ON SOME OSTROWSKI TYPE RIEMANN-STIELTJES
INTEGRAL INEQUALITIES FOR MONOTONIC
NONDECREASING INTEGRANDS AND CONVEX
INTEGRATORS

SILVESTRU SEVER DRAGOMIR

ABSTRACT. In this paper we obtain some inequalities for the Riemann-Stieltjes
integral Ostrowski difference

b
/f(t)dU(t)—f(r)[U(b)—U(a)],

where f is a monotonic nondecreasing function on [a, b] , u is continuous convex
on [a,b] and = € (a,b). Some particular inequalities in the case of Riemann
integral are provided as well.

1. INTRODUCTION
We recall the following Ostrowski type inequality for convex functions:

Theorem 1 (Dragomir, 2002 [5]). Let f : [a,b] C R — R be a convex function on
[a,b]. Then for any x € (a,b) one has the inequality

b
1y g[o-9r@ -0 s @] < [ fOd-v-0fe
<5021 0 - @0 1L @),

The constant % is sharp in both inequalities. The second inequality also holds for
r=aorx=m>o.

Corollary 1. With the assumptions of Theorem 1 and if x € (a,b) is a point of
differentiability for f, then

(1.2) (a;b—x)f'<x><b_lafabf@)dt—f(x).

The following corollary provides both a sharper lower bound for the Hermite-

Hadamard difference,
1 b a+b
P t)dt —
i [t (550,

which we know is nonnegative, and an upper bound [5].
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Corollary 2. Let f : [a,b] — R be a convex function on [a,b]. Then we have the
inequality

(1.3) é {f+ (“+b> I <“"2”’)] (b—a)
<t [rwa-r () < {0 - s @] 60,

The constant % s sharp in both inequalities.

For other related results see [7] and [8]. For more inequalities of Ostrowski type,
see [1], [2]-[4], [9], [11], [12] and [13].

Motivated by the above results, we establish in this paper some inequalities for
the Riemann-Stieltjes integral Ostrowski difference

t/f@Mum—fwnww—um»

where f is a monotonic nondecreasing function on [a,b] and u is convex and x €
(a,b). Some applications for Riemann integral are given as well.

2. MAIN RESULTS
We have the following main result:

Theorem 2. Assume that [ : [a,b] — R is monotonic nondecreasing and u :
[a,b] — R is continuous convex on [a,b] . Then for x € (a,b) we have the inequalities

(2.1) uﬁr(a)[xa /f dt:|+u ()[ — ) /f dt]

b
il @) |- @ - [0 a] v n[w—@fuw— f@mﬂ,
provided the Riemann-Stieltjes integrals [ !, (t) (t — a) df (t) and f u'_ (t) (t = b)df (t)

exist.
This is equivalent to

(22) 0<[u(b)—u(a)lf

—uﬁr(a)[x—a /f dt}—u ()[ — ) /f dt]
[ rwas)

T b
< / [t/ (t) = (a)] (t—a)df (t) +/ [’ (t) —u” (b)] (t —b)df (t).
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Proof. Using the integration by parts rule for the Riemann-Stieltjes integral, we
have, see [3]

b

@3 [wo-v@d o+ [ wo-ueldo
@) —u @) @) - [ FOwE+ ) @)@ - [0
— () - u (@) f (@)~ [ FOdu(t)

for x € (a,b).
Using the gradient inequality we have
u(t) —u(a) > v, (a)(t —a) fort € [a,z]
and
u(b) —u(t) <u_(b)(b—t) for t € [z,b].

Since f is monotonic nondecreasing and by using integration by parts we get

x

(2.4) / fu (t) — u ()] df () > o, (a) / (t— a)df (1

— , (a) [:x—amw)—/:f(t)dt}

and

b b
/ () —u@d () < W (b) / (b—t)df (1)

b
o () V f(t)dt—(b—x)f(m)],
which is equivalent to

(2.5) / [ () — w (B)] df (£) > ' (b) [(b—:c)f(x)— / f(t)dt]

for x € (a,b).
If we add (2.4) and (2.5) we get

b

[ wO-w@a 0+ [ wo-uoiae

> (@ -0 f @ - [ 70| oo [(b—fc)f(w)—/:f(t)dt]

and by (2.3) we get the first inequality in (2.1).
By the gradient inequality we also have

u(t) —u(a) <y (t) (t—a) = (v (t) — v\ (a) (t—a) + ) (a) (t—a)
for ¢t € [a,z] and

w(t) —u®d) <u_ () (t—b) = (u_(t) —u_ (b)) (t—b)+u’ (b)(t—b)
for ¢t € [x,b].
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These imply the integral inequalities

26 [ -l
S/w(u;(t)—%(a))(t—a)df() +(a)/m(t—a)f(t)
:/m(uzr(t)_“;(a»(t_a)df()+u+ [w—a /f dt}

and

b
en [ lww-uwld
b b
<[ - o) e-nao+e o [ e-naw
b
:/ (! (£) — ' (b)) (t — b) df (£) + v [bz /f dt]

for « € (a,b).
If we add these inequalities, then we get

[ wO-w@a 0+ [ wo-uoiae

S/x(u+(t)—u+())(t—a)df() /(U’_(t)—ul(b))(t—b)df(t)

i@ fe-arw- [ roal o [ - [ 10 dt]

which together with (2.3) produces the second inequality in (2.1). O

Remark 1. We observe that the Riemann-Stieltjes integrals [ !, (t) (t — a)df (t)
and ff u’_ (t) (t — b) df (t) exist if either f is continuous on [a,b] or u has a contin-
uous derivative on an open interval incorporating [a,b] .

In what follows we assume that all Riemann-Stieltjes integrals involved exist on
those specific intervals.

Remark 2. If we take x = “£2 in (2.2) we get

29) 0= -u]f ()
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Corollary 3. Assume that g : [a,b] — R is continuous and nondecreasing on [a, b]
and f : [a,b] — R is monotonic nondecreasing, then for x € (a,b),

(2.9) g(a) [w—a /f dt}—i—g [b—x /f dt]
gﬂwlgmﬁ—éfﬁw®ﬁ

< [b0-s@it-0a 0+ [ b0 -gwle-va

+g(a [m—a /f dt}—i—g [ /f dt]

This is equivalent to

(2.10) ng(x)/ab (t)dt — g {x—a /f dt]

g0 [bx /f {)dt /f

S/w[g(t)—g( )]t —a)df (t) + /[g(t)—g(b)](t—b)df(t),

€T

for x € (a,b).

The proof follows from Theorem 2 by taking u ( f g (s) ds which is convex
on [a,b].

3. INEQUALITIES FOR RIEMANN INTEGRAL

If f(t)=t,t € [a,b] and u is a convex function on [a,b], then

(x—a)f /f t)dt = (xfa)xf/a tdt = (xfa)Q,

b b
(b—x)f(x)f/ f(t)dt:(b—x)xf/ tdt:f%(bfx)z,

and
s /f ) du (1
[u(b)u(a)]x/abtdu(t)
:/abu(t)dt—(x—a)u(a)—(b—x)u(b)

for z € (a,b).
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By utilising (2.1) we then get

(31) 3@y (@) -3 02 ()

for z € (a,b).
Now, by the monotonicity of the lateral derivatives of the convex function u and

the fact that u/, (t) = u’_ (t) except a countable number of points in [a,b] we have
that

/f [u!y (t) — v/ (a)] (t —a)dt = /f [u”_ (t) — v\ (a)] (t — a)dt

for z € (a,b).
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Therefore

33) ~(b—x)u(b) - = (z—a)u} (a)

1 , 1 ,
> Lo 2Pl (1)~ 5 (-0 (a)
5@ =) (@) — oy (@)] 5 (6 2)* [ul (8) — oy ()]
1 li 1 /
= §(b—$)2u+ (@) =5 (z—a)’ . (2)

for x € (a,b).

If we put together (3.2) and (3.3) we get for any convex function w : [a,b] — R
(34) 562w @)~ 5 (@ -l () < 3 (b— 2wl (6) — 5 (¢~ 0)*uy (a)

for x € (a,b), see also [6].
If the function w is differentiable in = € (a,b), then we obtain from (3.4) that

(35) (b—a) (“;b—x) e g%(b—x)%’, (b)—%(x—a)2u'+(a)

T b
7/ [uy (t) — v\ (a)] (tfa)dtf/ [u'_ (t) —u_ (b)] (t—b)at
a x X
§(ac—a)u(a)+(b—x)u(b)—/ u (t)dt

< 0— 2Pl (5) ~ 3 (¢~ a)*y (a)

If in (3.4) we take z = “TH’, then we get the Hermite-Hadamard type inequalities

o o[ () ()] o
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for a convex function w : [a,b] — R.

The lower bound
1], [fa+Dd , [a+b 2
s (5) - (0o

and the upper bound

1
& 06— 0)? [l (5) (o)
for the trapezoid difference were obtained first in the paper [6]. The constant % is
best in both bounds.

If u is differentiable in a-2-b’ then we get from (3.6) that

(37) 0< < (-a)? [u ()~ (a)]

a;»b b
_ / [u!y (1) — ! (a)] (t —a)dt — /aib [u” (t) —u” (b)] (t—b)d
< “(“);“(b) (b—a)— bu(t)dt
< 50— W (0)— !, (0]
Now, if we take u(t) = —Int, ¢t € [a,b] C (0,00) which is convex and f a

monotonic nondecreasing function on [a,b], then by (2.1) we get

[ rwa-e-ar@]|
s/bfit) e
gl/”< a)? df (t) + 1/b1<t—b> daf (1

[/f fdt — (z — a) } /f dt—b—xf()l,

while from (2.2) we get

b
f(t)dt — (b—fﬂ)f(x)]

(3.9)

/f
_i[/;f()dt—(x—a }—l/f t)dt — f()]

" b
4 %(t—a)2df(t)+%/£ (-0 (1)

IN

a

for z € (a,b).
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If u (t) = tP with p € (—00,0) U[l,00) and ¢ € [a,b], then u is convex on [a, ]
and if f : [a,b] — R is monotonic nondecreasing, then by (2.1) we get

(3.10) pd ar-! [(x—a)f(x)—/azf(t)dt}+bp1 (b—x)f(x)—/;f(t)dt

b

< (P —a?) f(z) —p / £ etde
b

<p /x ("=t —a?™h) (t —a) df (t)+/ (7= — P~ (£ — b) df (t)

x

tplar [<x—a>f<x>—/jf(t>dt}+bp-l (b—w)f(w)—/:f(t)dt ,

ab~t
for « € (a,b), while from (2.2) we get
b
(3.11) 0< (WP —aP) f (2) fp/ f)tr~tat

Cpla [@—a)f(z)—/:f(t)dt}mpl (b—x)f(w)—/:f(t)dt

b

= p/ (@) (- @ () +p / (e =) (e = b)df (1)

for x € (a,b).
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