ON SOME OSTROWSKI TYPE RIEMANN-STIELTJES
 INTEGRAL INEQUALITIES FOR MONOTONIC NONDECREASING INTEGRANDS AND CONVEX INTEGRATORS

SILVESTRU SEVER DRAGOMIR

Abstract

In this paper we obtain some inequalities for the Riemann-Stieltjes integral Ostrowski difference $$
\int_{a}^{b} f(t) d u(t)-f(x)[u(b)-u(a)]
$$ where f is a monotonic nondecreasing function on $[a, b], u$ is continuous convex on $[a, b]$ and $x \in(a, b)$. Some particular inequalities in the case of Riemann integral are provided as well.

1. Introduction

We recall the following Ostrowski type inequality for convex functions:
Theorem 1 (Dragomir, $2002[5])$. Let $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ be a convex function on $[a, b]$. Then for any $x \in(a, b)$ one has the inequality

$$
\begin{align*}
\frac{1}{2}\left[(b-x)^{2} f_{+}^{\prime}(x)-(x-a)^{2} f_{-}^{\prime}(x)\right] & \leq \int_{a}^{b} f(t) d t-(b-a) f(x) \tag{1.1}\\
& \leq \frac{1}{2}\left[(b-x)^{2} f_{-}^{\prime}(b)-(x-a)^{2} f_{+}^{\prime}(a)\right]
\end{align*}
$$

The constant $\frac{1}{2}$ is sharp in both inequalities. The second inequality also holds for $x=a$ or $x=b$.

Corollary 1. With the assumptions of Theorem 1 and if $x \in(a, b)$ is a point of differentiability for f, then

$$
\begin{equation*}
\left(\frac{a+b}{2}-x\right) f^{\prime}(x) \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t-f(x) \tag{1.2}
\end{equation*}
$$

The following corollary provides both a sharper lower bound for the HermiteHadamard difference,

$$
\frac{1}{b-a} \int_{a}^{b} f(t) d t-f\left(\frac{a+b}{2}\right)
$$

which we know is nonnegative, and an upper bound [5].

[^0]Corollary 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function on $[a, b]$. Then we have the inequality

$$
\begin{align*}
0 \leq \frac{1}{8}\left[f_{+}^{\prime}\right. & \left.\left(\frac{a+b}{2}\right)-f_{-}^{\prime}\left(\frac{a+b}{2}\right)\right](b-a) \tag{1.3}\\
& \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t-f\left(\frac{a+b}{2}\right) \leq \frac{1}{8}\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right](b-a)
\end{align*}
$$

The constant $\frac{1}{8}$ is sharp in both inequalities.
For other related results see [7] and [8]. For more inequalities of Ostrowski type, see [1], [2]-[4], [9], [11], [12] and [13].

Motivated by the above results, we establish in this paper some inequalities for the Riemann-Stieltjes integral Ostrowski difference

$$
\int_{a}^{b} f(t) d u(t)-f(x)[u(b)-u(a)]
$$

where f is a monotonic nondecreasing function on $[a, b]$ and u is convex and $x \in$ (a, b). Some applications for Riemann integral are given as well.

2. Main Results

We have the following main result:
Theorem 2. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is monotonic nondecreasing and $u:$ $[a, b] \rightarrow \mathbb{R}$ is continuous convex on $[a, b]$. Then for $x \in(a, b)$ we have the inequalities

$$
\begin{align*}
& u_{+}^{\prime}(a)\left[(x-a) f(x)-\int_{a}^{x} f(t) d t\right]+u_{-}^{\prime}(b)\left[(b-x) f(x)-\int_{x}^{b} f(t) d t\right] \tag{2.1}\\
& \leq[u(b)-u(a)] f(x)-\int_{a}^{b} f(t) d u(t) \\
& \leq \int_{a}^{x}\left[u_{+}^{\prime}(t)-u_{+}^{\prime}(a)\right](t-a) d f(t)+\int_{x}^{b}\left[u_{-}^{\prime}(t)-u_{-}^{\prime}(b)\right](t-b) d f(t) \\
&+ u_{+}^{\prime}(a)\left[(x-a) f(x)-\int_{a}^{x} f(t) d t\right]+u_{-}^{\prime}(b)\left[(b-x) f(x)-\int_{x}^{b} f(t) d t\right],
\end{align*}
$$

provided the Riemann-Stieltjes integrals $\int_{a}^{x} u_{+}^{\prime}(t)(t-a) d f(t)$ and $\int_{x}^{b} u_{-}^{\prime}(t)(t-b) d f(t)$ exist.

This is equivalent to

$$
\begin{align*}
& 0 \leq[u(b)-u(a)] f(x) \tag{2.2}\\
& -u_{+}^{\prime}(a)\left[(x-a) f(x)-\int_{a}^{x} f(t) d t\right]-u_{-}^{\prime}(b)\left[(b-x) f(x)-\int_{x}^{b} f(t) d t\right] \\
& \\
& -\int_{a}^{b} f(t) d u(t) \\
& \leq \int_{a}^{x}\left[u_{+}^{\prime}(t)-u_{+}^{\prime}(a)\right](t-a) d f(t)+\int_{x}^{b}\left[u_{-}^{\prime}(t)-u_{-}^{\prime}(b)\right](t-b) d f(t) .
\end{align*}
$$

Proof. Using the integration by parts rule for the Riemann-Stieltjes integral, we have, see [3]

$$
\begin{align*}
& \text { 3) } \int_{a}^{x}[u(t)-u(a)] d f(t)+\int_{x}^{b}[u(t)-u(b)] d f(t) \tag{2.3}\\
&=[u(x)-u(a)] f(x)-\int_{a}^{x} f(t) d u(t)+[u(b)-u(x)] f(x)-\int_{x}^{b} f(t) d u(t) \\
&=[u(b)-u(a)] f(x)-\int_{a}^{b} f(t) d u(t)
\end{align*}
$$

for $x \in(a, b)$.
Using the gradient inequality we have

$$
u(t)-u(a) \geq u_{+}^{\prime}(a)(t-a) \text { for } t \in[a, x]
$$

and

$$
u(b)-u(t) \leq u_{-}^{\prime}(b)(b-t) \text { for } t \in[x, b]
$$

Since f is monotonic nondecreasing and by using integration by parts we get

$$
\begin{align*}
\int_{a}^{x}[u(t)-u(a)] d f(t) & \geq u_{+}^{\prime}(a) \int_{a}^{x}(t-a) d f(t) \tag{2.4}\\
& =u_{+}^{\prime}(a)\left[(x-a) f(x)-\int_{a}^{x} f(t) d t\right]
\end{align*}
$$

and

$$
\begin{aligned}
\int_{x}^{b}[u(b)-u(t)] d f(t) & \leq u_{-}^{\prime}(b) \int_{x}^{b}(b-t) d f(t) \\
& =u_{-}^{\prime}(b)\left[\int_{x}^{b} f(t) d t-(b-x) f(x)\right]
\end{aligned}
$$

which is equivalent to

$$
\begin{equation*}
\int_{x}^{b}[u(t)-u(b)] d f(t) \geq u_{-}^{\prime}(b)\left[(b-x) f(x)-\int_{x}^{b} f(t) d t\right] \tag{2.5}
\end{equation*}
$$

for $x \in(a, b)$.
If we add (2.4) and (2.5) we get

$$
\begin{aligned}
& \int_{a}^{x}[u(t)-u(a)] d f(t)+\int_{x}^{b}[u(t)-u(b)] d f(t) \\
& \quad \geq u_{+}^{\prime}(a)\left[(x-a) f(x)-\int_{a}^{x} f(t) d t\right]+u_{-}^{\prime}(b)\left[(b-x) f(x)-\int_{x}^{b} f(t) d t\right]
\end{aligned}
$$

and by (2.3) we get the first inequality in (2.1).
By the gradient inequality we also have

$$
u(t)-u(a) \leq u_{+}^{\prime}(t)(t-a)=\left(u_{+}^{\prime}(t)-u_{+}^{\prime}(a)\right)(t-a)+u_{+}^{\prime}(a)(t-a)
$$

for $t \in[a, x]$ and

$$
u(t)-u(b) \leq u_{-}^{\prime}(t)(t-b)=\left(u_{-}^{\prime}(t)-u_{-}^{\prime}(b)\right)(t-b)+u_{-}^{\prime}(b)(t-b)
$$

for $t \in[x, b]$.

These imply the integral inequalities

$$
\begin{align*}
& \int_{a}^{x}[u(t)-u(a)] d f(t) \tag{2.6}\\
& \quad \leq \int_{a}^{x}\left(u_{+}^{\prime}(t)-u_{+}^{\prime}(a)\right)(t-a) d f(t)+u_{+}^{\prime}(a) \int_{a}^{x}(t-a) f(t) \\
& =\int_{a}^{x}\left(u_{+}^{\prime}(t)-u_{+}^{\prime}(a)\right)(t-a) d f(t)+u_{+}^{\prime}(a)\left[(x-a) f(x)-\int_{a}^{x} f(t) d t\right]
\end{align*}
$$

and

$$
\begin{align*}
& \int_{x}^{b}[u(t)-u(b)] d f(t) \tag{2.7}\\
& \quad \leq \int_{x}^{b}\left(u_{-}^{\prime}(t)-u_{-}^{\prime}(b)\right)(t-b) d f(t)+u_{-}^{\prime}(b) \int_{x}^{b}(t-b) d f(t) \\
& =\int_{x}^{b}\left(u_{-}^{\prime}(t)-u_{-}^{\prime}(b)\right)(t-b) d f(t)+u_{-}^{\prime}(b)\left[(b-x) f(x)-\int_{x}^{b} f(t) d t\right]
\end{align*}
$$

for $x \in(a, b)$.
If we add these inequalities, then we get

$$
\begin{aligned}
& \int_{a}^{x}[u(t)-u(a)] d f(t)+\int_{x}^{b}[u(t)-u(b)] d f(t) \\
& \quad \leq \int_{a}^{x}\left(u_{+}^{\prime}(t)-u_{+}^{\prime}(a)\right)(t-a) d f(t)+\int_{x}^{b}\left(u_{-}^{\prime}(t)-u_{-}^{\prime}(b)\right)(t-b) d f(t) \\
& \quad+u_{+}^{\prime}(a)\left[(x-a) f(x)-\int_{a}^{x} f(t) d t\right]+u_{-}^{\prime}(b)\left[(b-x) f(x)-\int_{x}^{b} f(t) d t\right]
\end{aligned}
$$

which together with (2.3) produces the second inequality in (2.1).
Remark 1. We observe that the Riemann-Stieltjes integrals $\int_{a}^{x} u_{+}^{\prime}(t)(t-a) d f(t)$ and $\int_{x}^{b} u_{-}^{\prime}(t)(t-b) d f(t)$ exist if either f is continuous on $[a, b]$ or u has a continuous derivative on an open interval incorporating $[a, b]$.

In what follows we assume that all Riemann-Stieltjes integrals involved exist on those specific intervals.

Remark 2. If we take $x=\frac{a+b}{2}$ in (2.2) we get

$$
\begin{align*}
0 \leq & {[u(b)-u(a)] f\left(\frac{a+b}{2}\right) } \tag{2.8}\\
& -u_{+}^{\prime}(a)\left[\frac{1}{2}(b-a) f\left(\frac{a+b}{2}\right)-\int_{a}^{\frac{a+b}{2}} f(t) d t\right] \\
& -u_{-}^{\prime}(b)\left[\frac{1}{2}(b-a) f\left(\frac{a+b}{2}\right)-\int_{\frac{a+b}{2}}^{b} f(t) d t\right]-\int_{a}^{b} f(t) d u(t) \\
\leq & \int_{a}^{\frac{a+b}{2}}\left[u_{+}^{\prime}(t)-u_{+}^{\prime}(a)\right](t-a) d f(t)+\int_{\frac{a+b}{2}}^{b}\left[u_{-}^{\prime}(t)-u_{-}^{\prime}(b)\right](t-b) d f(t) .
\end{align*}
$$

Corollary 3. Assume that $g:[a, b] \rightarrow \mathbb{R}$ is continuous and nondecreasing on $[a, b]$ and $f:[a, b] \rightarrow \mathbb{R}$ is monotonic nondecreasing, then for $x \in(a, b)$,

$$
\begin{align*}
& g(a)\left[(x-a) f(x)-\int_{a}^{x} f(t) d t\right]+g(b)\left[(b-x) f(x)-\int_{x}^{b} f(t) d t\right] \tag{2.9}\\
& \leq f(x) \int_{a}^{b} g(t) d t-\int_{a}^{b} f(t) g(t) d t \\
& \quad \leq \int_{a}^{x}[g(t)-g(a)](t-a) d f(t)+\int_{x}^{b}[g(t)-g(b)](t-b) d f(t) \\
& +g(a)\left[(x-a) f(x)-\int_{a}^{x} f(t) d t\right]+g(b)\left[(b-x) f(x)-\int_{x}^{b} f(t) d t\right] .
\end{align*}
$$

This is equivalent to

$$
\begin{align*}
0 \leq f(x) & \int_{a}^{b} g(t) d t-g(a)\left[(x-a) f(x)-\int_{a}^{x} f(t) d t\right] \tag{2.10}\\
& -g(b)\left[(b-x) f(x)-\int_{x}^{b} f(t) d t\right]-\int_{a}^{b} f(t) g(t) d t \\
& \leq \int_{a}^{x}[g(t)-g(a)](t-a) d f(t)+\int_{x}^{b}[g(t)-g(b)](t-b) d f(t),
\end{align*}
$$

for $x \in(a, b)$.
The proof follows from Theorem 2 by taking $u(t):=\int_{a}^{t} g(s) d s$ which is convex on $[a, b]$.

3. Inequalities for Riemann Integral

If $f(t)=t, t \in[a, b]$ and u is a convex function on $[a, b]$, then

$$
\begin{aligned}
& (x-a) f(x)-\int_{a}^{x} f(t) d t=(x-a) x-\int_{a}^{x} t d t=\frac{1}{2}(x-a)^{2} \\
& (b-x) f(x)-\int_{x}^{b} f(t) d t=(b-x) x-\int_{x}^{b} t d t=-\frac{1}{2}(b-x)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& {[u(b)-u(a)] f(x)-\int_{a}^{b} f(t) d u(t)} \\
& \qquad \begin{aligned}
& \\
& =[u(b)-u(a)] x-\int_{a}^{b} t d u(t) \\
& =\int_{a}^{b} u(t) d t-(x-a) u(a)-(b-x) u(b)
\end{aligned}
\end{aligned}
$$

for $x \in(a, b)$.

By utilising (2.1) we then get

$$
\left.\begin{array}{l}
\frac{1}{2}(x-a)^{2} u_{+}^{\prime}(a)-\frac{1}{2}(b-x)^{2} u_{-}^{\prime}(b) \tag{3.1}\\
\leq \int_{a}^{b} u(t) d t-(x-a) u(a)-(b-x) u(b) \\
\leq \int_{a}^{x}\left[u_{+}^{\prime}(t)-u_{+}^{\prime}(a)\right](t-a) d t
\end{array}+\int_{x}^{b}\left[u_{-}^{\prime}(t)-u_{-}^{\prime}(b)\right](t-b) d t\right] .
$$

namely

$$
\left.\left.\begin{array}{l}
\frac{1}{2}(b-x)^{2} u_{-}^{\prime}(b)-\frac{1}{2}(x-a)^{2} u_{+}^{\prime}(a) \tag{3.2}\\
\quad-\int_{a}^{x}\left[u_{+}^{\prime}(t)-u_{+}^{\prime}(a)\right](t-a) d t
\end{array}\right) \int_{x}^{b}\left[u_{-}^{\prime}(t)-u_{-}^{\prime}(b)\right](t-b) d t\right] \text { (b-a)u(a)+(b-x)-} \begin{array}{rl}
b & u(t) d t \\
& \leq(x-a) \\
& \leq \frac{1}{2}(b-x)^{2} u_{-}^{\prime}(b)-\frac{1}{2}(x-a)^{2} u_{+}^{\prime}(a)
\end{array}
$$

for $x \in(a, b)$.
Now, by the monotonicity of the lateral derivatives of the convex function u and the fact that $u_{+}^{\prime}(t)=u_{-}^{\prime}(t)$ except a countable number of points in $[a, b]$ we have that

$$
\begin{aligned}
\int_{a}^{x}\left[u_{+}^{\prime}(t)-\right. & \left.u_{+}^{\prime}(a)\right](t-a) d t=\int_{a}^{x}\left[u_{-}^{\prime}(t)-u_{+}^{\prime}(a)\right](t-a) d t \\
& \leq\left[u_{-}^{\prime}(x)-u_{+}^{\prime}(a)\right] \int_{a}^{x}(t-a) d t=\frac{1}{2}(x-a)^{2}\left[u_{-}^{\prime}(x)-u_{+}^{\prime}(a)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{x}^{b}\left[u_{-}^{\prime}(t)-\right. & \left.u_{-}^{\prime}(b)\right](t-b) d t=\int_{x}^{b}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(t)\right](b-t) d t \\
& \leq\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(x)\right] \int_{x}^{b}(b-t) d t=\frac{1}{2}(b-x)^{2}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(x)\right]
\end{aligned}
$$

which, by addition, give

$$
\begin{aligned}
& \int_{a}^{x}\left[u_{+}^{\prime}(t)-u_{+}^{\prime}(a)\right](t-a) d t+\int_{x}^{b}\left[u_{-}^{\prime}(t)-u_{-}^{\prime}(b)\right](t-b) d t \\
& \leq \frac{1}{2}(x-a)^{2}\left[u_{-}^{\prime}(x)-u_{+}^{\prime}(a)\right]+\frac{1}{2}(b-x)^{2}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(x)\right]
\end{aligned}
$$

for $x \in(a, b)$.

Therefore

$$
\begin{align*}
\frac{1}{2}(b-x)^{2} u_{-}^{\prime}(b) & -\frac{1}{2}(x-a)^{2} u_{+}^{\prime}(a) \tag{3.3}\\
-\int_{a}^{x}\left[u_{+}^{\prime}(t)-u_{+}^{\prime}(a)\right](t-a) d t & -\int_{x}^{b}\left[u_{-}^{\prime}(t)-u_{-}^{\prime}(b)\right](t-b) d t \\
& \geq \frac{1}{2}(b-x)^{2} u_{-}^{\prime}(b)-\frac{1}{2}(x-a)^{2} u_{+}^{\prime}(a) \\
-\frac{1}{2}(x-a)^{2}\left[u_{-}^{\prime}(x)-u_{+}^{\prime}(a)\right] & -\frac{1}{2}(b-x)^{2}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(x)\right] \\
& =\frac{1}{2}(b-x)^{2} u_{+}^{\prime}(x)-\frac{1}{2}(x-a)^{2} u_{-}^{\prime}(x)
\end{align*}
$$

for $x \in(a, b)$.
If we put together (3.2) and (3.3) we get for any convex function $u:[a, b] \rightarrow \mathbb{R}$

$$
\begin{align*}
& \frac{1}{2}(b-x)^{2} u_{+}^{\prime}(x)-\frac{1}{2}(x-a)^{2} u_{-}^{\prime}(x) \leq \frac{1}{2}(b-x)^{2} u_{-}^{\prime}(b)-\frac{1}{2}(x-a)^{2} u_{+}^{\prime}(a) \tag{3.4}\\
& -\int_{a}^{x}\left[u_{+}^{\prime}(t)-u_{+}^{\prime}(a)\right](t-a) d t-\int_{x}^{b}\left[u_{-}^{\prime}(t)-u_{-}^{\prime}(b)\right](t-b) d t \\
& \leq(x-a) u(a)+(b-x) u(b)-\int_{a}^{b} u(t) d t \\
& \\
& \leq \frac{1}{2}(b-x)^{2} u_{-}^{\prime}(b)-\frac{1}{2}(x-a)^{2} u_{+}^{\prime}(a)
\end{align*}
$$

for $x \in(a, b)$, see also [6].
If the function u is differentiable in $x \in(a, b)$, then we obtain from (3.4) that

$$
\begin{align*}
& (b-a)\left(\frac{a+b}{2}-x\right) u^{\prime}(x) \leq \frac{1}{2}(b-x)^{2} u_{-}^{\prime}(b)-\frac{1}{2}(x-a)^{2} u_{+}^{\prime}(a) \tag{3.5}\\
& -\int_{a}^{x}\left[u_{+}^{\prime}(t)-u_{+}^{\prime}(a)\right](t-a) d t-\int_{x}^{b}\left[u_{-}^{\prime}(t)-u_{-}^{\prime}(b)\right](t-b) d t \\
& \quad \leq(x-a) u(a)+(b-x) u(b)-\int_{a}^{b} u(t) d t \\
& \quad \leq \frac{1}{2}(b-x)^{2} u_{-}^{\prime}(b)-\frac{1}{2}(x-a)^{2} u_{+}^{\prime}(a)
\end{align*}
$$

If in (3.4) we take $x=\frac{a+b}{2}$, then we get the Hermite-Hadamard type inequalities

$$
\begin{align*}
0 \leq \frac{1}{8}\left[u_{+}^{\prime}\left(\frac{a+b}{2}\right)\right. & \left.-u_{-}^{\prime}\left(\frac{a+b}{2}\right)\right](b-a)^{2} \tag{3.6}\\
\leq & \frac{1}{8}(b-a)^{2}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right] \\
-\int_{a}^{\frac{a+b}{2}}\left[u_{+}^{\prime}(t)-u_{+}^{\prime}(a)\right](t-a) d t-\int_{\frac{a+b}{2}}^{b} & {\left[u_{-}^{\prime}(t)-u_{-}^{\prime}(b)\right](t-b) d t } \\
\leq & \frac{u(a)+u(b)}{2}(b-a)-\int_{a}^{b} u(t) d t \\
& \leq \frac{1}{8}(b-a)^{2}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right]
\end{align*}
$$

for a convex function $u:[a, b] \rightarrow \mathbb{R}$.
The lower bound

$$
\frac{1}{8}\left[u_{+}^{\prime}\left(\frac{a+b}{2}\right)-u_{-}^{\prime}\left(\frac{a+b}{2}\right)\right](b-a)^{2}
$$

and the upper bound

$$
\frac{1}{8}(b-a)^{2}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right]
$$

for the trapezoid difference were obtained first in the paper [6]. The constant $\frac{1}{8}$ is best in both bounds.

If u is differentiable in $\frac{a+b}{2}$, then we get from (3.6) that

$$
\begin{align*}
& 0 \leq \frac{1}{8}(b-a)^{2}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right] \tag{3.7}\\
& -\int_{a}^{\frac{a+b}{2}}\left[u_{+}^{\prime}(t)-u_{+}^{\prime}(a)\right](t-a) d t-\int_{\frac{a+b}{2}}^{b}\left[u_{-}^{\prime}(t)-u_{-}^{\prime}(b)\right](t-b) d t \\
& \leq \frac{u(a)+u(b)}{2}(b-a)-\int_{a}^{b} u(t) d t \\
& \\
& \quad \leq \frac{1}{8}(b-a)^{2}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right]
\end{align*}
$$

Now, if we take $u(t)=-\ln t, t \in[a, b] \subset(0, \infty)$ which is convex and f a monotonic nondecreasing function on $[a, b]$, then by (2.1) we get

$$
\begin{align*}
& \frac{1}{a}\left[\int_{a}^{x} f(t) d t-(x-a) f(x)\right]+\frac{1}{b}\left[\int_{x}^{b} f(t) d t-(b-x) f(x)\right] \tag{3.8}\\
& \leq \int_{a}^{b} \frac{f(t)}{t} d t+\frac{b-a}{b a} f(x) \\
& \quad \leq \frac{1}{a} \int_{a}^{x} \frac{1}{t}(t-a)^{2} d f(t)+\frac{1}{b} \int_{x}^{b} \frac{1}{t}(t-b)^{2} d f(t) \\
& +\frac{1}{a}\left[\int_{a}^{x} f(t) d t-(x-a) f(x)\right]+\frac{1}{b}\left[\int_{x}^{b} f(t) d t-(b-x) f(x)\right]
\end{align*}
$$

while from (2.2) we get

$$
\begin{align*}
0 & \leq \frac{b-a}{b a} f(x)+\int_{a}^{b} \frac{f(t)}{t} d t \tag{3.9}\\
& -\frac{1}{a}\left[\int_{a}^{x} f(t) d t-(x-a) f(x)\right]-\frac{1}{b}\left[\int_{x}^{b} f(t) d t-(b-x) f(x)\right] \\
& \leq \frac{1}{a} \int_{a}^{x} \frac{1}{t}(t-a)^{2} d f(t)+\frac{1}{b} \int_{x}^{b} \frac{1}{t}(t-b)^{2} d f(t)
\end{align*}
$$

for $x \in(a, b)$.

If $u(t)=t^{p}$ with $p \in(-\infty, 0) \cup[1, \infty)$ and $t \in[a, b]$, then u is convex on $[a, b]$ and if $f:[a, b] \rightarrow \mathbb{R}$ is monotonic nondecreasing, then by (2.1) we get

$$
\begin{align*}
& \text { 10) } \begin{array}{l}
p\left\{a^{p-1}\left[(x-a) f(x)-\int_{a}^{x} f(t) d t\right]+b^{p-1}\left[(b-x) f(x)-\int_{x}^{b} f(t) d t\right]\right\} \\
\leq\left(b^{p}-a^{p}\right) f(x)-p \int_{a}^{b} f(t) t^{p-1} d t \\
\leq p\left\{\int_{a}^{x}\left(t^{p-1}-a^{p-1}\right)(t-a) d f(t)+\int_{x}^{b}\left(t^{p-1}-b^{p-1}\right)(t-b) d f(t)\right\} \\
+p\left\{a^{p-1}\left[(x-a) f(x)-\int_{a}^{x} f(t) d t\right]+b^{p-1}\left[(b-x) f(x)-\int_{x}^{b} f(t) d t\right]\right\},
\end{array}, \$. \tag{3.10}
\end{align*}
$$

for $x \in(a, b)$, while from (2.2) we get

$$
\text { 11) } \begin{align*}
0 \leq & \left(b^{p}-a^{p}\right) f(x)-p \int_{a}^{b} f(t) t^{p-1} d t \tag{3.11}\\
-p\left\{a^{p-1}\right. & {\left.\left[(x-a) f(x)-\int_{a}^{x} f(t) d t\right]+b^{p-1}\left[(b-x) f(x)-\int_{x}^{b} f(t) d t\right]\right\} } \\
& \leq p \int_{a}^{x}\left(t^{p-1}-a^{p-1}\right)(t-a) d f(t)+p \int_{x}^{b}\left(t^{p-1}-b^{p-1}\right)(t-b) d f(t)
\end{align*}
$$

for $x \in(a, b)$.

References

[1] P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequalities point of view. Handbook of analytic-computational methods in applied mathematics, 135-200, Chapman \& Hall/CRC, Boca Raton, FL, 2000.
[2] S. S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation. Bull. Austral. Math. Soc. 60 (1999), No. 3, 495-508.
[3] S. S. Dragomir, On the Ostrowski's inequality for Riemann-Stieltjes integral and applications. Korean J. Comput. Appl. Math. 7 (2000), no. 3, 611-627.
[4] S. S. Dragomir, On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Ineq. Appl. 4 (2001), No. 1, 59-66. Preprint: RGMIA Res. Rep. Coll. 2 (1999), Art. 7, [Online: http://rgmia.org/papers/v2n1/v2n1-7.pdf]
[5] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 31, 8 pp. [Online http://www.emis.de/journals/JIPAM/article183.html?sid=183].
[6] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3 (2002), no. 3, Article 35, 8 pp.
[7] S. S. Dragomir, An Ostrowski like inequality for convex functions and applications. Rev. Mat. Complut. 16 (2003), no. 2, 373-382.
[8] S. S. Dragomir, An Ostrowski type inequality for convex functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 16 (2005), 12-25.
[9] S. S. Dragomir, Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation. Arch. Math. (Basel) 91 (2008), No. 5, 450-460.
[10] S. S. Dragomir, Some inequalities for continuous functions of selfadjoint operators in Hilbert spaces, Acta Math Vietnam (2014) 39:287-303, DOI 10.1007/s40306-014-0061-4. Preprint RGMIA Res. Rep. Coll. 15(2012), Art. 16.
[11] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14 (2017), no. 1, Art. 1, 283 pp. [Online http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P
[12] Zheng Liu, Another generalization of weighted Ostrowski type inequality for mappings of bounded variation, Applied Mathematics Letters, 25 (2012), Issue 3, 393-397.
[13] K. L. Tseng, S. R. Hwang and S. S. Dragomir, Generalizations of weighted Ostrowski type inequalities for mappings of bounded variation and their applications, Comput. Math. Appl. 55 (2008) 1785-1793.

Mathematics, School of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir/
DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, , School of Computer Science and Applied Mathematics, University of the Witwatersrand, Private Bag-3, Wits-2050, Johannesburg, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15, 41A55.
 Key words and phrases. Riemann-Stieltjes integral, Ostrowski inequality, Selfadjoint operators, Functions of Selfadjoint operators, Spectral representation, Inequalities for selfadjoint operators.

