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SOME INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR!+?

ABSTRACT. In this paper we show amongst other that, if f : [a,b] — R is
continuous convex with f(a) =0 and f! (a) is finite, then

Lrbf) b boof(t)dt
- —dtgm/a f(t)dtg/%b ,

2 ), t—a t—a

Other related results are also provided. An example for logarithmic function
is also given.

1. INTRODUCTION

The following inequality holds for any convex function f defined on R

b
(1.1) h<a—2|_b>§b1 /h(x)dxgw, a, bER, a <b.
—a,

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [6]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In
1974, D. S. Mitrinovi¢ found Hermite’s note in Mathesis [6]. Since (1.1) was known
as Hadamard’s inequality, the inequality is now commonly referred as the Hermite-
Hadamard inequality. For a monograph devoted to this result see [2]. The recent
survey paper [5] provides other related results.

Let I : [a,b] — R be a convex function on [a, b] and assume that A, (a) and h’_ (b)
are finite. We recall the following reverse inequality for the first Hermite-Hadamard
result that has been established in [3]

(1.2) ogﬁ/a h(u)du—h(a;b> gé(b—a) [0 (5) — W, (a)] -

The following inequality that provides a reverse of the second Hermite-Hadamard
result has been obtained in [4]

h(a)+h(b) 1

b
(1.3) 0< 5 —b_a/h(u)du§é(b—a)[hl(b)—h;(a)}.

The constant § is best possible in both (3.3) and (3.4).
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By making use of the above inequalities for convex functions, in this paper we
establish certain inequalities involving the quantities

1 b 1 b b
f/ h®) g, —/ h(t) dt and/ h(t) dt
2 ), t—a b—a /, atb t—a

for continuous convex functions h : [a,b] — R that satisfy the condition h (a) = 0.

2. SOME PRELIMINARY FACTS
We have:

Lemma 1. Let f : (a,b] — R be a measurable function and such that the improper

integral fub ! t(i)jt

exists and the lateral limit L := lim;_,, f (t) exists and is finite,
then L = 0. If the improper integral ff% exists, then limy_,,4 f () can be
neither co nor —oo.

Proof. Assume that L > 0. Then for any € > 0 there exists ¢ (¢) > 0 such that for
any t € (a,a + J ()] we have |f (t) — L| < e that is equivalent to

(2.1) L-e<f(t)y<e+L.

Take 0 < ¢ < L and 0 < n < §(g). By the first inequality in (2.1) we get for
t€la+mn,a+d(g)] that

L—e f(¥)
i—a i-a
By taking the integral on [a + 1, a + 0 (€)] we get

a+d(e) 1 a+d(e) t
O<(L—5)/ </ f()dt,
a a

+n t—a +n t—a

0<

which is equivalent to

(2.2) 0<(L—¢)[lnd(e)—Inn] < /

a+mn

a+4(e) f(t)

t—a

dt.

By taking the limit over 7 — 0+ in (2.2) we get that
a+d(e) ¢
oo < / 1 () dt,

- t—a

which contradicts the fact that the improper integral f; ! t(i)jt exists.
Also, assume that L < 0. Take 0 < ¢ < —L and 0 < 1 < 6 (¢). Then by the

second inequality we have

a+3(e) a+é(e) 1
/ f(t)dt<(s+L)/ <0,
a

+ t—a at+n t—a

which is equivalent to

(2.3) /i”(ff) tf_( idt <(e+L)[Ind(e) —Inn] < 0.

By taking the limit over 7 — 0+ in (2.3) we get that
a+d(e) t
/ IO g« oo



SOME INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS 3

exists.

which contradicts the fact that the improper integral f b L t)jt

Now, assume that lim;_ . f (¢) = oco. This means that for any € > 0, there exists
d (€) > 0 such that for any ¢ € (a,a + J (¢)] we have f(t) > €. Take 0 <n < 4 (¢).
Then for t € [a +1,a + ¢ (¢)] we have
f®) €

>
t—a  t—a

and by taking the integral, we have

a+d(e) a+(e)
(2.4) / " Mzs/ " dt =¢[lnd(e) —Innl.

+n t—a a+n t—a

By taking the limit over n — 0+ in (2.4), we get that

a+4(g)
/ fd

t—a
which contradicts the fact that the improper integral f et t)jt exists.
The case lim;— 4 f (t) = —o0 can be proved in the same way and the details are
omitted. (]

Lemma 2. Let f: (a,b] — R be an integrable function and such that the improper

integral f: f t(i)jt exists and the lateral limit L := limy_,, f (t) exists and is finite,
then
t
(2.5) RUEAOL Y 0L / fit
. a (t — a)2 a t—a —a

_ bia/ab <f:2)f(t)dt.

Proof. Let € > 0 and such that a + ¢ < b. Using the integration by parts formula
we have

o [ ttae [ ([ros)u(2)
\(Lros) el L

—a
_ a;tf_a /f )ds + = / " () ds.

Using ’'Hopital’s Theorem, we have by Lemma 1 that

) 1 a-+te . .
g (27 7as) = tim fae) = tim, £ (o) =

e—0+

By taking the limit over ¢ — 0+ in (2.6), we get the first equality in (2.5).
We also have

AL
b

:/a Lia_b—a}f(t)dt:bia/abc):;)f(t)dt

that proves the second part of (2.5). O
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Remark 1. We observe that if f : [a,b] — R is continuous and fb f(ta exists,
then f(a) = 0. If g : [a,b] — R is continuous and if we put f(t) = g(t) — g(a),

€ [a,b], then f(a) = 0 if we assume that f; %dt exists, then by (2.6) we
get

an [RAOT

:/a g(ti_z(a)dt_bia/abg(t)dt_g(a):bia/ab(b—t) {g(ti_z(a)]dt.

3. INEQUALITIES FOR CONVEX FUNCTIONS

g@(t-a)

We have:
Theorem 1. Let f : [a,b] — R be continuous convex with f(a) =0 and f! (a) is
finite, then

By i@e-g<i [ 10 /f dt</a

a

t—a

The constants % in front of the left integral and 1 in front of the right integral are
best possible.

Proof. By the gradient inequality, we have
fila)(t—a) < f(t) = fla)=f(t), t € (ab],
which implies that f) (a) < 0y ¢ (a,b], giving that

t—a’
o [P0
fila)(b-a) < [ 520
that shows that the improper integral fab % is finite.

If we use Hermite-Hadamard inequality for f we have

f<a+t> /f t)dt < f()
for all ¢t € (a,b].

If we multiply with ﬁ and integrate to get

(3.2) /abt_ f<a+t>dt§/a (/f )dt< a tf_(ldt.

Using the first equality in (2.5), we get

b
(3.3) /tf<a+t)dt< ftia 7a/f dt< fﬁi

Using the change of variable y = “7”, then dt = 2dy, t —a =2 (y — a) and

a+b

| a+t [T f(y)
/at—af< 2 >dt/a y—a
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and from (3.3) we get
a0 Pfdt 1t N0
(3.4) / 7 4 < 7—m/a f(t)dtgi/a g

t—a s t—a

From the first inequality in (3.4) we get

10 brwd [T F() bof(t)dt
— | f)dt< 7—/ dt =
b—a/a o t—a o

t—a atb t—a
that proves the second inequality in (3.1).
From the second inequality in (3.4) we get the first part of (3.1).
Now, assume that there exist C, D > 0 with

(35) o [[IWus o [ rwaso [ 1O

t—a

Consider the convex function f (t) = (t —a)* ™" with a > 0. Then by (3.5) we have
b

b 1 o b
_ a < _ a
b /a (t—a) dt D/l;b (t—a)" dt,

By taking a — 04 in this inequality we get

1 1
C<=<=D
— 2 — 2 )
which shows that the constants % in front of the left integral and 1 in front of the
right integral are best possible. O

Corollary 1. Let g : [a,b] — R be continuous convex on [a,b] and g', (a) is finite,
then

b —g(a
36 Fe-ag @+g@s; [ L9a 400
b b
gﬁ i g(t)dtg/a;b %dt—kln(g)g(a).

Proof. If we write the inequality (3.1) for f(¢) =g (t) — g (a), then we get

(3.7) 1/bg(t)_g(a)dt< ! /b[g(t)—g(a)]dtg/ab 9 =9(a) 4,

2 +b t—a

b b b
— dt

/ g(t) g(a)dt :/ g(t) dtfg(a)/
atb t—a atb t—a atb T —a

Since

2

L g oo (552)]

:/lb 9(t) dt —g(a)In2,

vt —a

2

hence we obtain by (3.7) the desired inequality (3.6). O
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Now, if we replace g (t) by h (a + b —t), then by (3.6) we have

(3.8) ;/bh(“bt_t;h( Vit + 0 (0) < bia bh(a+b—t)dt

g[lb Mdt+ln(g)h(b).

+b t—a
2

By using the change of variable u = a+ b —t, t € [a,b] we have dt = —du,

/bh(a+bt)h(b)dt__/“h(u)h(b)du__/bh(b)h(u)du
a b a ’

t—a b—u b—u

b b
/h(a+b—t)dt:/ h(u) du
a+b

b _ a =
/ h(a+b t)dt:—/ h(u )d _/ h(u)du
atb t—a atb b—wu « b—u

Therefore, we can state the following result as well:

and

Corollary 2. Let g : [a,b] — R be continuous convex on [a,b] with g’ (b) is finite,
then

b J—
(3.9) g(b)—%(b—a)gg(b)gg(b)_%/ wdt

a+b

< bla/abg(t)dt</a2 %dt—i—ln(g)g(b).

Theorem 2. Let f : [a,b] — R be continuous convex with f(a) =0 and f! (a) is
finite, then

We also have:

b 1 /
(3.10) 0< %Mﬁ b—a/ [t g ()—(b—a)f+(a)}
and

b b
sy o<t [rwa-g [LO% < Lre - 6-0 @),

Proof. From (1.2) we have

o<y [rwn-s () <ie-olr 0- Al

for t € (a,b].
Divide by t — a and integrate on [a,b] to get

(312)  o0< ab (t_la)z (/atf(u)du> dt—/a if (“”) dt

b
<3 [ o-ri@)a
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Since, as above
b t b b
1 t)dt 1
[ ([ rwa)a- [LO% L1 [oa
a (t—a) a . t—a b—a /,

a+b
2

b at+t\ f(t)
/at—af( 2 >dt/a t—adt

b
/ [/ (t) = £, (@)] dt = £ (5) — (b—a) f'. (a)

hence by (3.12) we get (3.10).
From (1.3) we get

and

1 1

0§§f(t)_t—a

/ f(u)dugé(t—a) f2 ) = fi(a)].

for ¢t € (a,b].
Divide by t — a and integrate on [a,b] to get

Og% abft(i)jf_/ab (t—la)2 (/:f(u)du>dt<;/ab [f2 @) = fi(a)] dt,

which gives (3.11). O

Corollary 3. Let g : [a,b] — R be continuous convex on [a,b] and ¢', (a) is finite,
then

b b —ala
(3.13) ogﬁ a g(t)dt—%/a %dt—g(a)
<100~ 9 (@)~ b-a), (0)]
and
b b
(3.14) 0 < Lﬁfgkﬁﬁ%ag@%wia/g@ﬁ

[9(0) —g(a) = (b—a) g} (a)] .

4. AN EXAMPLE

Consider [a,b] C (0,00) and take the convex function g (¢) = +. Then

b _ b1 _ 1 b,

/ g(t) g(a“) dt = / t adt:/ B t dt
u t—a . t—a . ta(t—a)
1 Par 1 (b)

—= —=——In{-]),
aj, t a a

1 b 1 b1 Inb—1Ina
t)dt = —dt = ———
b—a/ag() b—a/a t b—a
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Then by using (3.9) we get

|
W ()< b ().

for any 0 < a < b.
By using (3.13) and (3.14) we also have

Inb—Ina 1 1 b 1 9
4.2 <—"“(1-=In{ - < —(b—
(42) 0= b—a a( 2n<a)>_8a( 2
and

1 e(a+Db) Inb—Ina 1 2
4. < =1 — < — (b—
(4.3) O_an( 2b ) b—a _8a(b @)
for any 0 < a < b.
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