SOME INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract. In this paper we show amongst other that, if $f:[a, b] \rightarrow \mathbb{R}$ is continuous convex with $f(a)=0$ and $f_{+}^{\prime}(a)$ is finite, then

$$
\frac{1}{2} \int_{a}^{b} \frac{f(t)}{t-a} d t \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \int_{\frac{a+b}{2}}^{b} \frac{f(t) d t}{t-a}
$$

Other related results are also provided. An example for logarithmic function is also given.

1. Introduction

The following inequality holds for any convex function f defined on \mathbb{R}

$$
\begin{equation*}
h\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} h(x) d x \leq \frac{h(a)+h(b)}{2}, \quad a, b \in \mathbb{R}, a<b \tag{1.1}
\end{equation*}
$$

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [6]). But this result was nowhere mentioned in the mathematical literature and was not widely known as Hermite's result.
E. F. Beckenbach, a leading expert on the history and the theory of convex functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In 1974, D. S. Mitrinović found Hermite's note in Mathesis [6]. Since (1.1) was known as Hadamard's inequality, the inequality is now commonly referred as the HermiteHadamard inequality. For a monograph devoted to this result see [2]. The recent survey paper [5] provides other related results.

Let $h:[a, b] \rightarrow \mathbb{R}$ be a convex function on $[a, b]$ and assume that $h_{+}^{\prime}(a)$ and $h_{-}^{\prime}(b)$ are finite. We recall the following reverse inequality for the first Hermite-Hadamard result that has been established in [3]

$$
\begin{equation*}
0 \leq \frac{1}{b-a} \int_{a}^{b} h(u) d u-h\left(\frac{a+b}{2}\right) \leq \frac{1}{8}(b-a)\left[h_{-}^{\prime}(b)-h_{+}^{\prime}(a)\right] . \tag{1.2}
\end{equation*}
$$

The following inequality that provides a reverse of the second Hermite-Hadamard result has been obtained in [4]

$$
\begin{equation*}
0 \leq \frac{h(a)+h(b)}{2}-\frac{1}{b-a} \int_{a}^{b} h(u) d u \leq \frac{1}{8}(b-a)\left[h_{-}^{\prime}(b)-h_{+}^{\prime}(a)\right] \tag{1.3}
\end{equation*}
$$

The constant $\frac{1}{8}$ is best possible in both (3.3) and (3.4).

[^0]By making use of the above inequalities for convex functions, in this paper we establish certain inequalities involving the quantities

$$
\frac{1}{2} \int_{a}^{b} \frac{h(t)}{t-a} d t, \frac{1}{b-a} \int_{a}^{b} h(t) d t \text { and } \int_{\frac{a+b}{2}}^{b} \frac{h(t) d t}{t-a}
$$

for continuous convex functions $h:[a, b] \rightarrow \mathbb{R}$ that satisfy the condition $h(a)=0$.

2. Some Preliminary Facts

We have:
Lemma 1. Let $f:(a, b] \rightarrow \mathbb{R}$ be a measurable function and such that the improper integral $\int_{a}^{b} \frac{f(t) d t}{t-a}$ exists and the lateral limit $L:=\lim _{t \rightarrow a+} f(t)$ exists and is finite, then $L=0$. If the improper integral $\int_{a}^{b} \frac{f(t) d t}{t-a}$ exists, then $\lim _{t \rightarrow a+} f(t)$ can be neither ∞ nor $-\infty$.

Proof. Assume that $L>0$. Then for any $\varepsilon>0$ there exists $\delta(\varepsilon)>0$ such that for any $t \in(a, a+\delta(\varepsilon)]$ we have $|f(t)-L|<\varepsilon$ that is equivalent to

$$
\begin{equation*}
L-\varepsilon<f(t)<\varepsilon+L \tag{2.1}
\end{equation*}
$$

Take $0<\varepsilon<L$ and $0<\eta<\delta(\varepsilon)$. By the first inequality in (2.1) we get for $t \in[a+\eta, a+\delta(\varepsilon)]$ that

$$
0<\frac{L-\varepsilon}{t-a}<\frac{f(t)}{t-a}
$$

By taking the integral on $[a+\eta, a+\delta(\varepsilon)]$ we get

$$
0<(L-\varepsilon) \int_{a+\eta}^{a+\delta(\varepsilon)} \frac{1}{t-a}<\int_{a+\eta}^{a+\delta(\varepsilon)} \frac{f(t)}{t-a} d t
$$

which is equivalent to

$$
\begin{equation*}
0<(L-\varepsilon)[\ln \delta(\varepsilon)-\ln \eta]<\int_{a+\eta}^{a+\delta(\varepsilon)} \frac{f(t)}{t-a} d t \tag{2.2}
\end{equation*}
$$

By taking the limit over $\eta \rightarrow 0+$ in (2.2) we get that

$$
\infty \leq \int_{a}^{a+\delta(\varepsilon)} \frac{f(t)}{t-a} d t
$$

which contradicts the fact that the improper integral $\int_{a}^{b} \frac{f(t) d t}{t-a}$ exists.
Also, assume that $L<0$. Take $0<\varepsilon<-L$ and $0<\eta<\delta(\varepsilon)$. Then by the second inequality we have

$$
\int_{a+\eta}^{a+\delta(\varepsilon)} \frac{f(t)}{t-a} d t<(\varepsilon+L) \int_{a+\eta}^{a+\delta(\varepsilon)} \frac{1}{t-a}<0
$$

which is equivalent to

$$
\begin{equation*}
\int_{a+\eta}^{a+\delta(\varepsilon)} \frac{f(t)}{t-a} d t<(\varepsilon+L)[\ln \delta(\varepsilon)-\ln \eta]<0 \tag{2.3}
\end{equation*}
$$

By taking the limit over $\eta \rightarrow 0+$ in (2.3) we get that

$$
\int_{a}^{a+\delta(\varepsilon)} \frac{f(t)}{t-a} d t \leq-\infty
$$

which contradicts the fact that the improper integral $\int_{a}^{b} \frac{f(t) d t}{t-a}$ exists.
Now, assume that $\lim _{t \rightarrow a+} f(t)=\infty$. This means that for any $\varepsilon>0$, there exists $\delta(\varepsilon)>0$ such that for any $t \in(a, a+\delta(\varepsilon)]$ we have $f(t) \geq \varepsilon$. Take $0<\eta<\delta(\varepsilon)$. Then for $t \in[a+\eta, a+\delta(\varepsilon)]$ we have

$$
\frac{f(t)}{t-a} \geq \frac{\varepsilon}{t-a}
$$

and by taking the integral, we have

$$
\begin{equation*}
\int_{a+\eta}^{a+\delta(\varepsilon)} \frac{f(t) d t}{t-a} \geq \varepsilon \int_{a+\eta}^{a+\delta(\varepsilon)} \frac{d t}{t-a}=\varepsilon[\ln \delta(\varepsilon)-\ln \eta] \tag{2.4}
\end{equation*}
$$

By taking the limit over $\eta \rightarrow 0+$ in (2.4), we get that

$$
\int_{a}^{a+\delta(\varepsilon)} \frac{f(t) d t}{t-a} \geq \infty
$$

which contradicts the fact that the improper integral $\int_{a}^{b} \frac{f(t) d t}{t-a}$ exists.
The case $\lim _{t \rightarrow a+} f(t)=-\infty$ can be proved in the same way and the details are omitted.
Lemma 2. Let $f:(a, b] \rightarrow \mathbb{R}$ be an integrable function and such that the improper integral $\int_{a}^{b} \frac{f(t) d t}{t-a}$ exists and the lateral limit $L:=\lim _{t \rightarrow a+} f(t)$ exists and is finite, then

$$
\begin{align*}
\int_{a}^{b} \frac{\int_{a}^{t} f(s) d s}{(t-a)^{2}} d t & =\int_{a}^{b} \frac{f(t) d t}{t-a}-\frac{1}{b-a} \int_{a}^{b} f(t) d t \tag{2.5}\\
& =\frac{1}{b-a} \int_{a}^{b}\left(\frac{b-t}{t-a}\right) f(t) d t
\end{align*}
$$

Proof. Let $\varepsilon>0$ and such that $a+\varepsilon<b$. Using the integration by parts formula we have

$$
\begin{align*}
\int_{a+\varepsilon}^{b} \frac{\int_{a}^{t} f(s) d s}{(t-a)^{2}} d t & =-\int_{a+\varepsilon}^{b}\left(\int_{a}^{t} f(s) d s\right) d\left(\frac{1}{t-a}\right) \tag{2.6}\\
& =-\left[\left.\left(\int_{a}^{t} f(s) d s\right) \frac{1}{t-a}\right|_{a+\varepsilon} ^{b}-\int_{a+\varepsilon}^{b} \frac{f(t)}{t-a} d t\right] \\
& =\int_{a+\varepsilon}^{b} \frac{f(t)}{t-a} d t-\frac{1}{b-a} \int_{a}^{b} f(s) d s+\frac{1}{\varepsilon} \int_{a}^{a+\varepsilon} f(s) d s
\end{align*}
$$

Using l'Hôpital's Theorem, we have by Lemma 1 that

$$
\lim _{\varepsilon \rightarrow 0+}\left(\frac{1}{\varepsilon} \int_{a}^{a+\varepsilon} f(s) d s\right)=\lim _{\varepsilon \rightarrow 0+} f(a+\varepsilon)=\lim _{x \rightarrow a+} f(x)=0
$$

By taking the limit over $\varepsilon \rightarrow 0+$ in (2.6), we get the first equality in (2.5).
We also have

$$
\begin{aligned}
& \int_{a}^{b} \frac{f(t) d t}{t-a}-\frac{1}{b-a} \int_{a}^{b} f(t) d t \\
& =\int_{a}^{b}\left[\frac{1}{t-a}-\frac{1}{b-a}\right] f(t) d t=\frac{1}{b-a} \int_{a}^{b}\left(\frac{b-t}{t-a}\right) f(t) d t
\end{aligned}
$$

that proves the second part of (2.5).

Remark 1. We observe that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $\int_{a}^{b} \frac{f(t) d t}{t-a}$ exists, then $f(a)=0$. If $g:[a, b] \rightarrow \mathbb{R}$ is continuous and if we put $f(t)=g(t)-g(a)$, $t \in[a, b]$, then $f(a)=0$ if we assume that $\int_{a}^{b} \frac{g(t)-g(a)}{t-a} d t$ exists, then by (2.6) we get

$$
\begin{equation*}
\int_{a}^{b} \frac{\int_{a}^{t} g(s) d s-g(a)(t-a)}{(t-a)^{2}} d t \tag{2.7}
\end{equation*}
$$

$$
=\int_{a}^{b} \frac{g(t)-g(a)}{t-a} d t-\frac{1}{b-a} \int_{a}^{b} g(t) d t-g(a)=\frac{1}{b-a} \int_{a}^{b}(b-t)\left[\frac{g(t)-g(a)}{t-a}\right] d t
$$

3. Inequalities for Convex Functions

We have:
Theorem 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous convex with $f(a)=0$ and $f_{+}^{\prime}(a)$ is finite, then

$$
\begin{equation*}
\frac{1}{2} f_{+}^{\prime}(a)(b-a) \leq \frac{1}{2} \int_{a}^{b} \frac{f(t)}{t-a} d t \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \int_{\frac{a+b}{2}}^{b} \frac{f(t) d t}{t-a} \tag{3.1}
\end{equation*}
$$

The constants $\frac{1}{2}$ in front of the left integral and 1 in front of the right integral are best possible.

Proof. By the gradient inequality, we have

$$
f_{+}^{\prime}(a)(t-a) \leq f(t)-f(a)=f(t), t \in(a, b]
$$

which implies that $f_{+}^{\prime}(a) \leq \frac{f(t)}{t-a}, t \in(a, b]$, giving that

$$
f_{+}^{\prime}(a)(b-a) \leq \int_{a}^{b} \frac{f(t) d t}{t-a}
$$

that shows that the improper integral $\int_{a}^{b} \frac{f(t) d t}{t-a}$ is finite.
If we use Hermite-Hadamard inequality for f we have

$$
f\left(\frac{a+t}{2}\right) \leq \frac{1}{t-a} \int_{a}^{t} f(t) d t \leq \frac{1}{2} f(t)
$$

for all $t \in(a, b]$.
If we multiply with $\frac{1}{t-a}$ and integrate to get

$$
\begin{equation*}
\int_{a}^{b} \frac{1}{t-a} f\left(\frac{a+t}{2}\right) d t \leq \int_{a}^{b} \frac{1}{(t-a)^{2}}\left(\int_{a}^{t} f(s) d s\right) d t \leq \frac{1}{2} \int_{a}^{b} \frac{f(t)}{t-a} d t \tag{3.2}
\end{equation*}
$$

Using the first equality in (2.5), we get

$$
\begin{equation*}
\int_{a}^{b} \frac{1}{t-a} f\left(\frac{a+t}{2}\right) d t \leq \int_{a}^{b} \frac{f(t) d t}{t-a}-\frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{1}{2} \int_{a}^{b} \frac{f(t)}{t-a} d t \tag{3.3}
\end{equation*}
$$

Using the change of variable $y=\frac{a+t}{2}$, then $d t=2 d y, t-a=2(y-a)$ and

$$
\int_{a}^{b} \frac{1}{t-a} f\left(\frac{a+t}{2}\right) d t=\int_{a}^{\frac{a+b}{2}} \frac{f(y)}{y-a} d y
$$

and from (3.3) we get

$$
\begin{equation*}
\int_{a}^{\frac{a+b}{2}} \frac{f(t)}{t-a} d t \leq \int_{a}^{b} \frac{f(t) d t}{t-a}-\frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{1}{2} \int_{a}^{b} \frac{f(t)}{t-a} d t \tag{3.4}
\end{equation*}
$$

From the first inequality in (3.4) we get

$$
\frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \int_{a}^{b} \frac{f(t) d t}{t-a}-\int_{a}^{\frac{a+b}{2}} \frac{f(t)}{t-a} d t=\int_{\frac{a+b}{2}}^{b} \frac{f(t) d t}{t-a}
$$

that proves the second inequality in (3.1).
From the second inequality in (3.4) we get the first part of (3.1).
Now, assume that there exist $C, D>0$ with

$$
\begin{equation*}
C \int_{a}^{b} \frac{f(t)}{t-a} d t \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \leq D \int_{\frac{a+b}{2}}^{b} \frac{f(t) d t}{t-a} \tag{3.5}
\end{equation*}
$$

Consider the convex function $f(t)=(t-a)^{\alpha+1}$ with $\alpha>0$. Then by (3.5) we have

$$
C \int_{a}^{b}(t-a)^{\alpha} d t \leq \frac{1}{b-a} \int_{a}^{b}(t-a)^{\alpha+1} d t \leq D \int_{\frac{a+b}{2}}^{b}(t-a)^{\alpha} d t
$$

namely

$$
C \frac{1}{\alpha+1} \leq \frac{1}{\alpha+2} \leq D \frac{1-\left(\frac{1}{2}\right)^{\alpha+1}}{\alpha+1}
$$

By taking $\alpha \rightarrow 0+$ in this inequality we get

$$
C \leq \frac{1}{2} \leq \frac{1}{2} D
$$

which shows that the constants $\frac{1}{2}$ in front of the left integral and 1 in front of the right integral are best possible.

Corollary 1. Let $g:[a, b] \rightarrow \mathbb{R}$ be continuous convex on $[a, b]$ and $g_{+}^{\prime}(a)$ is finite, then

$$
\begin{align*}
\frac{1}{2}(b-a) g_{+}^{\prime}(a)+g(a) & \leq \frac{1}{2} \int_{a}^{b} \frac{g(t)-g(a)}{t-a} d t+g(a) \tag{3.6}\\
& \leq \frac{1}{b-a} \int_{a}^{b} g(t) d t \leq \int_{\frac{a+b}{2}}^{b} \frac{g(t)}{t-a} d t+\ln \left(\frac{e}{2}\right) g(a)
\end{align*}
$$

Proof. If we write the inequality (3.1) for $f(t)=g(t)-g(a)$, then we get

$$
\begin{equation*}
\frac{1}{2} \int_{a}^{b} \frac{g(t)-g(a)}{t-a} d t \leq \frac{1}{b-a} \int_{a}^{b}[g(t)-g(a)] d t \leq \int_{\frac{a+b}{2}}^{b} \frac{g(t)-g(a)}{t-a} d t \tag{3.7}
\end{equation*}
$$

Since

$$
\begin{aligned}
\int_{\frac{a+b}{2}}^{b} \frac{g(t)-g(a)}{t-a} d t & =\int_{\frac{a+b}{2}}^{b} \frac{g(t)}{t-a} d t-g(a) \int_{\frac{a+b}{2}}^{b} \frac{d t}{t-a} \\
& =\int_{\frac{a+b}{2}}^{b} \frac{g(t)}{t-a} d t-g(a)\left[\ln (b-a)-\ln \left(\frac{b-a}{2}\right)\right] \\
& =\int_{\frac{a+b}{2}}^{b} \frac{g(t)}{t-a} d t-g(a) \ln 2
\end{aligned}
$$

hence we obtain by (3.7) the desired inequality (3.6).

Now, if we replace $g(t)$ by $h(a+b-t)$, then by (3.6) we have

$$
\begin{align*}
\frac{1}{2} \int_{a}^{b} \frac{h(a+b-t)-h(b)}{t-a} d t+h(b) & \leq \frac{1}{b-a} \int_{a}^{b} h(a+b-t) d t \tag{3.8}\\
& \leq \int_{\frac{a+b}{2}}^{b} \frac{h(a+b-t)}{t-a} d t+\ln \left(\frac{e}{2}\right) h(b)
\end{align*}
$$

By using the change of variable $u=a+b-t, t \in[a, b]$ we have $d t=-d u$,

$$
\begin{gathered}
\int_{a}^{b} \frac{h(a+b-t)-h(b)}{t-a} d t=-\int_{b}^{a} \frac{h(u)-h(b)}{b-u} d u=-\int_{a}^{b} \frac{h(b)-h(u)}{b-u} d u \\
\int_{a}^{b} h(a+b-t) d t=\int_{a}^{b} h(u) d u
\end{gathered}
$$

and

$$
\int_{\frac{a+b}{2}}^{b} \frac{h(a+b-t)}{t-a} d t=-\int_{\frac{a+b}{2}}^{a} \frac{h(u)}{b-u} d u=\int_{a}^{\frac{a+b}{2}} \frac{h(u)}{b-u} d u .
$$

Therefore, we can state the following result as well:
Corollary 2. Let $g:[a, b] \rightarrow \mathbb{R}$ be continuous convex on $[a, b]$ with $g_{-}^{\prime}(b)$ is finite, then

$$
\begin{align*}
g(b)-\frac{1}{2}(b-a) g_{-}^{\prime}(b) & \leq g(b)-\frac{1}{2} \int_{a}^{b} \frac{g(b)-g(t)}{b-t} d t \tag{3.9}\\
& \leq \frac{1}{b-a} \int_{a}^{b} g(t) d t \leq \int_{a}^{\frac{a+b}{2}} \frac{g(t)}{b-t} d t+\ln \left(\frac{e}{2}\right) g(b)
\end{align*}
$$

We also have:
Theorem 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous convex with $f(a)=0$ and $f_{+}^{\prime}(a)$ is finite, then

$$
\begin{equation*}
0 \leq \int_{\frac{a+b}{2}}^{b} \frac{f(t) d t}{t-a}-\frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{1}{8}\left[f(b)-(b-a) f_{+}^{\prime}(a)\right] \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t-\frac{1}{2} \int_{a}^{b} \frac{f(t) d t}{t-a} \leq \frac{1}{8}\left[f(b)-(b-a) f_{+}^{\prime}(a)\right] . \tag{3.11}
\end{equation*}
$$

Proof. From (1.2) we have

$$
0 \leq \frac{1}{t-a} \int_{a}^{t} f(u) d u-f\left(\frac{a+t}{2}\right) \leq \frac{1}{8}(t-a)\left[f_{-}^{\prime}(t)-f_{+}^{\prime}(a)\right]
$$

for $t \in(a, b]$.
Divide by $t-a$ and integrate on $[a, b]$ to get

$$
\begin{align*}
0 & \leq \int_{a}^{b} \frac{1}{(t-a)^{2}}\left(\int_{a}^{t} f(u) d u\right) d t-\int_{a}^{b} \frac{1}{t-a} f\left(\frac{a+t}{2}\right) d t \tag{3.12}\\
& \leq \frac{1}{8} \int_{a}^{b}\left[f_{-}^{\prime}(t)-f_{+}^{\prime}(a)\right] d t
\end{align*}
$$

Since, as above

$$
\begin{gathered}
\int_{a}^{b} \frac{1}{(t-a)^{2}}\left(\int_{a}^{t} f(u) d u\right) d t=\int_{a}^{b} \frac{f(t) d t}{t-a}-\frac{1}{b-a} \int_{a}^{b} f(t) d t \\
\int_{a}^{b} \frac{1}{t-a} f\left(\frac{a+t}{2}\right) d t=\int_{a}^{\frac{a+b}{2}} \frac{f(t)}{t-a} d t
\end{gathered}
$$

and

$$
\int_{a}^{b}\left[f_{-}^{\prime}(t)-f_{+}^{\prime}(a)\right] d t=f(b)-(b-a) f_{+}^{\prime}(a)
$$

hence by (3.12) we get (3.10).
From (1.3) we get

$$
0 \leq \frac{1}{2} f(t)-\frac{1}{t-a} \int_{a}^{t} f(u) d u \leq \frac{1}{8}(t-a)\left[f_{-}^{\prime}(t)-f_{+}^{\prime}(a)\right]
$$

for $t \in(a, b]$.
Divide by $t-a$ and integrate on $[a, b]$ to get

$$
0 \leq \frac{1}{2} \int_{a}^{b} \frac{f(t) d t}{t-a}-\int_{a}^{b} \frac{1}{(t-a)^{2}}\left(\int_{a}^{t} f(u) d u\right) d t \leq \frac{1}{8} \int_{a}^{b}\left[f_{-}^{\prime}(t)-f_{+}^{\prime}(a)\right] d t
$$

which gives (3.11).
Corollary 3. Let $g:[a, b] \rightarrow \mathbb{R}$ be continuous convex on $[a, b]$ and $g_{+}^{\prime}(a)$ is finite, then

$$
\begin{align*}
0 & \leq \frac{1}{b-a} \int_{a}^{b} g(t) d t-\frac{1}{2} \int_{a}^{b} \frac{g(t)-g(a)}{t-a} d t-g(a) \tag{3.13}\\
& \leq \frac{1}{8}\left[g(b)-g(a)-(b-a) g_{+}^{\prime}(a)\right]
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq \int_{\frac{a+b}{2}}^{b} \frac{g(t)}{t-a} d t+\ln \left(\frac{e}{2}\right) g(a)-\frac{1}{b-a} \int_{a}^{b} g(t) d t \tag{3.14}\\
& \leq \frac{1}{8}\left[g(b)-g(a)-(b-a) g_{+}^{\prime}(a)\right]
\end{align*}
$$

4. An Example

Consider $[a, b] \subset(0, \infty)$ and take the convex function $g(t)=\frac{1}{t}$. Then

$$
\begin{aligned}
\int_{a}^{b} \frac{g(t)-g(a)}{t-a} d t & =\int_{a}^{b} \frac{\frac{1}{t}-\frac{1}{a}}{t-a} d t=\int_{a}^{b} \frac{a-t}{t a(t-a)} d t \\
& =-\frac{1}{a} \int_{a}^{b} \frac{d t}{t}=-\frac{1}{a} \ln \left(\frac{b}{a}\right) \\
\frac{1}{b-a} \int_{a}^{b} g(t) d t & =\frac{1}{b-a} \int_{a}^{b} \frac{1}{t} d t=\frac{\ln b-\ln a}{b-a}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{\frac{a+b}{2}}^{b} \frac{g(t)}{t-a} d t & =\int_{\frac{a+b}{2}}^{b} \frac{1}{t(t-a)} d t=\frac{1}{a} \int_{\frac{a+b}{2}}^{b}\left(\frac{1}{t-a}-\frac{1}{t}\right) d t \\
& =\frac{1}{a}\left(\ln 2-\ln b+\ln \left(\frac{a+b}{2}\right)\right)=\frac{1}{a} \ln \left(\frac{a+b}{b}\right)
\end{aligned}
$$

Then by using (3.9) we get

$$
\begin{equation*}
\frac{1}{a}\left(1-\frac{1}{2} \ln \left(\frac{b}{a}\right)\right) \leq \frac{\ln b-\ln a}{b-a} \leq \frac{1}{a} \ln \left(\frac{e(a+b)}{2 b}\right) \tag{4.1}
\end{equation*}
$$

for any $0<a<b$.
By using (3.13) and (3.14) we also have

$$
\begin{equation*}
0 \leq \frac{\ln b-\ln a}{b-a}-\frac{1}{a}\left(1-\frac{1}{2} \ln \left(\frac{b}{a}\right)\right) \leq \frac{1}{8 a}(b-a)^{2} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq \frac{1}{a} \ln \left(\frac{e(a+b)}{2 b}\right)-\frac{\ln b-\ln a}{b-a} \leq \frac{1}{8 a}(b-a)^{2} \tag{4.3}
\end{equation*}
$$

for any $0<a<b$.

References

[1] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54 (1948), 439-460.
[2] S. S. Dragomir and C. E. M. Pearce, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online http://rgmia.org/monographs/hermite_hadamard.html].
[3] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No. 2, Article 31. [Online https://www.emis.de/journals/JIPAM/article183.html?sid=183].
[4] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No. 3, Article 35. [Online https://www.emis.de/journals/JIPAM/article187.html?sid=187].
[5] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14 (2017), no. 1, Art. 1, 283 pp. [Online http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
[6] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985), 229-232.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15; 26D10.
 Key words and phrases. Convex functions, Integral inequalities. Hermite-Hadamard inequality.

