}>0$ which implies that $Q^{\prime}(x)$ is increasing. Then $Q^{\prime}(x) \leq Q^{\prime}(1)=0$ for $x \in(0,1]$ and $Q^{\prime}(x) \geq Q^{\prime}(1)=0$ for $x \in[1, \infty)$. These imply that $Q(x)$ is decreasing on $(0,1]$ and increasing on $[1, \infty)$. Therefore, in either case, we have $Q(x) \geq Q(1)=2 \ln 2$ which gives the desired result.

Theorem 3.4. The inequality

$$
\begin{equation*}
\beta(1+s) \beta(1-s) \geq(\ln 2)^{2} \tag{26}
\end{equation*}
$$

holds for $s \in[0,1)$.

Proof. Since $\beta(x)$ is logarithmically convex (see [7]), we have

$$
\begin{equation*}
\beta\left(\frac{x+y}{2}\right) \leq \sqrt{\beta(x) \beta(y)} \tag{27}
\end{equation*}
$$

for $x>0$ and $y>0$. Now, by letting $x=1+s$ and $y=1-s$ in (27), we obtain the desired result (26).

Theorem 3.5. The inequality

$$
\begin{equation*}
\beta(x) \beta(1 / x) \geq(\ln 2)^{2} \tag{28}
\end{equation*}
$$

holds for $x>0$.
Proof. If $x \geq 1$, then $0<1 / x \leq 1$. Also, if $0<x \leq 1$, then $1 / x \geq 1$. Hence it suffices to prove (28) for $x \geq 1$. For $x \geq 1$ and $s \in[0,1)$, let $x=1+s$ and $1 / x=1-s$. Then by (26), we obtain

$$
\beta(x) \beta(1 / x)=\beta(1+s) \beta(1-s) \geq(\ln 2)^{2},
$$

which concludes the proof.
Theorem 3.6. For $x, y \in(1, \infty)$, the harmonic mean of $\beta(x)$ and $\beta(y)$ is less than 1 . In other words, the inequality

$$
\begin{equation*}
\frac{2 \beta(x) \beta(y)}{\beta(x)+\beta(y)}<1 \tag{29}
\end{equation*}
$$

holds for $x, y \in(1, \infty)$.
Proof. Note that for $t \in(1, \infty)$, we have $\beta(t)<\beta(1)=\ln 2$, since $\beta(x)$ is decreasing. Let $x, y \in(1, \infty)$. Then by the AM-GM inequality, we have

$$
\sqrt{\beta(x) \beta(y)} \leq \frac{\beta(x)+\beta(y)}{2}
$$

This implies that

$$
2 \beta(x) \beta(y) \leq[\beta(x)]^{2}+[\beta(y)]^{2}<\beta(x)+\beta(y)
$$

which gives the desired result. Note that $\beta(v) \in(0,1)$ for all $v \in(1, \infty)$. Hence, $[\beta(v)]^{2}<\beta(v)$ for all $v \in(1, \infty)$.
In view of the harmonic mean inequalities (1) and (4), we give the following conjecture.

Conjecture 3.7. For $x \in(0, \infty)$, the inequality

$$
\begin{equation*}
\frac{2 \beta(x) \beta(1 / x)}{\beta(x)+\beta(1 / x)} \leq \ln 2 \tag{30}
\end{equation*}
$$

is satisfied.
Theorem 3.8. The double inequality

$$
\begin{equation*}
\frac{1}{x}-\ln 2<\beta(x)<\frac{1}{x} \tag{31}
\end{equation*}
$$

holds for $x>0$.

Proof. As a a direct consequence of (15), we obtain

$$
\begin{equation*}
\beta(x)<\frac{1}{x} . \tag{32}
\end{equation*}
$$

for $x>0$. Also, by (15), we obtain the limit

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}}\left\{\frac{1}{x}-\beta(x)\right\}=\ln 2 \tag{33}
\end{equation*}
$$

Now, let $\theta(x)=\frac{1}{x}-\beta(x)$ for $x>0$. Then by (21), we obtain

$$
\theta^{\prime}(x)=-\frac{1}{x^{2}}-\beta^{\prime}(x)<0
$$

which shows that $\theta(x)$ is decreasing. Hence for $x>0$, we obtain

$$
\begin{equation*}
\frac{1}{x}-\beta(x)=\theta(x)<\lim _{x \rightarrow 0^{+}} \theta(x)=\ln 2 \tag{34}
\end{equation*}
$$

Then, by combining (32) and (34), we obtain the result (31).
Theorem 3.9. The limit

$$
\begin{equation*}
\lim _{z \rightarrow 0^{+}} \frac{1}{z}\left\{\frac{1}{\beta(1-z)}-\frac{1}{\beta(1+z)}\right\}=-\frac{\pi^{2}}{6(\ln 2)^{2}} \tag{35}
\end{equation*}
$$

is valid for $z \in(0,1)$.
Proof. It can be shown from relation (14) that $\beta^{\prime}(1)=-\frac{\pi^{2}}{12}$. Then by L'Hopital's rule, we obtain

$$
\begin{aligned}
\lim _{z \rightarrow 0^{+}} \frac{1}{z}\left\{\frac{1}{\beta(1-z)}-\frac{1}{\beta(1+z)}\right\} & =\lim _{z \rightarrow 0^{+}}\left\{\frac{\beta^{\prime}(1-z)}{[\beta(1-z)]^{2}}+\frac{\beta^{\prime}(1+z)}{[\beta(1+z)]^{2}}\right\} \\
& =-\frac{\pi^{2}}{6(\ln 2)^{2}}
\end{aligned}
$$

Theorem 3.10. For $a>0$ and $x>0$, let f_{a} be defined as

$$
\begin{equation*}
f_{a}(x)=\beta(x+a)-\beta(x)-\frac{a}{x} . \tag{36}
\end{equation*}
$$

Then $-f_{a}$ is strictly completely monotonic.
Proof. Recall that a function $f:(0, \infty) \rightarrow \mathbb{R}$ is said to be completely monotonic on $(0, \infty)$ if f has derivatives of all order and $(-1)^{n} f^{(n)}(x) \geq 0$ for all $x \in(0, \infty)$ and $n \in \mathbb{N}$. Let

$$
h_{a}(x)=-f_{a}(x)=\frac{a}{x}+\beta(x)-\beta(x+a) .
$$

Then by repeated differentiation and by using (18), we obtain

$$
\begin{aligned}
h_{a}^{(n)}(x)= & (-1)^{n} a \frac{n!}{x^{n+1}}+\beta^{(n)}(x)-\beta^{(n)}(x+a) \\
= & (-1)^{n} a \int_{0}^{\infty} t^{n} e^{-x t} d t+(-1)^{n} \int_{0}^{\infty} \frac{t^{n} e^{-x t}}{1+e^{-t}} d t \\
& -(-1)^{n} \int_{0}^{\infty} \frac{t^{n} e^{-(x+a) t}}{1+e^{-t}} d t, \\
(-1)^{n} h_{a}^{(n)}(x)= & a \int_{0}^{\infty} t^{n} e^{-x t} d t+\int_{0}^{\infty} \frac{t^{n} e^{-x t}}{1+e^{-t}} d t-\int_{0}^{\infty} \frac{t^{n} e^{-(x+a) t}}{1+e^{-t}} d t \\
= & \int_{0}^{\infty}\left[a+\frac{1-e^{-a t}}{1+e^{-t}}\right] t^{n} e^{-x t} d t>0,
\end{aligned}
$$

which completes the proof.
Corollary 3.11. The inequality

$$
\begin{equation*}
0<\beta(x)-\beta(x+a)+\frac{a}{x} \leq \ln 2+a-\frac{1}{a}+\beta(a) \tag{37}
\end{equation*}
$$

holds for $a>0$ and $x \in[1, \infty)$.
Proof. Since $h_{a}(x)$ is completely monotonic on $(0, \infty)$, then it is decreasing on $(0, \infty)$. Then for $x \in[1, \infty)$, we have

$$
\begin{aligned}
0=\lim _{x \rightarrow \infty} h_{a}(x)<h_{a}(x) \leq h_{a}(1) & =a+\beta(1)-\beta(1+a) \\
& =\ln 2+a-\frac{1}{a}+\beta(a)
\end{aligned}
$$

yielding the desired result.
Remark 3.12. In particular, if $a=\frac{1}{2}$, we obtain the sharp inequality

$$
\begin{equation*}
0<\beta(x)-\beta\left(x+\frac{1}{2}\right)+\frac{1}{2 x} \leq \ln 2+\frac{\pi-3}{2} \tag{38}
\end{equation*}
$$

for $x \in[1, \infty)$. If $x \in(0,1]$, then the right-hand sides of (37) and (38) are reversed.

References

[1] H. Alzer and G. Jameson, A harmonic mean inequality for the digamma function and related results, Rend. Sem. Mat. Univ. Padova., 137 (2017), 203-209.
[2] D. F. Connon, On an integral involving the digamma function, arXiv:1212.1432 [math.GM].
[3] W. Gautschi, A harmonic mean inequality for the gamma function, SIAM J. Math. Anal., 5(1974), 278-281.
[4] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Edited by D. Zwillinger and V. Moll. Academic Press, New York, 8th Edition, 2014.
[5] M. Merkle, Completely Monotone Functions: A Digest, Analytic Number Theory, Approximation Theory, and Special Functions: In Honor of Hari M. Srivastava, Springer, New York, (2014), 347-364.
[6] C. Mortici, A sharp inequality involving the psi function, Acta Univ. Apulensis Math. Inform., 22(2010), 41-45.
[7] K. Nantomah, On Some Properties and Inequalities for the Nielsen's β-Function, arXiv:1708.06604v1 [math.CA], 12 pages.
[8] K. Nantomah, Monotonicity and convexity properties and some inequalities involving a generalized form of the Wallis' cosine formula, Asian Research Journal of Mathematics, $6(3)(2017), 1-10$.
[9] K. Nantomah, Monotonicity and Convexity Properties of the Nielsen's β-Function, Probl. Anal. Issues Anal. 6(24)(2)(2017), 81-93.
[10] N. Nielsen, Handbuch der Theorie der Gammafunktion, First Edition, Leipzig : B. G. Teubner, 1906.
[11] S.-L. Qiu and M. Vuorinen, Some properties of the gamma and psi functions, with applications, Math. Comp., 74(250)(2004), 723-742.

Department of Mathematics, Faculty of Mathematical Sciences, University for Development Studies, Navrongo Campus, P. O. Box 24, Navrongo, UE/R, Ghana.

E-mail address: mykwarasoft@yahoo.com, knantomah@uds.edu.gh

[^0]: Date: Received: xxxxxx; Revised: xxxxxx; Accepted: xxxxxx.
 2010 Mathematics Subject Classification. 26A48, 26A51, 39B62.
 Key words and phrases. Nielsen's β-function, digamma function, harmonic mean, completely monotonic, inequality.

