ON SOME RIEMANN-STIELTJES INTEGRAL INEQUALITIES
OF GENERALIZED TRAPEZOID TYPE WITH APPLICATIONS

SILVESTRU SEVER DRAGOMIR

ABSTRACT. In this paper we provide some bounds for the error in approximat-
ing the Riemann-Stieltjes integral f; f (t) du (t) by the generalized trapezoidal
rule

[u(b) —u(@)] f(b) + [u(z) —u(a) f(a)
under various assumptions for the integrand f and the integrator u for which
the above integral exists. Applications for continuous functions of selfadjoint
operators and unitary operators in Hilbert spaces are provided as well.

1. INTRODUCTION

In [10], in order to approximate the Riemann-Stieltjes integral f; f(t)du(t) by
the generalized trapezoid formula

(1.1) [u(®) —u(@)]f®)+[ulz)—ula)fla), x€lab],
the authors considered the error functional
b
(12) T (fusabia)i= [u® ~ (@) £ () + (o) = u@) f @)~ [ f@dult)
and proved that

a+b
2

(L3 [T (et < 1[5 0-a)+|o-

r b
[V, aclal.

provided that f : [a,b] — R is of bounded variation on [a, b] and u is of r-H-Hélder
type, that is, u : [a,b] — R satisfies the condition |u (t) — u (s)| < H |t — s|" for any
t,s € [a,b], where r € (0,1] and H > 0 are given.

If r = 1, namely w is Lipschitzian with the constant L > 0, then by (1.3) we get

(14 rwana<z[Lo-a - E Vo,

a

for « € [a,b], provided that f : [a,b] — R is of bounded variation on [a, b] .
The dual case, namely, when f is of ¢-K-Holder type and u is of bounded vari-
ation has been considered in [3] in which the authors obtained the bound:

q b

|V

a

_a+b
2

(15) (ko) < K [ 0-0)+|o
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for any x € [a, b)].
If ¢ = 1, namely, if f is Lipschitzian with the constant M > 0, then by (1.5) we
get

(1.6) T(f,u;a,b;x)|SMB(b—a)—i—‘m—a;bH\?(u)

for any « € [a, b].

For other related results, see [7]-[8] and [11]-[12].

The case where f is monotonic and w is of r-H-Holder type, which provides
a refinement for (1.3), respectively the case where w is monotonic and f of ¢-K-
Holder type were considered by Cheung and Dragomir in [6], while the case where
one function was of Holder type and the other was Lipschitzian were considered in
[2]. For other recent results in estimating the error T (f,u;a,b, x) for absolutely
continuous integrands f and integrators v of bounded variation, see [4] and [5].

2. INEQUALITIES FOR INTEGRATORS OF BOUNDED VARIATION

Assume that u, f : [a,b] — C. If the Riemann-Stieltjes integral fabf(t) du (t)
exists, we write for simplicity, like in [1, p. 142] that f € R¢ (u, [a,b]), or R, (u)
when the interval is implicitly known. If the functions w, f are real valued, then
we write f € R (u, [a,b]), or R (u).

We start with the following identity of interest.

Lemma 1. Let f, u: [a,b] — C and x € [a,b] such that f € Re¢ (u,[a,b]). Then
for any v, p € C,

b
(2.1) [U(b)—u]f(b)+[v—u(a)]f(a)Jr(u—v)f(w)—/ f(#)du(t)

T b
~ [ -d @+ [ wo -,

In particular, for p = we have
b b
(2.2) W@fﬂf@+hfwﬂf@f/fﬁﬂwﬂ5/wwfﬂﬁm-

Proof. Using integration by parts rule for the Riemann-Stieltjes integral, we have

/x[U(t)—ﬂdf(t)Z [u(@) =] f(2) —[ula) =2 f(a) = [ f{)du(t)

a

and
b

b
/ [u(®) = pldf () = [w(®) = pl £ () = [u(@) —pl f(z) = [ F(t)du(t)

x

for any x € [a,b].
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If we add these two equalities, we get

x b
/ e (8) — A df (£) + /[u(t% W df (2)

=[u®) —pfb)+[y—ula)f(a)+[p—u(@)]f(2)
/ f@)du(t / f@)du(t
= [u(®) ~ ] £ ) + [y~ u(@)] F (@) /f £) du ¢
for any x € [a, b] , which proves the desired equality (2.1). O

From the equality (2.2) we have for x € [a,b] and v = u (x) that

b
(23) T (fusabia) = [ u(®) - u(@)]df ()

and in particular

(2.4) T(f,u;a,b;a;b>:/ab {u(t)—u(a;b)]df(t).

Also, if p € [a,b] is such that u (p) = M , then from (2.3) we get

(25) T(f,ua,bip) = [u(b) —ula / £ () dut
/[a() u ) (0).

We have:

Theorem 1. Assume that u, f € BVc[a,b] (of bounded variations) and f €
Cc [a,b]. Then the Riemann-Stieltjes integral f[f () du(t) exists and

20 [T(fwaba) < [ ' (\/ <u>> d (\/ (f)) -/ b (\/ <u>) d (\/ (f))

a xT

[ (elye)- [ (Yn)e(ve)

for all x € [a,b].
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Proof. Tt is well known that, if p : [a,b] — C is continuous and v : [a,b] — C of
bounded variation, then

b b t b
[rmao|< | |p<t>|d<y<u) < s P01V ).

By making use of the equality (2.3) we have

(2.7)

T b
@8) [1(fuabo) = [ WO -u@ld O+ [ O -u@ld

<

b
/ [ (t) — ()] df (2)

< [ u - u |d( ) /|u o |d< <>) B(f.u.7).

Since u is of bounded variation, we have

[ - df(t)' ¥

x

\/ for ¢ € [a, z]

t

and
t

\/ for t € [x,b],

x

hence

< / (\/ <u>>

t
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[ (0o

(i) () (1))
(1) () [ (o)
(o oe(ie) - o) (0e)

Cfua)= [ (\/ <f>> a (\/ <u>> +/Ib (\/ <f>> a (\/ <u>> .

a t

These prove the first inequality in (2.6) and the equality after that.
Using the properties of the total variation, we also have

/ <\t/ (u)> d (\t/ (f)) + /b (\t/ (u)> d (\t/ (f))

a T xT

which proves the second inequality in (2.6).
The last part is obvious by the properties of maximum of two positive numbers.
O

Corollary 1. With the assumptions of Theorem 1,
q b

(i) If q € [a,b] is such that \/ (f) = \/ (f), then

q

b b
(2.10) T (Gt < 5\ @)V (7).

m

b
(ii) If m € [a,b] is such that \/ (u) = \/ (u), then

b b
(21) 1T (Fwsabsm)| < 5\ )V ().

The case of monotonic integrands is as follows:
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Corollary 2. Assume that u € BVc [a,b], f € M~ [a,b] (monotonic nondecreas-
ing) and f € Cc[a,b]. Then the Riemann-Stieltjes integral f; f(t)du(t) exists and

(212) [T (f,usa,biz)] < / (\/(u)) df (t) + / (\/(m) df (t)

IN

for all x € [a,b].

Remark 1. Under the assumptions of Corollary 2 and if p € [a,b] with f(p) =

7f(“);f(b) , we have

b
(213 T (w50 bi)| < 51 0) — f @]V (w).

b
(2.14) 1T (w50 )| < S 17 0) — £ (@] V/ (w).

‘We have:

Theorem 2. Assume that uw € BV¢ [a,b] and f is Lipschitzian with the constant
L >0, namely

[f @) = f(8)] < Lt —s| forallt, s€a,b],
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then the Riemann-Stieltjes integral f: f(t)du(t) exists and

t[<?w0ﬁ+[(vwoﬁ]

x

/j(t—a)d<\t/(u)> +/:(b—t)d<\:/(u)ﬂ

(2.15) |T(f,uja,b;2)[ < L

=L

for z € [a,b].

Proof. It is well known that, if p : [a,b] — C is Riemann integrable and v : [a,b] — C
Lipschitzian with the constant L > 0, then

(2.16)

b b
/p<t>dv<t> SL/ Ip (1) dt

By making use of the equality (2.3) we have

T (f, us0,b;2)] =

/ () — @) df (1) + [ -u@iao

<

/ [ (t) - u (x)] df (0' + /: [ (t) = ()] df (1)

<L

x b
/ |u(t)—u(x)|dt+/ |u(t)—u(x)|dt1 — D (f,u,2)

for z € [a,b].
Since u is of bounded variation, hence

o< [ (Yio)a [ (Vo)

for « € [a,b], which proves the first inequality in (2.15).



8 S.S. DRAGOMIR

Using the integration by parts, we have

which proves the equality in (2.15).
The rest is obvious. (]

Corollary 3. With the assumptions of Theorem 2, we have

(2.17) ’T <f,u;a,b;a+b>‘ < %L(b—a)\/(u).

m

b
(2.18) T (f,u;a,b;m)| < %L(b—a)\/(u).

3. APPLICATIONS FOR SELFADJOINT OPERATORS

We denote by B(H) the Banach algebra of all bounded linear operators on
a complex Hilbert space (H;(-,-)). Let A € B(H) be selfadjoint and let ¢, be
defined for all A € R as follows
1, for —o0 < s < A,
px(s) =
0, for A < s < 4o0.
Then for every A € R the operator
(3.1) Ey =, (A)
is a projection which reduces A.
The properties of these projections are collected in the following fundamental

result concerning the spectral representation of bounded selfadjoint operators in
Hilbert spaces, see for instance [13, p. 256]:

Theorem 3 (Spectral Representation Theorem). Let A be a bounded selfadjoint
operator on the Hilbert space H and let a = min {A |\ € Sp(A4)} =: min Sp (4) and
b =max{A|A € Sp(A)} =: maxSp(A). Then there exists a family of projections
{Ex} e, called the spectral family of A, with the following properties
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a) Ex < Ey for A< )\
b) E,0=0,E, =1 and Exyo = E) for all A € R;
c) We have the representation

b
A= AdE).
a—0
More generally, for every continuous complex-valued function ¢ defined on R
there exists a unique operator ¢ (A) € B(H) such that for every € > 0 there exists
a § > 0 satisfying the inequality
‘ ' (A) - Z ® ()‘;c) [E/\k - E)\Ic—l} <e
k=1

whenever
M<a=A<..<A_1< A, =0

Ak —Ap—1 <0 for 1<k <n,

A, € [Me—1, M) for1<k<n
this means that

b
(32 e = [ pyam,

where the integral is of Riemann-Stieltjes type.

Corollary 4. With the assumptions of Theorem 8 for A, Ex and @ we have the
representations

b
ga(A)x:/ Oga()\)dE)\sc forallz e H

and
(3.3) (p(A)z,y) = / @ (N)d(Exz,y) forallz, ye H.

In particular,

(p(A)z,x) = /b e (N d{(Exz,x) forallz € H.
Moreover, we have the equality i
ll (A) zl|* = /b e I d || Exe|® for all z € H.
We need the following result that provides an upper bound for the total variation

of the function R 5 A — (E)z,y) € C on an interval [, 8], see [9].

Lemma 2. Let {Ex}, g be the spectral family of the bounded selfadjoint operator
A. Then for any x, y € H and o < B we have the inequality
3 2

V (Eoz,y))

[e3%

(3-4) < ((Ep — Ea) z,7) (Eg — Ea)y,0)

B
where \/ (<E(.)a¢, y>) denotes the total variation of the function <E(.)m7 y> on [, 5]
(0%
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Remark 2. For a« =a — with e > 0 and § = b we get from (3.4) the inequality

b
(3.5) \ (Eoz,y) < (g — Baee) z,2)* (1 — Ba—e) y.)'/?

a—e

for any x, y € H.
This implies, for any x, y € H, that

b

(3.6) V (Boz.y)) < lzll

a—0

b b
where \/ (<E(.)z,y>) denotes the limit lim,_ o4 l\/ (<E(.)z,y>)] .
a—0

a—¢g
We can state the following result for functions of selfadjoint operators:

Theorem 4. Let A be a bounded selfadjoint operator on the Hilbert space H
and let a = min{A A € Sp(4)} =: minSp(A4) and b = max{A |\ € Sp(A)} =:
max Sp (A) . Also, assume that {Ex} g is the spectral family of the bounded self-

adjoint operator A and assume that ¢ € BV [a,b] and ¢ € Cc [a,b] where [a,b] C I
(the interior of I). Then for all s € [a,b]

B.7) N(la — Es)z,y) ¢ (b) + (Esz,y) ¢ (a) — (¢ (4) 2, y)|

l\b/ () + \S/<s0>—\b/<w>1 \b/ (EBmz,y))
V) -\

<

DO | =

S

K
<2[\/(S@)+

1 Iyl

for any x, y € H.

Proof. Using the inequality (2.6) we have
(v, y) = (Esz,y)] ¢ (0) + [(Es,y) = (Ea—e,y)] ¢ (a — €)

b
- [ ewdEmy

K
SQl\/(@)‘*‘

a—e

s b

VAGEAVA®

a—e

] \ (Eoea))

a—e

for small ¢ > 0 and for any x, y € H.
Taking the limit over ¢ — 0+ and using the continuity of ¢ and the Spectral
Representation Theorem, we deduce the desired result (3.7). O
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Corollary 5. With the assumptions of Theorem 4 and if q € [a,b] is such that

q b
V(@) =V (¢), then

(3.8)  [(lu — Eg)z,y) ¢ (b) + (Egz, y) ¢ (a) — (¢ (A) 2, y)|
b

b
<5 V@ V (Boa) < ;mwwv
for any x, y € H.

We also have:

Theorem 5. Let A be a bounded selfadjoint operator on the Hilbert space H
and let a = min{A|A € Sp(A)} =: minSp(A4) and b = max{A|A € Sp(A)} =:
max Sp (A) . Also, assume that {Ex},cp is the spectral family of the bounded self-
adjoint operator A and assume that ¢ is Lipschitzian with the constant L > 0 on
[a,b] C 1. Then for all s € [a, b]

3.9) K(m — Es)z,y) ¢ (b) + (Esz,y) ¢ (a) — (¢ (A) z,y)]|

} \b/ (Eoz.y))

a—0

a+b
2

gLB(b—a)#—’s—

1 a+b
<L|=(0b- -
<zz0 m+% 2\]ﬂmw

for any x, y € H.
In particular, we have

(310) (18~ B ) 2.y) 9 (0) + (Eapry) ¢ (a) — (0 (A) 2,1)
b

Lb-a)\/ ((Eozy)) <

a—0

< L(b—a) |yl

N
N

for any x, y € H.

Remark 3. The above results can provide particular inequalities of interest. For
instance, if we take ¢ : [a,b] C (0,00) — R, ¢(t) = Int and A is a bounded
selfadjoint operator on the Hilbert space H with a = min{\|A € Sp(A)} and b =
max {\|A € Sp(A)}, then by (3.7) we get

(3.11) [{(1g — Ey)z,y)Inb+ (Esz,y) Ina — (In Az,
<3 (0) e (G )N (B
<3 n(3)+)

()|t

for any x, y € H.
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In particular, if we take s = G (a,b) := Vab, the geometric mean of a and b,
then we get from (3.11) that

(3.12) |<(1H — E(;((Lb)) x, y> Inb+ <E(;(a7b):c, y> Ina — (In Az, y>‘

<;1(s>0(@@%y»<;m(2)xwm

a—0

for any x, y € H.
The function ¢ : [a,b] C (0,00) — R, ¢ (t) = Int is Lipschitzian on [a,b] with
constant L = % > 0. Then by (3.9) we get

(3.13) [(lg — Es)z,y)Inb+ (Esz,y) Ina — (In Az, y)]|

< Hho-as -] V e
<[00+ - ] tet i

for any x, y € H.
In particular, if we take s = “T'H’, then we get from (3.13) that

(3.14) ‘<(1H — EQTM) x,y> Inb+ <EL+bx,y> Ina — (lnAz,y>'

;<_{)? (Bems) < 3 (21 el

for any x, y € H.

4. APPLICATIONS FOR UNITARY OPERATORS

A unitary operator is a bounded linear operator U : H — H on a Hilbert space
H satisfying
U'U=UU"=1yg
where U* is the adjoint of U, and 1y : H — H is the identity operator. This
property is equivalent to the following:
(i) U preserves the inner product (-,-) of the Hilbert space, i.e., for all vectors
x and y in the Hilbert space, (Uz, Uy) = (z,y) and
(ii) U is surjective.
The following result is well known [13, p. 275 - p. 276]:

Theorem 6 (Spectral Representation Theorem). Let U be a unitary operator on
the Hilbert space H. Then there exists a family of projections {P)\}AG[O,QW]f called
the spectral family of U, with the following properties

a) Py < Py for A<\

b) Py=0,Py, =1y and P>\+0 =P, for all X € [0,27‘(’);

c) We have the representation

27
U= / exp (i\) dPy.
0
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More generally, for every continuous complex-valued function ¢ defined on the
unit circle C (0,1) there exists a unique operator ¢ (U) € B(H) such that for every
€ > 0 there exists a § > 0 satisfying the inequality

P (U) =Y ¢ (exp (iX,)) [Pr. — Pa | < e
k=1

whenever
0=X <..<A_1 <A\, =2m,

A= Ap—1 <0 for 1 <k <mn,

)\;C S [)\kfl,)\k] fOT 1<k<n
this means that

2

(4.1 o) = [ olexpn) Py,
0

where the integral is of Riemann-Stieltjes type.

Corollary 6. With the assumptions of Theorem 6 for U, Py and ¢ we have the
representations

2
eU)x = /0 @ (exp (X)) dPyz for allz € H

and

(4.2) (p(U)z,y) = /0 i ¢ (exp (4N)) d (Pyz,y) for all z,y € H.

In particular,

27
(p(U)z,x) = /o o (exp (iA)) d (Pax,z) for all x € H.

Moreover, we have the equality
27
lo@)al® = [ lo(exp @) dl1Pal* for all s € H,
0

On making use of an argument similar to the one in [9, Theorem 6], we have:

Lemma 3. Let {P)‘})\E[OQW] be the spectral family of the unitary operator U on the

Hilbert space H. Then for any z,y € H and 0 < a < B < 27 we have the inequality
B

(43) \/ (<P()£I?,y>) < <(P5 - Poc) $,$>1/2 <(P5 - Pa) y7y>1/2 ,

o

B
where \/ (<P(,)x, y>) denotes the total variation of the function <P(.):1:, y> on [a, B].

o
In particular,
2m

(4.4) V (Poz,y)) < llzll Iy

0
for any x, y € H.

‘We have:
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Theorem 7. Let U be a unitary operator on the Hilbert space H and {P/\}/\e[ozw]
the spectral family of projections of U. Also, assume that ¢ : C(0,1) — C are
continuous on C (0,1). If ¢ oexp (i-) € BV¢ [0, 27], then for all s € [0, 27]

(4.5) e (1) (z,y) — (¢ (U)z,y)|
2 s 27 2
< % [\/ (poexp (i) + inf \/ (poexp (i) — \/ (¢ 0 exp (Z))H \/ ((Pya,y))
0

0 s€[0,27] . 0

oV . .
< 3 l\/ (poexp(i-))+ inf

0 s€[0,27]

\/ (poexp (i) —\/ (poexp (i-))H |l 1yl

S

for any x, y € H.
If there exists an s € [0,2n] such that

s 27
\ (poexp (i) = \/ (poexp (i),
0 s
then
(4.6) [ (1) (z,y) — (¢ (U) x,y)]
1 2 27 1 27
<5 V(woexn () \ (Pozy)) < 5V (eoexp (@) =] [yl
0 0 0

for any x, y € H.
If p o exp (i-) is Lipschitzian with the constant L > 0 on [0,27], then
27

@D e (zy) — e ) eyl <aL\/ ((Pyzy)) < L0 —a) | Iyl
0

for any x, y € H.
Proof. From the inequality (3.7) we get

(48)  [(m — P a,y) ¢ (€27) + (P, y) ¢ (€°) — (0 (U) z,y)]

< % [\/ (poexp (i \/ poexp (i \/(gpoexp (i) ] \/ (<P(_)x,y>)
0 0 s 0
S% [\/ (poexp () + \/woexp(i-»—\/woexp(z'-))‘ N
0 0 s

for any x, y € H and since ¢ (¢*™) = ¢ (¢”) = ¢ (1), hence by (4.8) we get

[z, y) ¢ (1) = (¢ (U) z,y)|

= % [\/ (poexp (@) + |V (poexp (i) =V (poexp (i) ] V (P, y))
0 0 s 0
<5 [\/ (poexp (i) + |\ (poexp (i) = \/ (poexp <z’~>>‘ Il gl
0 0 s

and by taking the infimum over s € [0, 271] we get (4.5).
The inequality (4.7) follows in a similar way from (3.9). O
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Remark 4. If ¢ is differentiable, then
(poexp (it)) = ¢’ (exp (it)) (exp (it)) = ¢ (exp (it)) (exp (it)) i

and if the derivative is continuous, then

27 27 27
Yw%mw»aéwwwmw»W=A 1! (exp (it))] | (exp (it)) ] dt
27
:A | (exp (it))] dt.
Similarly,

\/ (o exp (i) L/wewwmﬁmMVWOWND |1 el an

0
Since the function [ |¢' (exp (it))|dt is continuous on [0,2w], hence there is an
s € [0,27] such that

s 2T

\ (poexp (i) = \/ (poexp (i),
0

S

and by (4.6) we get

(4.9) e (1) (z,y) — (¢ (U) z,y)|
1 27

27 27
1
<3 1 ew@iay (Por) < glellol [ 19 e,
where U be a unitary operator on the Hilbert space H, {P/\}Ae[o,27r] 1s the spectral
family of projections of U and x, y € H.
We also have
sup [(poexp(it))| = sup |¢ (exp (it)) (exp (it))i| = sup |¢' (=)
te[0,27] te(0,27] z€C(0,1)

So if we assume that L := sup,cc(o,1) |¢' (2)| < 00, then poexp (it) is Lipschitzian
with the constant L. Then by (4.7) we get

27
<um|wnwm—@wwwWQr§gyumv«ﬂmw)
FAS ,1 0
<m sup |¢ ()| !l Iyl

z€C(0,1)

where U be a unitary operator on the Hilbert space H, {P,\}AG[O’%] 1s the spectral
family of projections of U and x, y € H.
If we take , for instance, ¢ (z) = z™ with n € N, then by both (4.9) and (4.10)

we get
2m

(@, y) = Uz, y)| < nrdt\[ ((Pryz,y)) < nr || |yl
0

where U be a unitary operator on the Hilbert space H, {P/\}Ae[o,zrr] is the spectral
family of projections of U and xz, y € H.

We can give a more interesting example as follows:
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Example 1. For a # £1,0 consider the function ¢ : C(0,1) — C, ¢, () = 1_1az.
Observe that

(4.11) pa (2) — o (0)| = = az|[1 = aw|

la| |2 — w|

for any z,w € C(0,1).
If z = €' with t € [0,27], then we have

I1—azl> = 1-2aRe(z)+a?|z]* =1—2acost + a?
> 1-2al+a®>=(1—a])’
therefore
1 1 1 1
(4.12) < and <
[1—az| = |1 —a| 1 —aw| = [1—|al

for any z,w € C(0,1).
Utilising (4.11) and (4.12) we deduce

|al
(4.13) [Pa (2) — g ()] < WV*M
for any z,w E‘ (‘Z' (0,1), showing that the function ¢, is Lipschitzian with the con-
stant L, = ajan? " the cm:l? C(0,1).
If we take z = € and w = €' with t, s € [0,27] in (4.18) we get
it is |al it _is
Since

|eis B eit|2 _ |6is|2 — 9Re (ei(sft)) + |eit|2

2

. s—t
sin ()‘ <|s—t
2
fort, s €|0,2n].

Therefore by (4.14) and (4.15) we get

(4.16) 0 (€7) = pq ()] <

-1
=2 —2cos (s —t) = 4sin? <8 )
for any t, s € R, hence

(4.15) e"* —e'| =2

|al
(1—al)?
for t, s € 0,2x], which shows that ¢, (ei') 18 Lipschitzian with the constant L =
ks > 0 on [0, 27].

If we use the inequality (4.7) for ¢, we get

(417) |(1- a)_1 (x,y) — <(1H — G,U)_l x,y>‘

|s — |

la|

|a| 2
<1T— Pz, <rtT—— ||z s
=Ta- |a|)2 \O/ (< ) y>) (1 |a|)2 Izl lyll

where U be a unitary operator on the Hilbert space H, {P,\})\G[U’%] is the spectral
family of projections of U and x, y € H.
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