SOME WEIGHTED INTEGRAL INEQUALITIES RELATED TO STEFFENSEN'S RESULT

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

In this paper we provide several weighted inequalities that can be obtained in a simple way from certain Steffensen type inequalities. Some applications for natural weights are also provided.

1. Introduction

In 1918, J. F. Steffensen [7] obtained the following inequality:
Theorem 1. Suppose that g is integrable functions on $[a, b], f$ is nonincreasing on $[a, b]$ and $0 \leq g(t) \leq 1$ for all $t \in[a, b]$. Then

$$
\begin{equation*}
\int_{b-\lambda}^{b} f(t) d t \leq \int_{a}^{b} f(t) g(t) d t \leq \int_{a}^{a+\lambda} f(t) d t \tag{1.1}
\end{equation*}
$$

where

$$
\lambda=\int_{a}^{b} g(t) d t
$$

By using the substitution g / A for g in (1.1) with $A>0$, one can get Hayashi's inequality [3]:
Theorem 2. Suppose that g is integrable functions on $[a, b], f$ is nonincreasing on $[a, b]$ and $0 \leq g(t) \leq A$ for all $t \in[a, b]$, where $A>0$. Then

$$
\begin{equation*}
A \int_{b-\lambda}^{b} f(t) d t \leq \int_{a}^{b} f(t) g(t) d t \leq A \int_{a}^{a+\lambda} f(t) d t \tag{1.2}
\end{equation*}
$$

where

$$
\lambda=\frac{1}{A} \int_{a}^{b} g(t) d t
$$

In 1982, J. Pečarić [4] (see also [6, p. 48]) established the following correction of an earlier inequality published by Bellman in [1]:

Theorem 3. Let $f:[0,1] \rightarrow \mathbb{R}$ be a nonnegative and nonincreasing function and let $g:[0,1] \rightarrow \mathbb{R}$ be an integrable function such that $0 \leq g \leq 1$ on $[0,1]$. If $p \geq 1$ and

$$
\begin{equation*}
\lambda=\left(\int_{0}^{1} g(t) d t\right)^{p} \tag{1.3}
\end{equation*}
$$

[^0]RGMIA Res. Rep. Coll. 21 (2018), Art. 73, 8 pp.
then

$$
\begin{equation*}
\left(\int_{0}^{1} f(t) g(t) d t\right)^{p} \leq \int_{0}^{\lambda} f^{p}(t) d t \tag{1.4}
\end{equation*}
$$

Now, if $h:[a, b] \rightarrow \mathbb{R}$ is nonnegative and nonincreasing and $w:[a, b] \rightarrow \mathbb{R}$ is integrable and such that $0 \leq w \leq 1$ on $[a, b]$, then by putting $f(t)=h[(1-t) a+t b]$, $g(t)=w[(1-t) a+t b]$ and observing that, by the change of variable $x=(1-t) a+$ $t b, t \in[0,1]$, we have

$$
\begin{gathered}
\int_{0}^{1} g(t) d t=\int_{0}^{1} w[(1-t) a+t b] d t=\frac{1}{b-a} \int_{a}^{b} w(x) d x \\
\int_{0}^{1} f(t) g(t) d t=\frac{1}{b-a} \int_{a}^{b} h(x) w(x) d x
\end{gathered}
$$

and

$$
\int_{0}^{\lambda} f^{p}(t) d t=\frac{1}{b-a} \int_{a}^{(1-\lambda) a+\lambda b} f^{p}(x) d x=\frac{1}{b-a} \int_{a}^{a+(b-a) \lambda} f^{p}(x) d x
$$

Therefore, by Theorem 3 we have the following version of Pečarić's inequality for functions defined on $[a, b]$, see also [5]:

Corollary 1. If $h:[a, b] \rightarrow \mathbb{R}$ is nonnegative and nonincreasing on $[a, b]$ and $w:[a, b] \rightarrow \mathbb{R}$ is integrable and such that $0 \leq w \leq 1$ on $[a, b]$, then for $p \geq 1$ and

$$
\begin{equation*}
\nu:=\frac{1}{(b-a)^{p-1}}\left(\int_{a}^{b} w(t) d t\right)^{p} \tag{1.5}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left(\int_{a}^{b} h(t) w(t) d t\right)^{p} \leq(b-a)^{p-1} \int_{a}^{a+\nu} h^{p}(t) d t \tag{1.6}
\end{equation*}
$$

In 1991, Cao [2] obtained another correction of Bellman's results as follows:
Theorem 4. Let f be nonnegative and nonincreasing function on $[a, b]$ and $f \in$ $L_{p}[a, b]$ for $p>1$ and $\frac{1}{p}+\frac{1}{q}=1$. Let g be measurable with $g \geq 0$ on $[a, b]$ and $\int_{a}^{b} g^{q}(t) d t \leq 1$. Then

$$
\begin{equation*}
\left(\int_{a}^{b} f(t) g(t) d t\right)^{p} \leq \int_{a}^{a+\lambda} f^{p}(t) d t \tag{1.7}
\end{equation*}
$$

where

$$
\lambda=\left\{\begin{array}{l}
\left(\frac{\lim _{s \rightarrow a+} f(s)}{\lim _{u \rightarrow b-f} f(u)}\right)^{p-1}\left(\int_{a}^{b} g(t) d t\right)^{p} \quad \text { if } \lim _{u \rightarrow b-} f(u)>0 \\
b-a \text { if } \lim _{u \rightarrow b-} f(u)=0
\end{array}\right.
$$

In this paper we provide several weighted inequalities that can be obtained in a simple way from the Steffensen type inequalities stated above. Some applications for natural weights are also provided.

2. The Results

We have:
Theorem 5. Let $h:[a, b] \rightarrow[h(a), h(b)]$ be a continuous strictly increasing function that is differentiable on (a, b). Suppose that g is integrable function with $0 \leq g(t) \leq A$ for all $t \in[a, b]$, where $A>0$ and f is nonincreasing on $[a, b]$. Then

$$
\begin{align*}
A \int_{h^{-1}[h(b)-\nu]}^{b} f(t) h^{\prime}(t) d t \leq \int_{a}^{b} f(t) g(t) & h^{\prime}(t) d t \tag{2.1}\\
& \leq A \int_{a}^{h^{-1}[h(a)+\nu]} f(t) h^{\prime}(t) d t
\end{align*}
$$

where

$$
\nu:=\frac{1}{A} \int_{a}^{b} g(t) h^{\prime}(t) d t .
$$

Proof. The function $f \circ h^{-1}$ is nonincreasing on $[h(a), h(b)], g \circ h^{-1}$ is integrable and $0 \leq\left(g \circ h^{-1}\right)(z) \leq A$ for $z \in[h(a), h(b)]$. Define

$$
\nu:=\frac{1}{A} \int_{h(a)}^{h(b)}\left(g \circ h^{-1}\right)(z) d z
$$

Then by (1.2) we get

$$
\begin{align*}
A \int_{h(b)-\nu}^{h(b)}\left(f \circ h^{-1}\right)(z) d z \leq \int_{h(a)}^{h(b)}\left(f \circ h^{-1}\right) & (z)\left(g \circ h^{-1}\right)(z) d z \tag{2.2}\\
& \leq A \int_{h(a)}^{h(a)+\nu}\left(f \circ h^{-1}\right)(z) d z
\end{align*}
$$

Consider the change of variable $t=h^{-1}(z)$, then $z=h(t)$, which gives $d z=$ $h^{\prime}(t) d t$.

Therefore

$$
\begin{gathered}
\nu=\frac{1}{A} \int_{h(a)}^{h(b)}\left(g \circ h^{-1}\right)(z) d z=\frac{1}{A} \int_{a}^{b} g(t) h^{\prime}(t) d t \\
\int_{h(b)-\nu}^{h(b)}\left(f \circ h^{-1}\right)(z) d z=\int_{h^{-1}[h(b)-\nu]}^{b} f(t) h^{\prime}(t) d t \\
\int_{h(a)}^{h(b)}\left(f \circ h^{-1}\right)(z)\left(g \circ h^{-1}\right)(z) d z=\int_{a}^{b} f(t) g(t) h^{\prime}(t) d t
\end{gathered}
$$

and

$$
\int_{h(a)}^{h(a)+\nu}\left(f \circ h^{-1}\right)(z) d z=\int_{a}^{h^{-1}[h(a)+\nu]} f(t) h^{\prime}(t) d t
$$

By utilising (2.2), we then get (2.1).
If $w:[a, b] \rightarrow \mathbb{R}$ is continuous and positive on the interval $[a, b]$, then the function $W:[a, b] \rightarrow[0, \infty), W(t):=\int_{a}^{t} w(s) d s$ is strictly increasing and differentiable on (a, b). We have $W^{\prime}(t)=w(t)$ for any $t \in(a, b)$.

Corollary 2. Assume that $w:[a, b] \rightarrow \mathbb{R}$ is continuous and positive on the interval $[a, b]$. Suppose that g is integrable function with $0 \leq g(t) \leq A$ where $A>0$ for all $t \in[a, b]$ and f is nonincreasing on $[a, b]$. Then

$$
\begin{equation*}
A \int_{b_{i}}^{b} f(t) w(t) d t \leq \int_{a}^{b} f(t) g(t) w(t) d t \leq A \int_{a}^{a_{s}} f(t) w(t) d t \tag{2.3}
\end{equation*}
$$

where

$$
b_{i}:=W^{-1}\left[\frac{1}{A} \int_{a}^{b}(A-g(t)) w(t) d t\right]
$$

and

$$
a_{s}:=W^{-1}\left[\frac{1}{A} \int_{a}^{b} g(t) w(t) d t\right] .
$$

We have the following composite version of Pečarić's inequality (1.6).
Theorem 6. Let $h:[a, b] \rightarrow[h(a), h(b)]$ be a continuous strictly increasing function that is differentiable on (a, b). Suppose that g is integrable functions on $[a, b]$ with $0 \leq g(t) \leq 1$ for all $t \in[a, b]$ and f is nonincreasing and nonnegative on $[a, b]$. Then for $p \geq 1$ we have

$$
\begin{equation*}
\left(\int_{a}^{b} f(t) g(t) h^{\prime}(t) d t\right)^{p} \leq[h(b)-h(a)]^{p-1} \int_{a}^{h^{-1}(h(a)+\sigma)} f^{p}(t) h^{\prime}(t) d t \tag{2.4}
\end{equation*}
$$

where

$$
\sigma:=\frac{1}{[h(b)-h(a)]^{p-1}}\left(\int_{a}^{b} g(t) h^{\prime}(t) d t\right)^{p}
$$

Proof. The function $f \circ h^{-1}$ is nonincreasing and nonnegative on $[h(a), h(b)], g \circ h^{-1}$ is integrable and $0 \leq\left(g \circ h^{-1}\right)(z) \leq 1$ for $z \in[h(a), h(b)]$. Define

$$
\nu:=\frac{1}{[h(b)-h(a)]^{p-1}}\left(\int_{h(a)}^{h(b)} g \circ h^{-1}(z) d z\right)^{p} .
$$

Then by (1.6) for $f \circ h^{-1}$ and $g \circ h^{-1}$ we have

$$
\begin{align*}
\left(\int_{h(a)}^{h(b)} f \circ h^{-1}(z) g \circ h^{-1}(z) d z\right)^{p} & \tag{2.5}\\
& \leq[h(b)-h(a)]^{p-1} \int_{h(a)}^{h(a)+\nu}\left[f \circ h^{-1}(z)\right]^{p} d z
\end{align*}
$$

Consider the change of variable $t=h^{-1}(z)$, then $z=h(t)$, which gives $d z=$ $h^{\prime}(t) d t$.

Therefore

$$
\begin{gathered}
\int_{h(a)}^{h(b)} g \circ h^{-1}(z) d z=\int_{a}^{b} g(t) h^{\prime}(t) d t \\
\int_{h(a)}^{h(b)} f \circ h^{-1}(z) g \circ h^{-1}(z) d z=\int_{a}^{b} f(t) g(t) h^{\prime}(t) d t
\end{gathered}
$$

and

$$
\int_{h(a)}^{h(a)+\nu}\left[f \circ h^{-1}(z)\right]^{p} d z=\int_{a}^{h^{-1}(h(a)+\sigma)} f^{p}(t) h^{\prime}(t) d t
$$

and by (2.5) we obtain the desired result (2.4).
We have the following weighted version of Pečarić's inequality (1.6).
Corollary 3. Assume that $w:[a, b] \rightarrow \mathbb{R}$ is continuous and positive on the interval $[a, b]$. Suppose that g is integrable function with $0 \leq g(t) \leq 1$ for all $t \in[a, b]$ and f is nonincreasing and nonnegative on $[a, b]$. Then for $p \geq 1$ we have

$$
\begin{equation*}
\left(\int_{a}^{b} f(t) g(t) w(t) d t\right)^{p} \leq\left(\int_{a}^{b} w(s) d s\right)^{p-1} \int_{a}^{W^{-1}(\eta)} f^{p}(t) w(t) d t \tag{2.6}
\end{equation*}
$$

where

$$
\eta:=\frac{1}{\left(\int_{a}^{b} w(s) d s\right)^{p-1}}\left(\int_{a}^{b} g(t) w(t) d t\right)^{p}
$$

and $W:[a, b] \rightarrow[0, \infty), W(t):=\int_{a}^{t} w(s) d s$.
We have:
Theorem 7. Let $h:[a, b] \rightarrow[h(a), h(b)]$ be a continuous strictly increasing function that is differentiable on (a, b). Assume that g is measurable function on $[a, b]$ with $0 \leq g$ and f is nonincreasing and nonnegative on $[a, b]$. For $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ assume also that we have $f^{p} h^{\prime}$ is integrable on $[a, b]$ and $\int_{a}^{b} g^{q}(t) h^{\prime}(t) d t \leq$ 1, then

$$
\begin{equation*}
\left(\int_{a}^{b} f(t) g(t) h^{\prime}(t) d t\right)^{p} \leq \int_{a}^{h^{-1}(h(a)+\sigma)} f^{p}(t) h^{\prime}(t) d t \tag{2.7}
\end{equation*}
$$

where

$$
\sigma=\left\{\begin{array}{l}
\left(\frac{\lim _{s \rightarrow a+} f(s)}{\lim _{u \rightarrow b-} f(u)}\right)^{p-1}\left(\int_{a}^{b} g(t) h^{\prime}(t) d t\right)^{p} \quad \text { if } \lim _{u \rightarrow b-} f(u)>0 \\
h(b)-h(a) \text { if } \lim _{u \rightarrow b-} f(u)=0
\end{array}\right.
$$

The proof follows in a similar way as above by utilising Theorem 4. The details are omitted.

Corollary 4. Let $w:[a, b] \rightarrow \mathbb{R}$ be continuous and positive on the interval $[a, b]$. Assume that g is measurable function on $[a, b]$ with $0 \leq g$ and f is nonincreasing and nonnegative on $[a, b]$. For $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ assume also that we have $f^{p} w$ is integrable on $[a, b]$ and $\int_{a}^{b} g^{q}(t) w(t) d t \leq 1$, then

$$
\begin{equation*}
\left(\int_{a}^{b} f(t) g(t) w(t) d t\right)^{p} \leq \int_{a}^{W^{-1}(\nu)} f^{p}(t) w(t) d t \tag{2.8}
\end{equation*}
$$

where

$$
\nu=\left\{\begin{array}{l}
\left(\frac{\lim _{s \rightarrow a+} f(s)}{\lim _{u \rightarrow b-} f(u)}\right)^{p-1}\left(\int_{a}^{b} g(t) w(t) d t\right)^{p} \text { if } \lim _{u \rightarrow b-} f(u)>0 \\
\int_{a}^{b} w(s) d s \text { if } \lim _{u \rightarrow b-} f(u)=0
\end{array}\right.
$$

and $W:[a, b] \rightarrow[0, \infty), W(t):=\int_{a}^{t} w(s) d s$.

3. Some Examples

By making use of Theorem 5, we can give the following examples for particular weights of interest.
a). If we take $h:[a, b] \subset(0, \infty) \rightarrow \mathbb{R}, h(t)=\ln t$, and assume that g is integrable functions on $[a, b]$ with $0 \leq g(t) \leq A$ for all $t \in[a, b]$, where $A>0, f$ is nonincreasing on $[a, b]$, then by (2.1) we get

$$
\begin{equation*}
A \int_{b \exp (-\sigma)}^{b} \frac{f(t)}{t} d t \leq \int_{a}^{b} \frac{f(t) g(t)}{t} d t \leq A \int_{a}^{a \exp (\sigma)} \frac{f(t)}{t} d t \tag{3.1}
\end{equation*}
$$

where

$$
\sigma:=\frac{1}{A} \int_{a}^{b} \frac{g(t)}{t} d t
$$

b). If we take $h:[a, b] \rightarrow \mathbb{R}, h(t)=\exp t$, and assume that g is integrable functions on $[a, b], f$ is nonincreasing on $[a, b]$ and $0 \leq g(t) \leq A$ for all $t \in[a, b]$, where $A>0$, then by (2.1) we get

$$
\begin{align*}
A \int_{\ln [\exp (b)-\eta]}^{b} f(t) \exp t d t \leq \int_{a}^{b} f(t) g(t) \exp d t & \tag{3.2}\\
& \leq A \int_{a}^{\ln [\exp (a)+\eta]} f(t) \exp t d t
\end{align*}
$$

where

$$
\eta:=\frac{1}{A} \int_{a}^{b} g(t) \exp t d t
$$

c). If we take $h:[a, b] \subset(0, \infty) \rightarrow \mathbb{R}, h(t)=t^{r}, r>0$ and assume that g is integrable functions on $[a, b], f$ is nonincreasing on $[a, b]$ and $0 \leq g(t) \leq A$ for all $t \in[a, b]$, where $A>0$, then by (2.1) we get

$$
\begin{align*}
A \int_{\left(b^{r}-\vartheta\right)^{1 / r}}^{b} f(t) t^{r-1} d t \leq \int_{a}^{b} f(t) g(t) t^{r-1} d t & \tag{3.3}\\
& \leq A \int_{a}^{\left(a^{r}+\vartheta\right)^{1 / r}} f(t) t^{r-1} d t
\end{align*}
$$

where

$$
\vartheta:=\frac{r}{A} \int_{a}^{b} g(t) t^{r-1} d t .
$$

By utilising Theorem 6 we also have the following particular inequalities of interest.
d). If we take $h:[a, b] \subset(0, \infty) \rightarrow \mathbb{R}, h(t)=\ln t$, and suppose that g is integrable functions on $[a, b]$ with $0 \leq g(t) \leq 1$ for all $t \in[a, b]$ and f is nonincreasing and nonnegative on $[a, b]$. Then for $p \geq 1$ we have

$$
\begin{equation*}
\left(\int_{a}^{b} \frac{f(t) g(t)}{t} d t\right)^{p} \leq\left[\ln \left(\frac{b}{a}\right)\right]^{p-1} \int_{a}^{a \exp (\beta)} \frac{f^{p}(t)}{t} d t \tag{3.4}
\end{equation*}
$$

where

$$
\beta:=\frac{1}{\left[\ln \left(\frac{b}{a}\right)\right]^{p-1}}\left(\int_{a}^{b} \frac{g(t)}{t} d t\right)^{p}
$$

e). If we take $h:[a, b] \rightarrow \mathbb{R}, h(t)=\exp t$, and suppose that g is integrable functions on $[a, b]$ with $0 \leq g(t) \leq 1$ for all $t \in[a, b]$ and f is nonincreasing and nonnegative on $[a, b]$. Then for $p \geq 1$ we have

$$
\begin{equation*}
\left(\int_{a}^{b} f(t) g(t) \exp t d t\right)^{p} \leq(\exp b-\exp a)^{p-1} \int_{a}^{\ln (\exp a+\vartheta)} f^{p}(t) \exp (t) d t \tag{3.5}
\end{equation*}
$$

where

$$
\vartheta:=\frac{1}{(\exp b-\exp a)^{p-1}}\left(\int_{a}^{b} g(t) \exp (t) d t\right)^{p}
$$

f). If we take $h:[a, b] \subset(0, \infty) \rightarrow \mathbb{R}, h(t)=t^{r}, r>0$ and suppose that g is integrable functions on $[a, b]$ with $0 \leq g(t) \leq 1$ for all $t \in[a, b]$ and f is nonincreasing and nonnegative on $[a, b]$. Then for $p \geq 1$ we have

$$
\begin{equation*}
\left(\int_{a}^{b} f(t) g(t) t^{r-1} d t\right)^{p} \leq\left(\frac{b^{r}-a^{r}}{r}\right)^{p-1} \int_{a}^{\left(a^{r}+\delta\right)^{1 / r}} f^{p}(t) t^{r-1} d t \tag{3.6}
\end{equation*}
$$

where

$$
\delta:=\frac{r}{\left(b^{r}-a^{r}\right)^{p-1}}\left(\int_{a}^{b} g(t) t^{r-1} d t\right)^{p}
$$

By making use of Theorem 7 we can also state the following particular inequalities:
g). Take $h:[a, b] \subset(0, \infty) \rightarrow \mathbb{R}, h(t)=\ln t$, and assume that g is measurable function on $[a, b]$ with $0 \leq g$ and f is nonincreasing and nonnegative on $[a, b]$. For $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $\ell(t)=t, t \in[a, b]$, assume also that we have $\frac{f^{p}}{\ell}$ is integrable on $[a, b]$ and $\int_{a}^{b} \frac{g^{q}(t)}{t} d t \leq 1$, then

$$
\begin{equation*}
\left(\int_{a}^{b} \frac{f(t) g(t)}{t} d t\right)^{p} \leq \int_{a}^{a \gamma} \frac{f^{p}(t)}{t} d t \tag{3.7}
\end{equation*}
$$

where

$$
\gamma=\left\{\begin{array}{l}
\left(\frac{\lim _{s \rightarrow a+} f(s)}{\lim _{u \rightarrow b-} f(u)}\right)^{p-1}\left(\int_{a}^{b} \frac{g(t)}{t} d t\right)^{p} \text { if } \lim _{u \rightarrow b-} f(u)>0 \\
\ln \left(\frac{b}{a}\right) \text { if } \lim _{u \rightarrow b-} f(u)=0
\end{array}\right.
$$

h). Take $h:[a, b] \rightarrow \mathbb{R}, h(t)=\exp t$, assume that g is measurable function on $[a, b]$ with $0 \leq g$ and f is nonincreasing and nonnegative on $[a, b]$. For $p, q>$ 1 with $\frac{1}{p}+\frac{1}{q}=1$ assume also that we have $f^{p} \exp$ is integrable on $[a, b]$ and $\int_{a}^{b} g^{q}(t) \exp t d t \leq 1$, then

$$
\begin{equation*}
\left(\int_{a}^{b} f(t) g(t) \exp t d t\right)^{p} \leq \int_{a}^{\ln (\exp (a)+\sigma)} f^{p}(t) \exp t d t \tag{3.8}
\end{equation*}
$$

where

$$
\sigma=\left\{\begin{array}{l}
\left(\frac{\lim _{s \rightarrow a+} f(s)}{\lim _{u \rightarrow b-} f(u)}\right)^{p-1}\left(\int_{a}^{b} g(t) \exp t d t\right)^{p} \text { if } \lim _{u \rightarrow b-} f(u)>0 \\
\exp b-\exp a \text { if } \lim _{u \rightarrow b-} f(u)=0
\end{array}\right.
$$

k). Take $h:[a, b] \subset(0, \infty) \rightarrow \mathbb{R}, h(t)=t^{r}, r>0$, assume that g is measurable function on $[a, b]$ with $0 \leq g$ and f is nonincreasing and nonnegative on $[a, b]$. For
$p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ assume also that we have $f^{p} \ell^{r-1}$ is integrable on $[a, b]$ and $\int_{a}^{b} g^{q}(t) t^{r-1} d t \leq 1 / r$, then

$$
\begin{equation*}
\left(\int_{a}^{b} f(t) g(t) t^{r-1} d t\right)^{p} \leq r^{1-p} \int_{a}^{\left(a^{r}+\eta\right)^{1 / r}} f^{p}(t) t^{r-1} d t \tag{3.9}
\end{equation*}
$$

where

$$
\eta=\left\{\begin{array}{l}
r^{p}\left(\frac{\lim _{s \rightarrow a+} f(s)}{\lim _{u \rightarrow b-} f(u)}\right)^{p-1}\left(\int_{a}^{b} g(t) r^{p-1} d t\right)^{p} \text { if } \lim _{u \rightarrow b-} f(u)>0 \\
b^{r}-a^{r} \text { if } \lim _{u \rightarrow b-} f(u)=0
\end{array}\right.
$$

References

[1] R. Bellman, On inequalities with alternating signs, Proc. Amer. Math. Soc. 10 (1959). 807-809.
[2] Y. Cao, The correction of extension of Steffensen's inequality, J. Math. Res. Exposition 11 (1) (1991), 151-153.
[3] T. Hayashi, On curves with monotonous curvature, Tohoku Math. J. 15 (1919), 236-239.
[4] J. Pečarić, On the Bellman generalization of Steffensen's inequality, J. Math. Anal. Appl. 88 (2) (1982), 505-507.
[5] J. Pečarić, On the Bellman generalization of Steffensen's inequality. II, J. Math. Anal. Appl. 104 (1984), 432-434.
[6] J. Pečarić, K. Smoljak Kalamir and S. Varošanec, Steffensen's and Related Inequalities, Monographs in Inequalities, No. 7, Element, Zagreb, 2014.
[7] J. F. Steffensen, On certain inequalities between mean value and ther applications to actuarial problems, Skand. Aktuarietids. (1918), 82-97.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15; 26D10.
 Key words and phrases. Steffensen inequality, Hayashi inequality, Integral inequalities, Weighted integral inequalities.

