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Abstract. In this paper, we study some analytic properties of the sigmoid
function, which is frequently applied in neural networks as well as other sci-
entific disciplines. Specifically, by using analytical techniques, we establish
several inequalities involving the function. Some of these inequalities connect
the sigmoid function to the softplus function.

1. Introduction

The sigmoid function, which is also known as the standard logistic function is
defined as

S(x) =
ex

1 + ex
=

1

1 + e−x
, x ∈ (−∞,∞), (1)

=
1

2
+

1

2
tanh

(x
2

)
, x ∈ (−∞,∞). (2)

Its first and second derivatives are given as

S ′(x) =
ex

(1 + ex)2
= S(x) (1− S(x)) , (3)

S ′′(x) =
ex(1− ex)

(1 + ex)3
= S(x)(1− S(x))(1− 2S(x)), (4)

for all x ∈ (−∞,∞). It follows swiftly from (3) that S(x) is increasing on
(−∞,∞). Also, in view of (3), y = S(x) is a solution to the autonomous differ-
ential equation

dy

dx
= y(1− y), (5)

with initial condition y(0) = 0.5. Furthermore, the sigmoid function satisfies the
following properties.

S(x) + S(−x) = 1, (6)

S ′(x) = S(x)S(−x), (7)

S ′(x) = S ′(−x), (8)

lim
x→∞

S(x) = 1, (9)

lim
x→0

S(x) =
1

2
, (10)
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lim
x→−∞

S(x) = 0, (11)

lim
x→±∞

S ′(x) = 0, (12)

lim
x→0

S ′(x) =
1

4
, (13)∫

S(x) dx = ln(1 + ex) + C, (14)

where C is a constant of integration. The function ln(1 + ex) is known in the
literature as softplus function [9]. It is clear from (14) that, the derivative of the
softplus function gives the sigmoid function.

The sigmoid function has found useful applications in many scientific disciplines
including machine learning, probability and statistics, biology, ecology, popula-
tion dynamics, demography, and mathematical psychology (see [3] , [14], and the
references therein).

In particular, the function is widely used in artificial neural networks, where it
serves as an activation function at the output of each neuron (see [4], [5], [6], [10],
[15]). Also, in the business field, the function been applied to study performance
growth in manufacturing and service management (see [13]). Another area of
application is in the field of medicine, where the function is used to model the
growth of tumors or to study pharmacokinetic reactions (see [14]). It is also ap-
plied in forestory. For example in [7], a generalized form of the function is applied
to predict the site index of unmanaged loblolly and slash pine plantations in East
Texas. Furthermore, it also applied in computer graphics or image processing to
enhance image contrast (see [8], [12]).

The above important roles of the function makes its properties a matter of
interest and hence worth studying. In the recent work [11], the authors studied
some analytic properties of the function such as starlikeness and convexity in a
unit disc.

In this paper, we continue the investigation. We establish among other things,
properties such as inequalities, subadditivity, convexity and supermultiplicativity
of the function. We begin with the following definitions and lemmas.

2. Auxiliary Definitions and Lemmas

Definition 2.1. A function M : (0,∞) × (0,∞) → (0,∞) is called a mean
function if it satisfies the following conditions.

(i) M(x, y) = M(y, x),
(ii) M(x, x) = x,

(iii) x < M(x, y) < y, for x < y,
(iv) M(λx, λy) = λM(x, y), for λ > 0.

There are several well-known mean functions in the literature. Amongst these
are the following.

(i) Arithmetic mean: A(x, y) = x+y
2

,
(ii) Geometric mean: G(x, y) =

√
xy,

(iii) Harmonic mean: H(x, y) = 1
A( 1

x
, 1
y
)

= 2xy
x+y

,
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(iv) Logarithmic mean: L(x, y) = x−y
lnx−ln y

for x 6= y, and L(x, x) = x.

(v) Identric mean: I(x, y) = 1
e

(
xx

yy

) 1
x−y

for x 6= y, and I(x, x) = x.

Definition 2.2 ([1]). Let f : I ⊆ (0,∞) → (0,∞) be a continuous function
and M and N be any two mean functions. Then f is said to be MN -convex
(MN -concave) if

f(M(x, y)) ≤ (≥)N(f(x), f(y)),

for all x, y ∈ I.

Lemma 2.3 ([2]). Let f : (a,∞)→ (−∞,∞) with a ≥ 0. If the function defined

by g(x) = f(x)−1
x

is increasing on (a,∞), then the function h(x) = f(x2) satisfies
the Grumbaum-type inequality

1 + h(z) ≥ h(x) + h(y), (15)

where x, y ≥ a and z2 = x2 + y2. If g is decreasing, then the inequality (15) is
reversed.

Lemma 2.4 ([16]). Let −∞ ≤ a < b ≤ ∞ and f and g be continuous functions
that are differentiable on (a, b), with f(a+) = g(a+) = 0 or f(b−) = g(b−) = 0.

Suppose that g(x) and g′(x) are nonzero for all x ∈ (a, b). If f ′(x)
g′(x)

is increasing

(or decreasing) on (a, b), then f(x)
g(x)

is also increasing (or decreasing) on (a, b).

3. Main Results

Theorem 3.1. The function S(x) is subadditive on (−∞,∞). In other words,
the function satisfies the inequality

S(x+ y) < S(x) + S(y), (16)

for all x, y ∈ (−∞,∞).

Proof. The case where x = y = 0 is trivial. Hence we only prove the result for the
case where x, y ∈ (0,∞) and the case where x, y ∈ (−∞, 0). Let u(x) = ex

(1+ex)2

for x ∈ (0,∞). Then u′(x) = ex(1−ex)
(1+ex)3

< 0 which implies that u(x) is decreasing.

Next let

f(x, y) = S(x+ y)− S(x)− S(y)

=
ex+y

1 + ex+y
− ex

1 + ex
− ey

1 + ey
,

for x, y ∈ (0,∞). Without loss of generality, let y be fixed. Then

∂

∂x
f(x, y) =

ex+y

(1 + ex+y)2
− ex

(1 + ex)2
< 0,

since u(x) is decreasing. Hence f(x, y) is decreasing. Then for x ∈ (0,∞) we
have

f(x, y) < f(0, y) = lim
x→0

f(x, y) = −1

2
< 0,

which gives the desired result (16).
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Likewise, let w(x) = ex

(1+ex)2
for x ∈ (−∞, 0). Then w′(x) = ex(1−ex)

(1+ex)3
> 0 which

implies that w(x) is increasing. Furthermore, let

g(x, y) = S(x+ y)− S(x)− S(y),

for x, y ∈ (−∞, 0). Then for a fixed y we have

∂

∂x
g(x, y) =

ex+y

(1 + ex+y)2
− ex

(1 + ex)2
> 0,

since w(x) is increasing. Hence g(x, y) is increasing. Then for x ∈ (−∞, 0) we
have

g(x, y) < g(0, y) = lim
x→0

g(x, y) < 0.

Therefore, inequality (16) holds for all x, y ∈ (−∞,∞).

Theorem 3.2. The function S(x) satisfies the following inequalities.

1 <
S(x+ 1)

S(x)
< e, x ∈ (−∞,∞), (17)

2e

1 + e
<
S(x+ 1)

S(x)
< e, x ∈ (−∞, 0), (18)

1 <
S(x+ 1)

S(x)
<

2e

1 + e
, x ∈ (0,∞). (19)

Proof. Note that
(

S′(x)
S(x)

)′
= − ex

(1+ex)2
< 0, for all x ∈ (−∞,∞). Thus, the

function S′(x)
S(x)

is decreasing for all x ∈ (−∞,∞). Now, for each x ∈ (−∞,∞), let

Q(x) = S(x+1)
S(x)

and u(x) = lnQ(x). Then

u′(x) =
S ′(x+ 1)

S(x+ 1)
− S ′(x)

S(x)
< 0,

since S′(x)
S(x)

is decreasing. Thus u(x) and consequently Q(x) are decreasing. Hence

for all x ∈ (−∞,∞), we have

1 = lim
x→∞

Q(x) < Q(x) < lim
x→−∞

Q(x) = e,

which gives the inequality (17). For x ∈ (−∞, 0), we have

2e

1 + e
= lim

x→0
Q(x) < Q(x) < lim

x→−∞
Q(x) = e,

which gives (18). Then for x ∈ (0,∞), we have

1 = lim
x→∞

Q(x) < Q(x) < lim
x→0

Q(x) =
2e

1 + e
,

which gives (19).

Theorem 3.3. The function S(x) is GG-convex on (0, 1). That is, for x, y ∈
(0, 1), the inequality

S(x
1
ay

1
b ) ≤ [S(x)]

1
a [S(y)]

1
b , (20)

is satisfied, where a > 1 and 1
a

+ 1
b

= 1.
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Proof. Recall that a function f : I ⊆ (0,∞) → (0,∞) is GG-convex if and only

if xf ′(x)
f(x)

is increasing for all x ∈ I (see Corollary 2.5 of [1]). We have xS′(x)
S(x)

= x
1+ex

and
(

xS′(x)
S(x)

)′
= 1+(1−x)ex

(1+ex)2
> 0, which concludes the proof.

Remark 3.4. By the classical Young’s inequality, the right hand side of (20)
gives

[S(x)]
1
a [S(y)]

1
b ≤ S(x)

a
+
S(y)

b
. (21)

Hence

S(x
1
ay

1
b ) ≤ S(x)

a
+
S(y)

b
, (22)

which shows that S(x) is also GA-convex on (0, 1).

Theorem 3.5. The function S(x) is AH-concave on (0,∞). That is,

S

(
x+ y

2

)
≥ 2S(x)S(y)

S(x) + S(y)
, (23)

for all x, y ∈ (0,∞).

Proof. A function f : I ⊆ (0,∞) → (0,∞) is AH-convex if and only if f ′(x)
f(x)2

is

decreasing for all x ∈ I (see Corollary 2.5 of [1]). Now we have
(

S′(x)
S(x)2

)′
= − 1

ex
< 0

, which yields the desired result.

Theorem 3.6. The function S(x) is logarithmically concave on (−∞,∞). That
is, for x, y ∈ (−∞,∞), a > 1 and 1

a
+ 1

b
= 1, the inequality

S
(x
a

+
y

b

)
≥ [S(x)]

1
a [S(y)]

1
b , (24)

is satisfied.

Proof. Let φ(x) = lnS(x) = x− ln(1 + ex) for all x, y ∈ (−∞,∞). Then φ′′(x) =
− ex

(1+ex)2
≤ 0, which concludes the proof.

Corollary 3.7. The inequalities

S ′′(x)S(x)− (S ′(x))2 ≤ 0, x ∈ (−∞,∞), (25)

S(1 + u)S(1− u) ≤
(

e

1 + e

)2

, u ∈ (−∞,∞), (26)

are satisfied.

Proof. Inequality (25) is a direct consequence of the logarithmic concavity of
S(x). By letting a = b = 2, x = 1 + u and y = 1− u in (24), we obtain (26).

Theorem 3.8. The function S(x) satisfies the following inequalities.

S2(x+ y) ≥ S(x)S(y), x, y ∈ [0,∞), (27)

S2(x+ y) ≤ S(x)S(y), x, y ∈ (−∞, 0]. (28)

Equality holds if x = y = 0.



6 K. NANTOMAH

Proof. Let x, y ∈ [0,∞) and recall that S(x) is increasing. Then we have

S(x+ y) ≥ S(x) > 0,

S(x+ y) ≥ S(y) > 0,

since x+ y ≥ x and x+ y ≥ y. Now by multiplying these inequalities, we obtain
(27). For x, y ∈ (−∞, 0], we have

0 < S(x+ y) ≤ S(x),

0 < S(x+ y) ≤ S(y),

since x+ y ≤ x and x+ y ≤ y. Then by multiplication, we obtain (28).

Theorem 3.9. The function S(x) satisfies the following inequalities.

S2(xy) ≤ S(x)S(y), x, y ∈ (0, 1], (29)

S2(xy) ≥ S(x)S(y), x, y ∈ [1,∞). (30)

Equality holds if x = y = 1.

Proof. Suppose that x, y ∈ (0, 1]. Then xy ≤ x and xy ≤ y. Since S(x) is
increasing, we have

0 < S(xy) ≤ S(x),

0 < S(xy) ≤ S(y),

and by multiplication, we obtain (29). Next suppose that x, y ∈ [1,∞). Then
xy ≥ x and xy ≥ y and consequently, we have

S(xy) ≥ S(x) > 0,

S(xy) ≥ S(y) > 0,

which yields (30). This completes the proof.

Theorem 3.10. The function S(x) is supermultiplicative on (1,∞). That is

S(xy) > S(x)S(y), (31)

for all x, y ∈ (1,∞).

Proof. Since S(z) ∈ (0, 1) for all z ∈ (−∞,∞), then S2(z) < S(z) for all z ∈
(−∞,∞). Hence

S2(xy) < S(xy),

for all x, y ∈ (1,∞). This together with (30) yields

S(x)S(y) ≤ S2(xy) < S(xy),

which completes the proof.

Theorem 3.11. The function S(x) satisfies the Grumbaum-type inequality

1 + S(z2) ≥ S(x2) + S(y2), (32)

where x, y ∈ (0,∞) and z2 = x2 + y2.
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Proof. Let g(x) be defined for x ∈ (0,∞) as g(x) = S(x)−1
x

. That is,

g(x) =
ex

1+ex
− 1

x
= − 1

x(1 + ex)
.

Then

g′(x) =
1

x2(1 + ex)
+

ex

x(1 + ex)
> 0,

which implies that g(x) is increasing. Hence by applying Lemma 2.3, we obtain
the desired result (32).

In what follows we give some sharp inequalities connecting the sigmoid and the
softplus functions.

Theorem 3.12. The inequalities

ex

1 + ex
< ln(1 + ex) < ln 2− 1

2
+

ex

1 + ex
, x ∈ (−∞, 0), (33)

ln 2− 1

2
+

ex

1 + ex
< ln(1 + ex), x ∈ (0,∞), (34)

ex

1 + ex
< ln(1 + ex), x ∈ (−∞,∞), (35)

are valid.

Proof. Let F (x) = ln(1 + ex)− ex

1+ex
for all x ∈ (−∞,∞). Then

F ′(x) =
ex

1 + ex

(
1− 1

1 + ex

)
=

(
ex

1 + ex

)2

> 0.

Thus F (x) is increasing for all x ∈ (−∞,∞). Then for x ∈ (−∞, 0), we have

0 = lim
x→−∞

F (x) < F (x) < lim
x→0

F (x) = ln 2− 1

2
,

which gives inequality (33). For x ∈ (0,∞), we have

ln 2− 1

2
= lim

x→0
F (x) < F (x) < lim

x→∞
F (x) =∞,

which gives inequality (34). Finally, for x ∈ (−∞,∞), we have

0 = lim
x→−∞

F (x) < F (x) < lim
x→∞

F (x) =∞,

which gives inequality (35). This completes the proof.

Lemma 3.13. The inequality

ex − ln(1 + ex) > 0 (36)

holds for all x ∈ (−∞,∞).



8 K. NANTOMAH

Proof. Let T (x) = ex − ln(1 + ex) for all x ∈ (−∞,∞). Then

T ′(x) = ex
(

1− 1

1 + ex

)
=

e2x

1 + ex
> 0,

which means that T (x) is increasing. Then we have

T (x) > lim
x→−∞

T (x) = lim
x→−∞

[ex − ln(1 + ex)] = 0,

which gives inequality (36).

Theorem 3.14. Let f(x) = (1 + ex)
1
ex and g(x) = (1 + ex)1+

1
ex for all x ∈

(−∞,∞). Then f(x) is decreasing and g(x) is increasing. Consequently the
inequalities

(ln 2)ex < ln(1 + ex) < ex, x ∈ (−∞, 0), (37)
ex

1 + ex
< ln(1 + ex) < (2 ln 2)

ex

1 + ex
, x ∈ (−∞, 0), (38)

ex

1 + ex
< ln(1 + ex) < ex, x ∈ (−∞,∞), (39)

are satisfied.

Proof. Let K(x) = ln f(x) = ln(1+ex)
ex

and L(x) = ln g(x) = 1+ex

ex
ln(1 + ex) for all

x ∈ (−∞,∞). Then

K ′(x) =
1

1 + ex
− ln(1 + ex)

ex

=
1

ex

[
ex

1 + ex
− ln(1 + ex)

]
< 0,

which follows from (35). Hence K(x) is decreasing and consequently, f(x) is also
decreasing. Also, we have

L′(x) = 1− ln(1 + ex)

ex

=
1

ex
[ex − ln(1 + ex)] > 0

which follows from (36). Thus L(x) is increasing and consequently, g(x) is also
increasing. Moreover, we have

K(0) = ln 2, (40)

lim
x→−∞

K(x) = lim
x→−∞

ln(1 + ex)

ex
= lim

x→−∞

1

1 + ex
= 1, (41)

lim
x→∞

K(x) = lim
x→∞

1

1 + ex
= 0, (42)

L(0) = 2 ln 2, (43)

lim
x→−∞

L(x) = lim
x→−∞

ln(1 + ex)(
ex

1+ex

) = lim
x→−∞

(1 + ex) = 1, (44)

lim
x→∞

L(x) = lim
x→∞

ln(1 + ex)(
ex

1+ex

) =∞. (45)
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Since K(x) is decreasing and L(x) is increasing, we obtain the following. For
x ∈ (−∞, 0), we have

ln 2 = K(0) < K(x) < lim
x→−∞

K(x) = 1,

which gives inequality (37). Also, for x ∈ (−∞, 0), we have

1 = lim
x→−∞

L(x) < L(x) < L(0) = 2 ln 2,

which gives inequality (38). Furthermore, for x ∈ (−∞,∞), we have

0 = lim
x→∞

K(x) < K(x) < lim
x→−∞

K(x) = 1,

which gives

ln(1 + ex) < ex. (46)

Also, we have

1 = lim
x→−∞

L(x) < L(x) < lim
x→∞

L(x) =∞,

which gives
ex

1 + ex
< ln(1 + ex). (47)

Then by combining (46) and (47), we obtain (38).

Theorem 3.15. Let Ω be defined for x ∈ (−∞, 0) by

Ω(x) =
ex ln(1 + ex)

ex − ln(1 + ex)
.

Then Ω(x) is increasing and consequently, the inequality

0 <
ex ln(1 + ex)

ex − ln(1 + ex)
<

ln 2

1− ln 2
, (48)

is satisfied.

Proof. To begin with, we have

lim
x→0

Ω(x) =
ln 2

1− ln 2
,

and

lim
x→−∞

Ω(x) = lim
x→−∞

ex ln(1 + ex)

ex − ln(1 + ex)

= lim
x→−∞

ln(1 + ex)− ex

1+ex

ex

1+ex

= lim
x→−∞

ex

1+ex
− ex

(1+ex)2

ex

(1+ex)2

= lim
x→−∞

ex

= 0.
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Next, let f(x) = ex ln(1 + ex) and g(x) = ex − ln(1 + ex). Then f(−∞) =
limx→−∞ f(x) = 0 and g(−∞) = limx→−∞ g(x) = 0. Also,

f ′(x) = ex
[
ln(1 + ex) +

ex

1 + ex

]
,

and

g′(x) = ex
[
1− 1

1 + ex

]
= ex

ex

1 + ex
.

Then

f ′(x)

g′(x)
=

ln(1 + ex) + ex

1+ex

ex

1+ex

=
ln(1 + ex)(

ex

1+ex

) − 1 =
1 + ex

ex
ln(1 + ex)− 1,

which implies that(
f ′(x)

g′(x)

)′
=

(
1 + ex

ex
ln(1 + ex)

)′
=

1

ex
[ex − ln(1 + ex)] > 0.

Thus f ′(x)
g′(x)

is increasing. Hence in view of Lemma 2.4, we conclude that f(x)
g(x)

=

Ω(x) is increasing. Then for x ∈ (−∞, 0) we have

0 = lim
x→−∞

Ω(x) < Ω(x) < lim
x→0

Ω(x) =
ln 2

1− ln 2
,

which yields inequality (48).

Remark 3.16. Let λ = ln 2
1−ln 2

. Then inequality (48) can be written as

ln(1 + ex) <
λex

λ+ ex
, (49)

for all x ∈ (−∞, 0).
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