
ON SOME RIEMANN-STIELTJES INTEGRAL INEQUALITIES
OF GENERALIZED TRAPEZOID TYPE WITH APPLICATIONS

SILVESTRU SEVER DRAGOMIR

Abstract. In this paper we provide some bounds for the error in approximat-
ing the Riemann-Stieltjes integral

R b
a f (t) du (t) by the generalized trapezoidal

rule
[u (b)� u (x)] f (b) + [u (x)� u (a)] f (a)

under various assumptions for the integrand f and the integrator u for which
the above integral exists. Applications for continuous functions of selfadjoint
operators and unitary operators in Hilbert spaces are provided as well.

1. Introduction

In [10], in order to approximate the Riemann-Stieltjes integral
R b
a
f (t) du (t) by

the generalized trapezoid formula

(1.1) [u (b)� u (x)] f (b) + [u (x)� u (a)] f (a) ; x 2 [a; b] ;
the authors considered the error functional

(1.2) T (f; u; a; b;x) := [u (b)� u (x)] f (b) + [u (x)� u (a)] f (a)�
Z b

a

f (t) du (t)

and proved that

(1.3) jT (f; u; a; b;x)j � H
�
1

2
(b� a) +

����x� a+ b2
�����r b_

a

(f) ; x 2 [a; b] ;

provided that f : [a; b]! R is of bounded variation on [a; b] and u is of r-H-Hölder
type, that is, u : [a; b]! R satis�es the condition ju (t)� u (s)j � H jt� sjr for any
t; s 2 [a; b] ; where r 2 (0; 1] and H > 0 are given.
If r = 1; namely u is Lipschitzian with the constant L > 0; then by (1.3) we get

(1.4) jT (f; u; a; b;x)j � L
�
1

2
(b� a) +

����x� a+ b2
����� b_

a

(f) ;

for x 2 [a; b] ; provided that f : [a; b]! R is of bounded variation on [a; b] :
The dual case, namely, when f is of q-K-Hölder type and u is of bounded vari-

ation has been considered in [3] in which the authors obtained the bound:

(1.5) jT (f; u; a; b;x)j � K
�
1

2
(b� a) +

����x� a+ b2
�����q b_

a

(u)
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2 S. S. DRAGOMIR

for any x 2 [a; b].
If q = 1; namely, if f is Lipschitzian with the constant M > 0; then by (1.5) we

get

(1.6) jT (f; u; a; b;x)j �M
�
1

2
(b� a) +

����x� a+ b2
����� b_

a

(u)

for any x 2 [a; b].
For other related results, see [7]-[8] and [11]-[12].
The case where f is monotonic and u is of r-H-Hölder type, which provides

a re�nement for (1.3), respectively the case where u is monotonic and f of q-K-
Hölder type were considered by Cheung and Dragomir in [6], while the case where
one function was of Hölder type and the other was Lipschitzian were considered in
[2]. For other recent results in estimating the error T (f; u; a; b; x) for absolutely
continuous integrands f and integrators u of bounded variation, see [4] and [5].

2. Inequalities for Integrators of Bounded variation

Assume that u; f : [a; b] ! C. If the Riemann-Stieltjes integral
R b
a
f (t) du (t)

exists, we write for simplicity, like in [1, p. 142] that f 2 RC (u; [a; b]) ; or RC (u)
when the interval is implicitly known. If the functions u; f are real valued, then
we write f 2 R (u; [a; b]) ; or R (u) :
We start with the following identity of interest.

Lemma 1. Let f; u : [a; b] ! C and x 2 [a; b] such that f 2 RC (u; [a; b]). Then
for any 
; � 2 C,

(2.1) [u (b)� �] f (b) + [
 � u (a)] f (a) + (�� 
) f (x)�
Z b

a

f (t) du (t)

=

Z x

a

[u (t)� 
] df (t) +
Z b

x

[u (t)� �] df (t) :

In particular, for � = 
 we have

(2.2) [u (b)� 
] f (b) + [
 � u (a)] f (a)�
Z b

a

f (t) du (t) =

Z b

a

[u (t)� 
] df (t) :

Proof. Using integration by parts rule for the Riemann-Stieltjes integral, we haveZ x

a

[u (t)� 
] df (t) = [u (x)� 
] f (x)� [u (a)� 
] f (a)�
Z x

a

f (t) du (t)

and Z b

x

[u (t)� �] df (t) = [u (b)� �] f (b)� [u (x)� �] f (x)�
Z b

x

f (t) du (t)

for any x 2 [a; b] :



RIEMANN-STIELTJES INTEGRAL INEQUALITIES 3

If we add these two equalities, we getZ x

a

[u (t)� 
] df (t) +
Z b

x

[u (t)� �] df (t)

= [u (b)� �] f (b) + [
 � u (a)] f (a) + [�� u (x)] f (x)

+ [u (x)� 
] f (x)�
Z x

a

f (t) du (t)�
Z b

x

f (t) du (t)

= [u (b)� �] f (b) + [
 � u (a)] f (a) + (�� 
) f (x)�
Z b

a

f (t) du (t)

for any x 2 [a; b] ; which proves the desired equality (2.1). �

From the equality (2.2) we have for x 2 [a; b] and 
 = u (x) that

(2.3) T (f; u; a; b;x) =

Z b

a

[u (t)� u (x)] df (t)

and in particular

(2.4) T

�
f; u; a; b;

a+ b

2

�
=

Z b

a

�
u (t)� u

�
a+ b

2

��
df (t) :

Also, if p 2 [a; b] is such that u (p) = u(a)+u(b)
2 ; then from (2.3) we get

(2.5) T (f; u; a; b; p) = [u (b)� u (a)] f (b) + f (a)
2

�
Z b

a

f (t) du (t)

=

Z b

a

[u (t)� u (p)] df (t) :

We have:

Theorem 1. Assume that u; f 2 BVC [a; b] (of bounded variations) and f 2
CC [a; b] : Then the Riemann-Stieltjes integral

R b
a
f (t) du (t) exists and

(2.6) jT (f; u; a; b;x)j �
Z x

a

 
x_
t

(u)

!
d

 
t_
a

(f)

!
+

Z b

x

 
t_
x

(u)

!
d

 
t_
x

(f)

!

=

Z x

a

 
t_
a

(f)

!
d

 
t_
a

(u)

!
+

Z b

x

 
b_
t

(f)

!
d

 
t_
x

(u)

!

�
x_
a

(u)
x_
a

(f) +
b_
x

(u)
b_
x

(f)

� 1

2
�

8>>>>>><>>>>>>:

"
b_
a

(f) +

�����
x_
a

(f)�
b_
x

(f)

�����
#

b_
a

(u) ;

"
b_
a

(u) +

�����
x_
a

(u)�
b_
x

(u)

�����
#

b_
a

(f)

for all x 2 [a; b] :
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Proof. It is well known that, if p : [a; b] ! C is continuous and v : [a; b] ! C of
bounded variation, then

(2.7)

�����
Z b

a

p (t) dv (t)

����� �
Z b

a

jp (t)j d
 

t_
a

(u)

!
� max

t2[a;b]
jp (t)j

b_
a

(u) :

By making use of the equality (2.3) we have

(2.8) jT (f; u; a; b;x)j =
�����
Z x

a

[u (t)� u (x)] df (t) +
Z b

x

[u (t)� u (x)] df (t)
�����

�
����Z x

a

[u (t)� u (x)] df (t)
����+
�����
Z b

x

[u (t)� u (x)] df (t)
�����

�
Z x

a

ju (t)� u (x)j d
 

t_
a

(f)

!
+

Z b

x

ju (t)� u (x)j d
 

t_
x

(f)

!
=: B (f; u; x) :

Since u is of bounded variation, we have

ju (t)� u (x)j �
x_
t

(u) for t 2 [a; x]

and

ju (t)� u (x)j �
t_
x

(u) for t 2 [x; b] ;

hence

(2.9) B (f; u; x) �
Z x

a

ju (t)� u (x)j d
 

t_
a

(f)

!
+

Z b

x

ju (t)� u (x)j d
 

t_
x

(f)

!

�
Z x

a

 
x_
t

(u)

!
d

 
t_
a

(f)

!
+

Z b

x

 
t_
x

(u)

!
d

 
t_
x

(f)

!

=

Z x

a

 
x_
a

(u)�
t_
a

(u)

!
d

 
t_
a

(f)

!
+

Z b

x

 
t_
x

(u)

!
d

 
t_
a

(f)�
x_
a

(u)

!

=

Z x

a

 
x_
a

(u)�
t_
a

(u)

!
d

 
t_
a

(f)

!
+

Z b

x

 
t_
x

(u)

!
d

 
t_
a

(f)

!
=: C (f; u; x) :

Using integration by parts, we haveZ x

a

 
x_
a

(u)�
t_
a

(u)

!
d

 
t_
a

(f)

!

=

 
x_
a

(u)�
t_
a

(u)

! 
t_
a

(f)

!�����
x

a

+

Z x

a

t_
a

(f) d

 
t_
a

(u)

!

=

Z x

a

 
t_
a

(f)

!
d

 
t_
a

(u)

!
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and Z b

x

 
t_
x

(u)

!
d

 
t_
a

(f)

!

=

 
t_
x

(u)

! 
t_
a

(f)

!�����
b

x

�
Z b

x

 
t_
a

(f)

!
d

 
t_
x

(u)

!

=

 
b_
x

(u)

! 
b_
a

(f)

!
�
Z b

x

 
t_
a

(f)

!
d

 
t_
x

(u)

!

=

Z b

x

 
b_
a

(f)�
t_
a

(f)

!
d

 
t_
x

(u)

!
=

Z b

x

 
b_
t

(f)

!
d

 
t_
x

(u)

!
that gives

C (f; u; x) =

Z x

a

 
t_
a

(f)

!
d

 
t_
a

(u)

!
+

Z b

x

 
b_
t

(f)

!
d

 
t_
x

(u)

!
:

These prove the �rst inequality in (2.6) and the equality after that.
Using the properties of the total variation, we also haveZ x

a

 
x_
t

(u)

!
d

 
t_
a

(f)

!
+

Z b

x

 
t_
x

(u)

!
d

 
t_
x

(f)

!

�
 

x_
a

(u)

!Z x

a

d

 
t_
a

(f)

!
+

 
b_
x

(u)

!Z b

x

d

 
t_
x

(f)

!

=
x_
a

(u)
x_
a

(f) +
b_
x

(u)
b_
x

(f) ;

which proves the second inequality in (2.6).
The last part is obvious by the properties of maximum of two positive numbers.

�

Corollary 1. With the assumptions of Theorem 1,

(i) If q 2 [a; b] is such that
q_
a

(f) =
b_
q

(f) ; then

(2.10) jT (f; u; a; b; q)j � 1

2

b_
a

(u)
b_
a

(f) :

(ii) If m 2 [a; b] is such that
m_
a

(u) =
b_
m

(u) ; then

(2.11) jT (f; u; a; b;m)j � 1

2

b_
a

(u)
b_
a

(f) :

The case of monotonic integrands is as follows:
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Corollary 2. Assume that u 2 BVC [a; b] ; f 2 M% [a; b] (monotonic nondecreas-
ing) and f 2 CC [a; b] : Then the Riemann-Stieltjes integral

R b
a
f (t) du (t) exists and

(2.12) jT (f; u; a; b;x)j �
Z x

a

 
x_
t

(u)

!
df (t) +

Z b

x

 
t_
x

(u)

!
df (t)

=

Z x

a

[f (t)� f (a)] d
 

t_
a

(u)

!
+

Z b

x

[f (b)� f (t)] d
 

t_
x

(u)

!

�
x_
a

(u) [f (x)� f (a)] +
b_
x

(u) [f (b)� f (x)]

�

8>>>>>><>>>>>>:

h
f(b)�f(a)

2 +
���f (x)� f(a)+f(b)

2

���i b_
a

(u) ;

1
2

"
b_
a

(u) +

�����
x_
a

(u)�
b_
x

(u)

�����
#
[f (b)� f (a)]

for all x 2 [a; b] :

Remark 1. Under the assumptions of Corollary 2 and if p 2 [a; b] with f (p) =
f(a)+f(b)

2 ; we have

(2.13) jT (f; u; a; b; p)j � 1

2
[f (b)� f (a)]

b_
a

(u) :

Also, if m 2 [a; b] such that
m_
a

(u) =
b_
m

(u) ; then

(2.14) jT (f; u; a; b;m)j � 1

2
[f (b)� f (a)]

b_
a

(u) :

We have:

Theorem 2. Assume that u 2 BVC [a; b] and f is Lipschitzian with the constant
L > 0; namely

jf (t)� f (s)j � L jt� sj for all t; s 2 [a; b] ;
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then the Riemann-Stieltjes integral
R b
a
f (t) du (t) exists and

(2.15) jT (f; u; a; b;x)j � L
"Z x

a

 
x_
t

(u)

!
dt+

Z b

x

 
t_
x

(u)

!
dt

#

= L

"Z x

a

(t� a) d
 

t_
a

(u)

!
+

Z b

x

(b� t) d
 

t_
x

(u)

!#

� L
"
(x� a)

x_
a

(u) + (b� x)
b_
x

(u)

#

� L�

8>>>>>><>>>>>>:

�
b�a
2 +

��x� a+b
2

��� b_
a

(u) ;

1
2

"
b_
a

(u) +

�����
x_
a

(u)�
b_
x

(u)

�����
#
(b� a)

for x 2 [a; b] :

Proof. It is well known that, if p : [a; b]! C is Riemann integrable and v : [a; b]! C
Lipschitzian with the constant L > 0, then

(2.16)

�����
Z b

a

p (t) dv (t)

����� � L
Z b

a

jp (t)j dt

By making use of the equality (2.3) we have

jT (f; u; a; b;x)j =
�����
Z x

a

[u (t)� u (x)] df (t) +
Z b

x

[u (t)� u (x)] df (t)
�����

�
����Z x

a

[u (t)� u (x)] df (t)
����+
�����
Z b

x

[u (t)� u (x)] df (t)
�����

� L
"Z x

a

ju (t)� u (x)j dt+
Z b

x

ju (t)� u (x)j dt
#
=: D (f; u; x)

for x 2 [a; b] :
Since u is of bounded variation, hence

D (f; u; x) � L
"Z x

a

 
x_
t

(u)

!
dt+

Z b

x

 
t_
x

(u)

!
dt

#

for x 2 [a; b] ; which proves the �rst inequality in (2.15).
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Using the integration by parts, we haveZ x

a

 
x_
t

(u)

!
dt+

Z b

x

 
t_
x

(u)

!
dt

=

 
x_
t

(u)

!
t

�����
x

a

�
Z x

a

td

 
x_
t

(u)

!
+

 
t_
x

(u)

!
t

�����
b

x

�
Z b

x

td

 
t_
x

(u)

!

= �
 

x_
a

(u)

!
a�

Z x

a

td

 
x_
a

(u)�
t_
a

(u)

!
+

 
b_
x

(u)

!
b�

Z b

x

td

 
t_
x

(u)

!

= �
 

x_
a

(u)

!
a+

Z x

a

td

 
t_
a

(u)

!
+

Z b

x

(b� t) d
 

t_
x

(u)

!

=

Z x

a

(t� a) d
 

t_
a

(u)

!
+

Z b

x

(b� t) d
 

t_
x

(u)

!
;

which proves the equality in (2.15).
The rest is obvious. �

Corollary 3. With the assumptions of Theorem 2, we have

(2.17)

����T �f; u; a; b; a+ b2
����� � 1

2
L (b� a)

b_
a

(u) :

If m 2 [a; b] such that
m_
a

(u) =

b_
m

(u) ; then

(2.18) jT (f; u; a; b;m)j � 1

2
L (b� a)

b_
a

(u) :

3. Applications for Selfadjoint Operators

We denote by B (H) the Banach algebra of all bounded linear operators on
a complex Hilbert space (H; h�; �i) : Let A 2 B (H) be selfadjoint and let '� be
de�ned for all � 2 R as follows

'� (s) :=

8<: 1; for �1 < s � �;

0; for � < s < +1:
Then for every � 2 R the operator
(3.1) E� := '� (A)

is a projection which reduces A:
The properties of these projections are collected in the following fundamental

result concerning the spectral representation of bounded selfadjoint operators in
Hilbert spaces, see for instance [13, p. 256]:

Theorem 3 (Spectral Representation Theorem). Let A be a bounded selfadjoint
operator on the Hilbert space H and let a = min f� j� 2 Sp (A)g =: minSp (A) and
b = max f� j� 2 Sp (A)g =: maxSp (A) : Then there exists a family of projections
fE�g�2R, called the spectral family of A; with the following properties
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a) E� � E�0 for � � �0;
b) Ea�0 = 0; Eb = 1H and E�+0 = E� for all � 2 R;
c) We have the representation

A =

Z b

a�0
�dE�:

More generally, for every continuous complex-valued function ' de�ned on R
there exists a unique operator ' (A) 2 B (H) such that for every " > 0 there exists
a � > 0 satisfying the inequality




' (A)�

nX
k=1

'
�
�0k
� �
E�k � E�k�1

�




 � "
whenever 8>>>><>>>>:

�0 < a = �1 < ::: < �n�1 < �n = b;

�k � �k�1 � � for 1 � k � n;

�0k 2 [�k�1; �k] for 1 � k � n
this means that

(3.2) ' (A) =

Z b

a�0
' (�) dE�;

where the integral is of Riemann-Stieltjes type.

Corollary 4. With the assumptions of Theorem 3 for A; E� and ' we have the
representations

' (A)x =

Z b

a�0
' (�) dE�x for all x 2 H

and

(3.3) h' (A)x; yi =
Z b

a�0
' (�) d hE�x; yi for all x; y 2 H:

In particular,

h' (A)x; xi =
Z b

a�0
' (�) d hE�x; xi for all x 2 H:

Moreover, we have the equality

k' (A)xk2 =
Z b

a�0
j' (�)j2 d kE�xk2 for all x 2 H:

We need the following result that provides an upper bound for the total variation
of the function R 3 � 7! hE�x; yi 2 C on an interval [�; �] ; see [9].
Lemma 2. Let fE�g�2R be the spectral family of the bounded selfadjoint operator
A: Then for any x; y 2 H and � < � we have the inequality

(3.4)

"
�_
�

�

E(�)x; y

��#2
� h(E� � E�)x; xi h(E� � E�) y; yi ;

where
�_
�

�

E(�)x; y

��
denotes the total variation of the function



E(�)x; y

�
on [�; �] :
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Remark 2. For � = a �" with " > 0 and � = b we get from (3.4) the inequality

(3.5)
b_

a�"

�

E(�)x; y

��
� h(1H � Ea�")x; xi1=2 h(1H � Ea�") y; yi1=2

for any x; y 2 H:
This implies, for any x; y 2 H, that

(3.6)
b_

a�0

�

E(�)x; y

��
� kxk kyk ;

where
b_

a�0

�

E(�)x; y

��
denotes the limit lim"!0+

"
b_

a�"

�

E(�)x; y

��#
:

We can state the following result for functions of selfadjoint operators:

Theorem 4. Let A be a bounded selfadjoint operator on the Hilbert space H
and let a = min f� j� 2 Sp (A)g =: minSp (A) and b = max f� j� 2 Sp (A)g =:
maxSp (A) : Also, assume that fE�g�2R is the spectral family of the bounded self-
adjoint operator A and assume that ' 2 BVC [a; b] and ' 2 CC [a; b] where [a; b] � �I
(the interior of I). Then for all s 2 [a; b]

(3.7) jh(1H � Es)x; yi' (b) + hEsx; yi' (a)� h' (A)x; yij

� 1

2

"
b_
a

(') +

�����
s_
a

(')�
b_
s

(')

�����
#

b_
a�0

�

E(�)x; y

��
� 1

2

"
b_
a

(') +

�����
s_
a

(')�
b_
s

(')

�����
#
kxk kyk

for any x; y 2 H:

Proof. Using the inequality (2.6) we have���[hEbx; yi � hEsx; yi]' (b) + [hEsx; yi � hEa�"x; yi]' (a� ")
�
Z b

a�"
' (t) d hEtx; yi

�����
� 1

2

"
b_

a�"
(') +

�����
s_

a�"
(')�

b_
s

(')

�����
#

b_
a�"

�

E(�)x; y

��
;

for small " > 0 and for any x; y 2 H:
Taking the limit over " ! 0+ and using the continuity of ' and the Spectral

Representation Theorem, we deduce the desired result (3.7). �
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Corollary 5. With the assumptions of Theorem 4 and if q 2 [a; b] is such that
q_
a

(') =
b_
q

(') ; then

(3.8) jh(1H � Eq)x; yi' (b) + hEqx; yi' (a)� h' (A)x; yij

� 1

2

b_
a

(')
b_

a�0

�

E(�)x; y

��
� 1

2
kxk kyk

b_
a

(')

for any x; y 2 H:

We also have:

Theorem 5. Let A be a bounded selfadjoint operator on the Hilbert space H
and let a = min f� j� 2 Sp (A)g =: minSp (A) and b = max f� j� 2 Sp (A)g =:
maxSp (A) : Also, assume that fE�g�2R is the spectral family of the bounded self-
adjoint operator A and assume that ' is Lipschitzian with the constant L > 0 on
[a; b] � �I. Then for all s 2 [a; b]

(3.9) jh(1H � Es)x; yi' (b) + hEsx; yi' (a)� h' (A)x; yij

� L
�
1

2
(b� a) +

����s� a+ b2
����� b_
a�0

�

E(�)x; y

��
� L

�
1

2
(b� a) +

����s� a+ b2
����� kxk kyk

for any x; y 2 H:
In particular, we have

(3.10)
���D�1H � E a+b

2

�
x; y
E
' (b) +

D
E a+b

2
x; y
E
' (a)� h' (A)x; yi

���
� 1

2
L (b� a)

b_
a�0

�

E(�)x; y

��
� 1

2
L (b� a) kxk kyk

for any x; y 2 H:

Remark 3. The above results can provide particular inequalities of interest. For
instance, if we take ' : [a; b] � (0;1) ! R, ' (t) = ln t and A is a bounded
selfadjoint operator on the Hilbert space H with a = min f� j� 2 Sp (A)g and b =
max f� j� 2 Sp (A)g, then by (3.7) we get

(3.11) jh(1H � Es)x; yi ln b+ hEsx; yi ln a� hlnAx; yij

� 1

2

�
ln

�
b

a

�
+

����ln�s2ab
������ b_

a�0

�

E(�)x; y

��
� 1

2

�
ln

�
b

a

�
+

����ln�s2ab
������ kxk kyk

for any x; y 2 H:
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In particular, if we take s = G (a; b) :=
p
ab; the geometric mean of a and b,

then we get from (3.11) that

(3.12)
��
�1H � EG(a;b)�x; y� ln b+ 
EG(a;b)x; y� ln a� hlnAx; yi��

� 1

2
ln

�
b

a

� b_
a�0

�

E(�)x; y

��
� 1

2
ln

�
b

a

�
kxk kyk

for any x; y 2 H:
The function ' : [a; b] � (0;1) ! R, ' (t) = ln t is Lipschitzian on [a; b] with

constant L = 1
a > 0: Then by (3.9) we get

(3.13) jh(1H � Es)x; yi ln b+ hEsx; yi ln a� hlnAx; yij

� 1

a

�
1

2
(b� a) +

����s� a+ b2
����� b_
a�0

�

E(�)x; y

��
� 1

a

�
1

2
(b� a) +

����s� a+ b2
����� kxk kyk

for any x; y 2 H:
In particular, if we take s = a+b

2 ; then we get from (3.13) that

(3.14)
���D�1H � E a+b

2

�
x; y
E
ln b+

D
E a+b

2
x; y
E
ln a� hlnAx; yi

���
� 1

2

�
b

a
� 1
� b_
a�0

�

E(�)x; y

��
� 1

2

�
b

a
� 1
�
kxk kyk

for any x; y 2 H:

4. Applications for Unitary Operators

A unitary operator is a bounded linear operator U : H ! H on a Hilbert space
H satisfying

U�U = UU� = 1H

where U� is the adjoint of U; and 1H : H ! H is the identity operator. This
property is equivalent to the following:

(i) U preserves the inner product h�; �i of the Hilbert space, i.e., for all vectors
x and y in the Hilbert space, hUx;Uyi = hx; yi and

(ii) U is surjective.

The following result is well known [13, p. 275 - p. 276]:

Theorem 6 (Spectral Representation Theorem). Let U be a unitary operator on
the Hilbert space H: Then there exists a family of projections fP�g�2[0;2�], called
the spectral family of U; with the following properties

a) P� � P�0 for � � �0;
b) P0 = 0; P2� = 1H and P�+0 = P� for all � 2 [0; 2�);
c) We have the representation

U =

Z 2�

0

exp (i�) dP�:
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More generally, for every continuous complex-valued function ' de�ned on the
unit circle C (0; 1) there exists a unique operator ' (U) 2 B (H) such that for every
" > 0 there exists a � > 0 satisfying the inequality




' (U)�

nX
k=1

'
�
exp

�
i�0k
�� �
P�k � P�k�1

�




 � "
whenever 8>>>><>>>>:

0 = �1 < ::: < �n�1 < �n = 2�;

�k � �k�1 � � for 1 � k � n;

�0k 2 [�k�1; �k] for 1 � k � n
this means that

(4.1) ' (U) =

Z 2�

0

' (exp (i�)) dP�;

where the integral is of Riemann-Stieltjes type.

Corollary 6. With the assumptions of Theorem 6 for U; P� and ' we have the
representations

' (U)x =

Z 2�

0

' (exp (i�)) dP�x for all x 2 H

and

(4.2) h' (U)x; yi =
Z 2�

0

' (exp (i�)) d hP�x; yi for all x; y 2 H:

In particular,

h' (U)x; xi =
Z 2�

0

' (exp (i�)) d hP�x; xi for all x 2 H:

Moreover, we have the equality

k' (U)xk2 =
Z 2�

0

j' (exp (i�))j2 d kP�xk2 for all x 2 H:

On making use of an argument similar to the one in [9, Theorem 6], we have:

Lemma 3. Let fP�g�2[0;2�]be the spectral family of the unitary operator U on the
Hilbert space H: Then for any x; y 2 H and 0 � � < � � 2� we have the inequality

(4.3)
�_
�

�

P(�)x; y

��
� h(P� � P�)x; xi1=2 h(P� � P�) y; yi1=2 ;

where
�_
�

�

P(�)x; y

��
denotes the total variation of the function



P(�)x; y

�
on [�; �] :

In particular,

(4.4)
2�_
0

�

P(�)x; y

��
� kxk kyk

for any x; y 2 H:

We have:
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Theorem 7. Let U be a unitary operator on the Hilbert space H and fP�g�2[0;2�]
the spectral family of projections of U: Also, assume that ' : C (0; 1) ! C are
continuous on C (0; 1). If ' � exp (i�) 2 BVC [0; 2�], then for all s 2 [0; 2�]

(4.5) j' (1) hx; yi � h' (U)x; yij

� 1

2

"
2�_
0

(' � exp (i�)) + inf
s2[0;2�]

�����
s_
0

(' � exp (i�))�
2�_
s

(' � exp (i�))
�����
#
2�_
0

�

P(�)x; y

��
� 1

2

"
2�_
0

(' � exp (i�)) + inf
s2[0;2�]

�����
s_
0

(' � exp (i�))�
2�_
s

(' � exp (i�))
�����
#
kxk kyk

for any x; y 2 H:
If there exists an s 2 [0; 2�] such that

s_
0

(' � exp (i�)) =
2�_
s

(' � exp (i�)) ;

then

(4.6) j' (1) hx; yi � h' (U)x; yij

� 1

2

2�_
0

(' � exp (i�))
2�_
0

�

P(�)x; y

��
� 1

2

2�_
0

(' � exp (i�)) kxk kyk

for any x; y 2 H:
If ' � exp (i�) is Lipschitzian with the constant L > 0 on [0; 2�] ; then

(4.7) j' (1) hx; yi � h' (U)x; yij � �L
2�_
0

�

P(�)x; y

��
� �L (b� a) kxk kyk

for any x; y 2 H:

Proof. From the inequality (3.7) we get

(4.8)
��h(1H � Ps)x; yi' �e2�i�+ hPsx; yi' �e0�� h' (U)x; yi��

� 1

2

"
2�_
0

(' � exp (i�)) +
�����
s_
0

(' � exp (i�))�
2�_
s

(' � exp (i�))
�����
#
2�_
0

�

P(�)x; y

��
� 1

2

"
2�_
0

(' � exp (i�)) +
�����
s_
0

(' � exp (i�))�
2�_
s

(' � exp (i�))
�����
#
kxk kyk

for any x; y 2 H and since '
�
e2�i

�
= '

�
e0
�
= ' (1) ; hence by (4.8) we get

jhx; yi' (1)� h' (U)x; yij

� 1

2

"
2�_
0

(' � exp (i�)) +
�����
s_
0

(' � exp (i�))�
2�_
s

(' � exp (i�))
�����
#
2�_
0

�

P(�)x; y

��
� 1

2

"
2�_
0

(' � exp (i�)) +
�����
s_
0

(' � exp (i�))�
2�_
s

(' � exp (i�))
�����
#
kxk kyk

and by taking the in�mum over s 2 [0; 2�] we get (4.5).
The inequality (4.7) follows in a similar way from (3.9). �
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Remark 4. If ' is di¤erentiable, then

(' � exp (it))0 = '0 (exp (it)) (exp (it))0 = '0 (exp (it)) (exp (it)) i
and if the derivative is continuous, then

2�_
0

(' � exp (i�)) =
Z 2�

0

��(' � exp (it))0�� dt = Z 2�

0

j'0 (exp (it))j j(exp (it)) ij dt

=

Z 2�

0

j'0 (exp (it))j dt:

Similarly,
s_
0

(' � exp (i�)) =
Z s

0

j'0 (exp (it))j dt and
2�_
s

(' � exp (i�)) =
Z 2�

s

j'0 (exp (it))j dt.

Since the function
R �
0
j'0 (exp (it))j dt is continuous on [0; 2�] ; hence there is an

s 2 [0; 2�] such that
s_
0

(' � exp (i�)) =
2�_
s

(' � exp (i�)) ;

and by (4.6) we get

(4.9) j' (1) hx; yi � h' (U)x; yij

� 1

2

Z 2�

0

j'0 (exp (it))j dt
2�_
0

�

P(�)x; y

��
� 1

2
kxk kyk

Z 2�

0

j'0 (exp (it))j dt;

where U be a unitary operator on the Hilbert space H; fP�g�2[0;2�] is the spectral
family of projections of U and x; y 2 H:
We also have

sup
t2[0;2�]

��(' � exp (it))0�� = sup
t2[0;2�]

j'0 (exp (it)) (exp (it)) ij = sup
z2C(0;1)

j'0 (z)j :

So if we assume that L := supz2C(0;1) j'0 (z)j <1; then ' � exp (it) is Lipschitzian
with the constant L: Then by (4.7) we get

(4.10) j' (1) hx; yi � h' (U)x; yij � � sup
z2C(0;1)

j'0 (z)j
2�_
0

�

P(�)x; y

��
� � sup

z2C(0;1)
j'0 (z)j kxk kyk ;

where U be a unitary operator on the Hilbert space H; fP�g�2[0;2�] is the spectral
family of projections of U and x; y 2 H:
If we take , for instance, ' (z) = zn with n 2 N, then by both (4.9) and (4.10)

we get

jhx; yi � hUnx; yij � n�dt
2�_
0

�

P(�)x; y

��
� n� kxk kyk ;

where U be a unitary operator on the Hilbert space H; fP�g�2[0;2�] is the spectral
family of projections of U and x; y 2 H:

We can give a more interesting example as follows:
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Example 1. For a 6= �1; 0 consider the function ' : C (0; 1) ! C, 'a (z) = 1
1�az :

Observe that

(4.11) j'a (z)� 'a (w)j =
jaj jz � wj

j1� azj j1� awj
for any z; w 2 C (0; 1) :
If z = eit with t 2 [0; 2�] ; then we have

j1� azj2 = 1� 2aRe (�z) + a2 jzj2 = 1� 2a cos t+ a2

� 1� 2 jaj+ a2 = (1� jaj)2

therefore

(4.12)
1

j1� azj �
1

j1� jajj and
1

j1� awj �
1

j1� jajj
for any z; w 2 C (0; 1) :
Utilising (4.11) and (4.12) we deduce

(4.13) j'a (z)� 'a (w)j �
jaj

(1� jaj)2
jz � wj

for any z; w 2 C (0; 1) ; showing that the function 'a is Lipschitzian with the con-
stant La =

jaj
(1�jaj)2 on the circle C (0; 1) :

If we take z = eit and w = eis with t; s 2 [0; 2�] in (4.13) we get

(4.14)
��'a �eit�� 'a �eis��� � jaj

(1� jaj)2
��eit � eis��

Since ��eis � eit��2 = ��eis��2 � 2Re�ei(s�t)�+ ��eit��2
= 2� 2 cos (s� t) = 4 sin2

�
s� t
2

�
for any t; s 2 R, hence

(4.15)
��eis � eit�� = 2 ����sin�s� t2

����� � js� tj
for t; s 2 [0; 2�] :
Therefore by (4.14) and (4.15) we get

(4.16)
��'a �eit�� 'a �eis��� � jaj

(1� jaj)2
js� tj

for t; s 2 [0; 2�] ; which shows that 'a
�
ei�
�
is Lipschitzian with the constant L =

jaj
(1�jaj)2 > 0 on [0; 2�] :

If we use the inequality (4.7) for 'a we get

(4.17)
���(1� a)�1 hx; yi � D(1H � aU)�1 x; yE���

� � jaj
(1� jaj)2

2�_
0

�

P(�)x; y

��
� � jaj

(1� jaj)2
kxk kyk ;

where U be a unitary operator on the Hilbert space H; fP�g�2[0;2�] is the spectral
family of projections of U and x; y 2 H:
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