
ON SOME OSTROWSKI TYPE RIEMANN-STIELTJES
INTEGRAL INEQUALITIES FOR MONOTONIC

NONDECREASING INTEGRANDS AND CONVEX
INTEGRATORS

SILVESTRU SEVER DRAGOMIR

Abstract. In this paper we obtain some inequalities for the Riemann-Stieltjes
integral Ostrowski di¤erenceZ b

a
f (t) du (t)� f (x) [u (b)� u (a)] ;

where f is a monotonic nondecreasing function on [a; b] ; u is continuous convex
on [a; b] and x 2 (a; b) : Some particular inequalities in the case of Riemann
integral are provided as well.

1. Introduction

We recall the following Ostrowski type inequality for convex functions:

Theorem 1 (Dragomir, 2002 [5]). Let f : [a; b] � R! R be a convex function on
[a; b]. Then for any x 2 (a; b) one has the inequality

(1.1)
1

2

h
(b� x)2 f 0+ (x)� (x� a)

2
f 0� (x)

i
�
Z b

a

f (t) dt� (b� a) f (x)

� 1

2

h
(b� x)2 f 0� (b)� (x� a)

2
f 0+ (a)

i
:

The constant 1
2 is sharp in both inequalities. The second inequality also holds for

x = a or x = b.

Corollary 1. With the assumptions of Theorem 1 and if x 2 (a; b) is a point of
di¤erentiability for f , then

(1.2)
�
a+ b

2
� x

�
f 0 (x) � 1

b� a

Z b

a

f (t) dt� f (x) :

The following corollary provides both a sharper lower bound for the Hermite-
Hadamard di¤erence,

1

b� a

Z b

a

f (t) dt� f
�
a+ b

2

�
;

which we know is nonnegative, and an upper bound [5].
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Corollary 2. Let f : [a; b] ! R be a convex function on [a; b]. Then we have the
inequality

(1.3) 0 � 1

8

�
f 0+

�
a+ b

2

�
� f 0�

�
a+ b

2

��
(b� a)

� 1

b� a

Z b

a

f (t) dt� f
�
a+ b

2

�
� 1

8

�
f 0� (b)� f 0+ (a)

�
(b� a) :

The constant 18 is sharp in both inequalities.

For other related results see [7] and [8]. For more inequalities of Ostrowski type,
see [1], [2]-[4], [9], [11], [12] and [13].
Motivated by the above results, we establish in this paper some inequalities for

the Riemann-Stieltjes integral Ostrowski di¤erenceZ b

a

f (t) du (t)� f (x) [u (b)� u (a)] ;

where f is a monotonic nondecreasing function on [a; b] and u is convex and x 2
(a; b) : Some applications for Riemann integral are given as well.

2. Main Results

We have the following main result:

Theorem 2. Assume that f : [a; b] ! R is monotonic nondecreasing and u :
[a; b]! R is continuous convex on [a; b] : Then for x 2 (a; b) we have the inequalities

(2.1) u0+ (a)

�
(x� a) f (x)�

Z x

a

f (t) dt

�
+ u0� (b)

"
(b� x) f (x)�

Z b

x

f (t) dt

#

� [u (b)� u (a)] f (x)�
Z b

a

f (t) du (t)

�
Z x

a

�
u0+ (t)� u0+ (a)

�
(t� a) df (t) +

Z b

x

�
u0� (t)� u0� (b)

�
(t� b) df (t)

+ u0+ (a)

�
(x� a) f (x)�

Z x

a

f (t) dt

�
+ u0� (b)

"
(b� x) f (x)�

Z b

x

f (t) dt

#
;

provided the Riemann-Stieltjes integrals
R x
a
u0+ (t) (t� a) df (t) and

R b
x
u0� (t) (t� b) df (t)

exist.
This is equivalent to

(2.2) 0 � [u (b)� u (a)] f (x)

� u0+ (a)
�
(x� a) f (x)�

Z x

a

f (t) dt

�
� u0� (b)

"
(b� x) f (x)�

Z b

x

f (t) dt

#

�
Z b

a

f (t) du (t)

�
Z x

a

�
u0+ (t)� u0+ (a)

�
(t� a) df (t) +

Z b

x

�
u0� (t)� u0� (b)

�
(t� b) df (t) :
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Proof. Using the integration by parts rule for the Riemann-Stieltjes integral, we
have, see [3]

(2.3)
Z x

a

[u (t)� u (a)] df (t) +
Z b

x

[u (t)� u (b)] df (t)

= [u (x)� u (a)] f (x)�
Z x

a

f (t) du (t) + [u (b)� u (x)] f (x)�
Z b

x

f (t) du (t)

= [u (b)� u (a)] f (x)�
Z b

a

f (t) du (t)

for x 2 (a; b) :
Using the gradient inequality we have

u (t)� u (a) � u0+ (a) (t� a) for t 2 [a; x]
and

u (b)� u (t) � u0� (b) (b� t) for t 2 [x; b] :
Since f is monotonic nondecreasing and by using integration by parts we getZ x

a

[u (t)� u (a)] df (t) � u0+ (a)
Z x

a

(t� a) df (t)(2.4)

= u0+ (a)

�
(x� a) f (x)�

Z x

a

f (t) dt

�
and Z b

x

[u (b)� u (t)] df (t) � u0� (b)

Z b

x

(b� t) df (t)

= u0� (b)

"Z b

x

f (t) dt� (b� x) f (x)
#
;

which is equivalent to

(2.5)
Z b

x

[u (t)� u (b)] df (t) � u0� (b)
"
(b� x) f (x)�

Z b

x

f (t) dt

#
for x 2 (a; b) :
If we add (2.4) and (2.5) we getZ x

a

[u (t)� u (a)] df (t) +
Z b

x

[u (t)� u (b)] df (t)

� u0+ (a)
�
(x� a) f (x)�

Z x

a

f (t) dt

�
+ u0� (b)

"
(b� x) f (x)�

Z b

x

f (t) dt

#
and by (2.3) we get the �rst inequality in (2.1).
By the gradient inequality we also have

u (t)� u (a) � u0+ (t) (t� a) =
�
u0+ (t)� u0+ (a)

�
(t� a) + u0+ (a) (t� a)

for t 2 [a; x] and
u (t)� u (b) � u0� (t) (t� b) =

�
u0� (t)� u0� (b)

�
(t� b) + u0� (b) (t� b)

for t 2 [x; b] :
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These imply the integral inequalities

(2.6)
Z x

a

[u (t)� u (a)] df (t)

�
Z x

a

�
u0+ (t)� u0+ (a)

�
(t� a) df (t) + u0+ (a)

Z x

a

(t� a) f (t)

=

Z x

a

�
u0+ (t)� u0+ (a)

�
(t� a) df (t) + u0+ (a)

�
(x� a) f (x)�

Z x

a

f (t) dt

�
and

(2.7)
Z b

x

[u (t)� u (b)] df (t)

�
Z b

x

�
u0� (t)� u0� (b)

�
(t� b) df (t) + u0� (b)

Z b

x

(t� b) df (t)

=

Z b

x

�
u0� (t)� u0� (b)

�
(t� b) df (t) + u0� (b)

"
(b� x) f (x)�

Z b

x

f (t) dt

#
for x 2 (a; b) :
If we add these inequalities, then we getZ x

a

[u (t)� u (a)] df (t) +
Z b

x

[u (t)� u (b)] df (t)

�
Z x

a

�
u0+ (t)� u0+ (a)

�
(t� a) df (t) +

Z b

x

�
u0� (t)� u0� (b)

�
(t� b) df (t)

+ u0+ (a)

�
(x� a) f (x)�

Z x

a

f (t) dt

�
+ u0� (b)

"
(b� x) f (x)�

Z b

x

f (t) dt

#
;

which together with (2.3) produces the second inequality in (2.1). �

Remark 1. We observe that the Riemann-Stieltjes integrals
R x
a
u0+ (t) (t� a) df (t)

and
R b
x
u0� (t) (t� b) df (t) exist if either f is continuous on [a; b] or u has a contin-

uous derivative on an open interval incorporating [a; b] :

In what follows we assume that all Riemann-Stieltjes integrals involved exist on
those speci�c intervals.

Remark 2. If we take x = a+b
2 in (2.2) we get

(2.8) 0 � [u (b)� u (a)] f
�
a+ b

2

�
� u0+ (a)

"
1

2
(b� a) f

�
a+ b

2

�
�
Z a+b

2

a

f (t) dt

#

� u0� (b)
"
1

2
(b� a) f

�
a+ b

2

�
�
Z b

a+b
2

f (t) dt

#
�
Z b

a

f (t) du (t)

�
Z a+b

2

a

�
u0+ (t)� u0+ (a)

�
(t� a) df (t) +

Z b

a+b
2

�
u0� (t)� u0� (b)

�
(t� b) df (t) :
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Corollary 3. Assume that g : [a; b]! R is continuous and nondecreasing on [a; b]
and f : [a; b]! R is monotonic nondecreasing, then for x 2 (a; b) ;

(2.9) g (a)

�
(x� a) f (x)�

Z x

a

f (t) dt

�
+ g (b)

"
(b� x) f (x)�

Z b

x

f (t) dt

#

� f (x)
Z b

a

g (t) dt�
Z b

a

f (t) g (t) dt

�
Z x

a

[g (t)� g (a)] (t� a) df (t) +
Z b

x

[g (t)� g (b)] (t� b) df (t)

+ g (a)

�
(x� a) f (x)�

Z x

a

f (t) dt

�
+ g (b)

"
(b� x) f (x)�

Z b

x

f (t) dt

#
:

This is equivalent to

(2.10) 0 � f (x)
Z b

a

g (t) dt� g (a)
�
(x� a) f (x)�

Z x

a

f (t) dt

�
� g (b)

"
(b� x) f (x)�

Z b

x

f (t) dt

#
�
Z b

a

f (t) g (t) dt

�
Z x

a

[g (t)� g (a)] (t� a) df (t) +
Z b

x

[g (t)� g (b)] (t� b) df (t) ;

for x 2 (a; b) :

The proof follows from Theorem 2 by taking u (t) :=
R t
a
g (s) ds which is convex

on [a; b] :

3. Inequalities for Riemann Integral

If f (t) = t; t 2 [a; b] and u is a convex function on [a; b] ; then

(x� a) f (x)�
Z x

a

f (t) dt = (x� a)x�
Z x

a

tdt =
1

2
(x� a)2 ;

(b� x) f (x)�
Z b

x

f (t) dt = (b� x)x�
Z b

x

tdt = �1
2
(b� x)2 ;

and

[u (b)� u (a)] f (x)�
Z b

a

f (t) du (t)

= [u (b)� u (a)]x�
Z b

a

tdu (t)

=

Z b

a

u (t) dt� (x� a)u (a)� (b� x)u (b)

for x 2 (a; b) :
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By utilising (2.1) we then get

(3.1)
1

2
(x� a)2 u0+ (a)�

1

2
(b� x)2 u0� (b)

�
Z b

a

u (t) dt� (x� a)u (a)� (b� x)u (b)

�
Z x

a

�
u0+ (t)� u0+ (a)

�
(t� a) dt+

Z b

x

�
u0� (t)� u0� (b)

�
(t� b) dt

+
1

2
(x� a)2 u0+ (a)�

1

2
(b� x)2 u0� (b) ;

namely

(3.2)
1

2
(b� x)2 u0� (b)�

1

2
(x� a)2 u0+ (a)

�
Z x

a

�
u0+ (t)� u0+ (a)

�
(t� a) dt�

Z b

x

�
u0� (t)� u0� (b)

�
(t� b) dt

� (x� a)u (a) + (b� x)u (b)�
Z b

a

u (t) dt

� 1

2
(b� x)2 u0� (b)�

1

2
(x� a)2 u0+ (a)

for x 2 (a; b) :
Now, by the monotonicity of the lateral derivatives of the convex function u and

the fact that u0+ (t) = u
0
� (t) except a countable number of points in [a; b] we have

thatZ x

a

�
u0+ (t)� u0+ (a)

�
(t� a) dt =

Z x

a

�
u0� (t)� u0+ (a)

�
(t� a) dt

�
�
u0� (x)� u0+ (a)

� Z x

a

(t� a) dt = 1

2
(x� a)2

�
u0� (x)� u0+ (a)

�
andZ b

x

�
u0� (t)� u0� (b)

�
(t� b) dt =

Z b

x

�
u0� (b)� u0+ (t)

�
(b� t) dt

�
�
u0� (b)� u0+ (x)

� Z b

x

(b� t) dt = 1

2
(b� x)2

�
u0� (b)� u0+ (x)

�
;

which, by addition, give

Z x

a

�
u0+ (t)� u0+ (a)

�
(t� a) dt+

Z b

x

�
u0� (t)� u0� (b)

�
(t� b) dt

� 1

2
(x� a)2

�
u0� (x)� u0+ (a)

�
+
1

2
(b� x)2

�
u0� (b)� u0+ (x)

�
for x 2 (a; b) :
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Therefore

(3.3)
1

2
(b� x)2 u0� (b)�

1

2
(x� a)2 u0+ (a)

�
Z x

a

�
u0+ (t)� u0+ (a)

�
(t� a) dt�

Z b

x

�
u0� (t)� u0� (b)

�
(t� b) dt

� 1

2
(b� x)2 u0� (b)�

1

2
(x� a)2 u0+ (a)

� 1
2
(x� a)2

�
u0� (x)� u0+ (a)

�
� 1
2
(b� x)2

�
u0� (b)� u0+ (x)

�
=
1

2
(b� x)2 u0+ (x)�

1

2
(x� a)2 u0� (x)

for x 2 (a; b) :
If we put together (3.2) and (3.3) we get for any convex function u : [a; b]! R

(3.4)
1

2
(b� x)2 u0+ (x)�

1

2
(x� a)2 u0� (x) �

1

2
(b� x)2 u0� (b)�

1

2
(x� a)2 u0+ (a)

�
Z x

a

�
u0+ (t)� u0+ (a)

�
(t� a) dt�

Z b

x

�
u0� (t)� u0� (b)

�
(t� b) dt

� (x� a)u (a) + (b� x)u (b)�
Z b

a

u (t) dt

� 1

2
(b� x)2 u0� (b)�

1

2
(x� a)2 u0+ (a)

for x 2 (a; b) ; see also [6].
If the function u is di¤erentiable in x 2 (a; b) ; then we obtain from (3.4) that

(3.5) (b� a)
�
a+ b

2
� x

�
u0 (x) � 1

2
(b� x)2 u0� (b)�

1

2
(x� a)2 u0+ (a)

�
Z x

a

�
u0+ (t)� u0+ (a)

�
(t� a) dt�

Z b

x

�
u0� (t)� u0� (b)

�
(t� b) dt

� (x� a)u (a) + (b� x)u (b)�
Z b

a

u (t) dt

� 1

2
(b� x)2 u0� (b)�

1

2
(x� a)2 u0+ (a)

If in (3.4) we take x = a+b
2 ; then we get the Hermite-Hadamard type inequalities

(3.6) 0 � 1

8

�
u0+

�
a+ b

2

�
� u0�

�
a+ b

2

��
(b� a)2

� 1

8
(b� a)2

�
u0� (b)� u0+ (a)

�
�
Z a+b

2

a

�
u0+ (t)� u0+ (a)

�
(t� a) dt�

Z b

a+b
2

�
u0� (t)� u0� (b)

�
(t� b) dt

� u (a) + u (b)

2
(b� a)�

Z b

a

u (t) dt

� 1

8
(b� a)2

�
u0� (b)� u0+ (a)

�
;
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for a convex function u : [a; b]! R.
The lower bound

1

8

�
u0+

�
a+ b

2

�
� u0�

�
a+ b

2

��
(b� a)2

and the upper bound

1

8
(b� a)2

�
u0� (b)� u0+ (a)

�
for the trapezoid di¤erence were obtained �rst in the paper [6]. The constant 1

8 is
best in both bounds.
If u is di¤erentiable in a+b

2 ; then we get from (3.6) that

(3.7) 0 � 1

8
(b� a)2

�
u0� (b)� u0+ (a)

�
�
Z a+b

2

a

�
u0+ (t)� u0+ (a)

�
(t� a) dt�

Z b

a+b
2

�
u0� (t)� u0� (b)

�
(t� b) dt

� u (a) + u (b)

2
(b� a)�

Z b

a

u (t) dt

� 1

8
(b� a)2

�
u0� (b)� u0+ (a)

�
:

Now, if we take u (t) = � ln t; t 2 [a; b] � (0;1) which is convex and f a
monotonic nondecreasing function on [a; b] ; then by (2.1) we get

(3.8)
1

a

�Z x

a

f (t) dt� (x� a) f (x)
�
+
1

b

"Z b

x

f (t) dt� (b� x) f (x)
#

�
Z b

a

f (t)

t
dt+

b� a
ba

f (x)

� 1

a

Z x

a

1

t
(t� a)2 df (t) + 1

b

Z b

x

1

t
(t� b)2 df (t)

+
1

a

�Z x

a

f (t) dt� (x� a) f (x)
�
+
1

b

"Z b

x

f (t) dt� (b� x) f (x)
#
;

while from (2.2) we get

(3.9) 0 � b� a
ba

f (x) +

Z b

a

f (t)

t
dt

� 1

a

�Z x

a

f (t) dt� (x� a) f (x)
�
� 1
b

"Z b

x

f (t) dt� (b� x) f (x)
#

� 1

a

Z x

a

1

t
(t� a)2 df (t) + 1

b

Z b

x

1

t
(t� b)2 df (t)

for x 2 (a; b) :
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If u (t) = tp with p 2 (�1; 0) [ [1;1) and t 2 [a; b] ; then u is convex on [a; b]
and if f : [a; b]! R is monotonic nondecreasing, then by (2.1) we get

(3.10) p

(
ap�1

�
(x� a) f (x)�

Z x

a

f (t) dt

�
+ bp�1

"
(b� x) f (x)�

Z b

x

f (t) dt

#)

� (bp � ap) f (x)� p
Z b

a

f (t) tp�1dt

� p
(Z x

a

�
tp�1 � ap�1

�
(t� a) df (t) +

Z b

x

�
tp�1 � bp�1

�
(t� b) df (t)

)

+ p

(
ap�1

�
(x� a) f (x)�

Z x

a

f (t) dt

�
+ bp�1

"
(b� x) f (x)�

Z b

x

f (t) dt

#)
;

for x 2 (a; b) ; while from (2.2) we get

(3.11) 0 � (bp � ap) f (x)� p
Z b

a

f (t) tp�1dt

� p
(
ap�1

�
(x� a) f (x)�

Z x

a

f (t) dt

�
+ bp�1

"
(b� x) f (x)�

Z b

x

f (t) dt

#)

� p
Z x

a

�
tp�1 � ap�1

�
(t� a) df (t) + p

Z b

x

�
tp�1 � bp�1

�
(t� b) df (t)

for x 2 (a; b) :

References

[1] P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequalities point of view.
Handbook of analytic-computational methods in applied mathematics, 135�200, Chapman
& Hall/CRC, Boca Raton, FL, 2000.

[2] S. S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation. Bull.
Austral. Math. Soc. 60 (1999), No. 3, 495�508.

[3] S. S. Dragomir, On the Ostrowski�s inequality for Riemann-Stieltjes integral and applications.
Korean J. Comput. Appl. Math. 7 (2000), no. 3, 611�627.

[4] S. S. Dragomir, On the Ostrowski�s integral inequality for mappings with bounded variation
and applications, Math. Ineq. Appl. 4 (2001), No. 1, 59-66. Preprint: RGMIA Res. Rep. Coll.
2 (1999), Art. 7, [Online: http://rgmia.org/papers/v2n1/v2n1-7.pdf]

[5] S. S. Dragomir, An inequality improving the �rst Hermite-Hadamard inequality
for convex functions de�ned on linear spaces and applications for semi-inner prod-
ucts. J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 31, 8 pp. [Online
http://www.emis.de/journals/JIPAM/article183.html?sid=183].

[6] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex
functions de�ned on linear spaces and applications for semi-inner products. J. Inequal. Pure
Appl. Math. 3 (2002), no. 3, Article 35, 8 pp.

[7] S. S. Dragomir, An Ostrowski like inequality for convex functions and applications. Rev. Mat.
Complut. 16 (2003), no. 2, 373�382.

[8] S. S. Dragomir, An Ostrowski type inequality for convex functions. Univ. Beograd. Publ.
Elektrotehn. Fak. Ser. Mat. 16 (2005), 12�25.

[9] S. S. Dragomir, Re�nements of the generalised trapezoid and Ostrowski inequalities for func-
tions of bounded variation. Arch. Math. (Basel) 91 (2008), No. 5, 450�460.

[10] S. S. Dragomir, Some inequalities for continuous functions of selfadjoint operators in Hilbert
spaces, Acta Math Vietnam (2014) 39:287�303, DOI 10.1007/s40306-014-0061-4. Preprint
RGMIA Res. Rep. Coll. 15(2012), Art. 16.



10 S. S. DRAGOMIR

[11] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of re-
cent results. Aust. J. Math. Anal. Appl. 14 (2017), no. 1, Art. 1, 283 pp. [Online
http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P

[12] Zheng Liu, Another generalization of weighted Ostrowski type inequality for mappings of
bounded variation, Applied Mathematics Letters, 25 (2012), Issue 3, 393-397.

[13] K. L. Tseng, S. R. Hwang and S. S. Dragomir, Generalizations of weighted Ostrowski type
inequalities for mappings of bounded variation and their applications, Comput. Math. Appl.
55 (2008) 1785�1793.

Mathematics, School of Engineering & Science, Victoria University, PO Box 14428,
Melbourne City, MC 8001, Australia.

E-mail address : sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir/

DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences,, School
of Computer Science and Applied Mathematics, University of the Witwatersrand, Pri-
vate Bag-3, Wits-2050, Johannesburg, South Africa




