NEW TRAPEZOID TYPE RIEMANN-STIELTJES INTEGRAL INEQUALITIES FOR MONOTONIC INTEGRANDS AND CONVEX INTEGRATORS

SILVESTRU SEVER DRAGOMIR

ABSTRACT. In this paper we obtain some inequalities for the trapezoid difference

$$[u(x) - u(a)] f(a) + [u(b) - u(x)] f(b) - \int_{a}^{b} f(t) du(t)$$

where f is a monotonic nondecreasing function on [a, b], u is continuous convex on [a, b] and $x \in (a, b)$. Some particular inequalities for the Riemann integral are also given.

1. INTRODUCTION

We start with the following result concerning two inequalities of trapezoid type for convex functions obtained in [6]:

Theorem 1. Let $f : [a,b] \subset \mathbb{R} \to \mathbb{R}$ be a convex function on [a,b]. Then for any $x \in [a,b]$ one has the inequality

$$(1.1) \quad \frac{1}{2} \left[(b-x)^2 f'_+(x) - (x-a)^2 f'_-(x) \right] \\ \leq (x-a) f(a) + (b-x) f(b) - \int_a^b f(t) dt \\ \leq \frac{1}{2} \left[(b-x)^2 f'_-(b) - (x-a)^2 f'_+(a) \right].$$

The constant $\frac{1}{2}$ is sharp in both inequalities. The second inequality also holds for x = a or x = b.

We have a simpler first inequality in the case of differentiability:

Corollary 1. With the assumptions of Lemma 1 and if $x \in (a, b)$ is a point of differentiability for f, then

(1.2)
$$\left(\frac{a+b}{2}-x\right)(b-a)f'(x) \le (x-a)f(a)+(b-x)f(b)-\int_a^b f(t)dt.$$

Now, recall that the following inequality, which is well known in the literature as the Hermite-Hadamard inequality for convex functions, holds

(1.3)
$$f\left(\frac{a+b}{2}\right)(b-a) \le \int_{a}^{b} f(t) dt \le \frac{f(a)+f(b)}{2}(b-a).$$

¹⁹⁹¹ Mathematics Subject Classification. 26D15, 41A55.

Key words and phrases. Riemann-Stieltjes integral, Trapezoid inequality.

The following corollary provides some sharp bounds for the trapezoid difference

$$\frac{f(a) + f(b)}{2} (b - a) - \int_{a}^{b} f(t) dt.$$

Corollary 2. Let $f : [a,b] \to \mathbb{R}$ be a convex function on [a,b]. Then we have the inequality

$$(1.4) \quad 0 \leq \frac{1}{8} \left[f'_{+} \left(\frac{a+b}{2} \right) - f'_{-} \left(\frac{a+b}{2} \right) \right] (b-a)^{2} \\ \leq \frac{f(a) + f(b)}{2} (b-a) - \int_{a}^{b} f(t) dt \\ \leq \frac{1}{8} \left[f'_{-} (b) - f'_{+} (a) \right] (b-a)^{2}.$$

The constant $\frac{1}{8}$ is sharp in both inequalities.

For various trapezoid type inequalities involving Riemann-Stieltjes integral, see [1]-[12] and [8]-[16].

Motivated by the above results, in this paper we obtain some inequalities for the Riemann-Stieltjes integral trapezoid difference

$$[u(x) - u(a)] f(a) + [u(b) - u(x)] f(b) - \int_{a}^{b} f(t) du(t)$$

where f is a convex function on [a, b], u is monotonic nondecreasing and $x \in (a, b)$. In the case of Riemann integral, namely for u(t) = t, some particular inequalities are also given.

2. Main Results

We have the following main result:

Theorem 2. Assume that $f : [a,b] \to \mathbb{R}$ is monotonic nondecreasing and $u : [a,b] \to \mathbb{R}$ is continuous convex on [a,b]. Then for $x \in (a,b)$ we have the inequalities

$$(2.1) \quad u'_{+}(x) \left[(b-x) f(b) - \int_{x}^{b} f(t) dt \right] + u'_{-}(x) \left[(x-a) f(a) - \int_{a}^{x} f(t) dt \right]$$

$$\leq \left[u(b) - u(x) \right] f(b) + \left[u(x) - u(a) \right] f(a) - \int_{a}^{b} f(t) du(t)$$

$$\leq \int_{a}^{x} (t-x) \left[u'_{+}(t) - u'_{-}(x) \right] df(t) + \int_{x}^{b} (t-x) \left[u'_{-}(t) - u'_{+}(x) \right] df(t)$$

$$+ u'_{+}(x) \left[(b-x) f(b) - \int_{x}^{b} f(t) dt \right] + u'_{-}(x) \left[(x-a) f(a) - \int_{a}^{x} f(t) dt \right]$$

provided the Riemann-Stieltjes integrals $\int_{a}^{x} u'_{+}(t) (t-x) df(t)$ and $\int_{x}^{b} u'_{-}(t) (t-x) df(t)$ exist.

 $\mathbf{2}$

This is equivalent to

$$(2.2) \quad 0 \leq [u(b) - u(x)] f(b) + [u(x) - u(a)] f(a) - u'_{+}(x) \left[(b - x) f(b) - \int_{x}^{b} f(t) dt \right] - u'_{-}(x) \left[(x - a) f(a) - \int_{a}^{x} f(t) dt \right] - \int_{a}^{b} f(t) du(t) \leq \int_{a}^{x} (t - x) \left[u'_{+}(t) - u_{-}(x) \right] df(t) + \int_{x}^{b} (t - x) \left[u'_{-}(t) - u'_{+}(x) \right] df(t) for $x \in (a, b)$$$

for $x \in (a, b)$.

Proof. Using the integration by parts rule for the Riemann-Stieltjes integral, we have

(2.3)
$$\int_{a}^{b} [u(t) - u(x)] df(t)$$
$$= [u(b) - u(x)] f(b) + [u(x) - u(a)] f(a) - \int_{a}^{b} f(t) du(t)$$

for all $x \in [a, b]$.

We also have

(2.4)
$$\int_{a}^{b} \left[u(t) - u(x) \right] df(t) = \int_{a}^{x} \left[u(t) - u(x) \right] df(t) + \int_{x}^{b} \left[u(t) - u(x) \right] df(t)$$

for all $x \in (a, b)$.

Using the gradient inequality for the convex function u we have

 $u(x) - u(t) \le (x - t)u'_{-}(x)$ for $t \in [a, x]$

and

$$u(t) - u(x) \ge (t - x)u'_{+}(x)$$
 for $t \in [x, b]$

Since f is monotonic nondecreasing and by using integration by parts we get

(2.5)
$$\int_{x}^{b} \left[u(t) - u(x) \right] df(t) \ge u'_{+}(x) \int_{x}^{b} (t-x) df(t) = u'_{+}(x) \left[(b-x) f(b) - \int_{x}^{b} f(t) dt \right]$$

and

$$\int_{a}^{x} [u(x) - u(t)] df(t) \leq u'_{-}(x) \int_{a}^{x} (x - t) df(t)$$

= $u'_{-}(x) \left[\int_{a}^{x} f(t) dt - (x - a) f(a) \right]$

which is equivalent to

(2.6)
$$\int_{a}^{x} \left[u(x) - u(t) \right] df(t) \ge u'_{-}(x) \left[(x-a) f(a) - \int_{a}^{x} f(t) dt \right]$$
for all $x \in (a, b)$.

,

If we add (2.5) and (2.6), then we get

$$\int_{a}^{x} \left[u(t) - u(x) \right] df(t) + \int_{x}^{b} \left[u(t) - u(x) \right] df(t)$$

$$\geq u'_{+}(x) \left[(b-x) f(b) - \int_{x}^{b} f(t) dt \right] + u'_{-}(x) \left[(x-a) f(a) - \int_{a}^{x} f(t) dt \right],$$

which together with (2.3) and (2.4) provide the first inequality in (2.1).

Using the gradient inequality we also have

$$u(x) - u(t) \ge (x - t)u'_{+}(t)$$
 for $t \in [a, x]$

and

4

$$u(t) - u(x) \le (t - x) u'_{-}(t)$$
 for $t \in [x, b]$.

Since f is monotonic nondecreasing and by using integration by parts we get

(2.7)
$$\int_{a}^{x} \left[u\left(x \right) - u\left(t \right) \right] df\left(t \right) \ge \int_{a}^{x} \left(x - t \right) u_{+}'\left(t \right) df\left(t \right)$$

and

$$(2.8) \quad \int_{x}^{b} \left[u(t) - u(x) \right] df(t) \leq \int_{x}^{b} (t - x) u'_{-}(t) df(t) = \int_{x}^{b} (t - x) \left[u'_{-}(t) - u'_{+}(x) \right] df(t) + u'_{+}(x) \int_{x}^{b} (t - x) df(t) = \int_{x}^{b} (t - x) \left[u'_{-}(t) - u'_{+}(x) \right] df(t) + u'_{+}(x) \left[(b - x) f(b) - \int_{x}^{b} f(t) dt \right].$$

From (2.7) we get

$$(2.9) \quad \int_{a}^{x} \left[u\left(t\right) - u\left(x\right) \right] df\left(t\right) \leq \int_{a}^{x} \left(t - x\right) u'_{+}\left(t\right) df\left(t\right) = \int_{a}^{x} \left(t - x\right) \left[u'_{+}\left(t\right) - u_{-}\left(x\right) \right] df\left(t\right) + u'_{-}\left(x\right) \int_{a}^{x} \left(t - x\right) df\left(t\right) = \int_{a}^{x} \left(t - x\right) \left[u'_{+}\left(t\right) - u'_{-}\left(x\right) \right] df\left(t\right) + u_{-}\left(x\right) \left[\left(x - a\right) f\left(a\right) - \int_{a}^{x} f\left(t\right) dt \right].$$

If we add (2.8) and (2.9) we get

$$\int_{x}^{b} [u(t) - u(x)] df(t) + \int_{a}^{x} [u(t) - u(x)] df(t)$$

$$\leq \int_{x}^{b} (t - x) [u'_{-}(t) - u'_{+}(x)] df(t) + u'_{+}(x) \left[(b - x) f(b) - \int_{x}^{b} f(t) dt \right]$$

$$+ \int_{a}^{x} (t - x) [u'_{+}(t) - u'_{-}(x)] df(t) + u'_{-}(x) \left[(x - a) f(a) - \int_{a}^{x} f(t) dt \right],$$
hich together with (2.3) and (2.4) give the second inequality in (2.1).

which together with (2.3) and (2.4) give the second inequality in (2.1).

Corollary 3. With the assumptions of Theorem 2 and if u is differentiable in x, then from (2.1) we get

$$(2.10) \quad u'(x) \left[(b-x) f(b) + (x-a) f(a) - \int_{a}^{b} f(t) dt \right]$$

$$\leq [u(b) - u(x)] f(b) + [u(x) - u(a)] f(a) - \int_{a}^{b} f(t) du(t)$$

$$\leq \int_{a}^{x} (t-x) \left[u'_{+}(t) - u'(x) \right] df(t) + \int_{x}^{b} (t-x) \left[u'_{-}(t) - u'(x) \right] df(t)$$

$$+ u'(x) \left[(b-x) f(b) + (x-a) f(a) - \int_{a}^{b} f(t) dt \right],$$

 $and, \ equivalently,$

$$(2.11) \quad 0 \leq [u(b) - u(x)] f(b) + [u(x) - u(a)] f(a) - u'(x) \left[(b - x) f(b) + (x - a) f(a) - \int_{a}^{b} f(t) dt \right] - \int_{a}^{b} f(t) du(t) \leq \int_{a}^{x} (t - x) \left[u'_{+}(t) - u'(x) \right] df(t) + \int_{x}^{b} (t - x) \left[u'_{-}(t) - u'(x) \right] df(t) ,$$

Remark 1. If we take $x = \frac{a+b}{2}$, in (2.1) and (2.2) we get

$$\begin{aligned} (2.12) \quad u'_{+}\left(\frac{a+b}{2}\right) \left[\frac{1}{2}\left(b-a\right)f\left(b\right) - \int_{\frac{a+b}{2}}^{b} f\left(t\right)dt\right] \\ \quad &+ u'_{-}\left(\frac{a+b}{2}\right) \left[\frac{1}{2}\left(b-a\right)f\left(a\right) - \int_{a}^{\frac{a+b}{2}} f\left(t\right)dt\right] \\ \leq \left[u\left(b\right) - u\left(\frac{a+b}{2}\right)\right]f\left(b\right) + \left[u\left(\frac{a+b}{2}\right) - u\left(a\right)\right]f\left(a\right) - \int_{a}^{b} f\left(t\right)du\left(t\right) \\ &\leq \int_{a}^{\frac{a+b}{2}} \left(t - \frac{a+b}{2}\right) \left[u'_{+}\left(t\right) - u'_{-}\left(\frac{a+b}{2}\right)\right]df\left(t\right) \\ &+ \int_{\frac{a+b}{2}}^{b} \left(t - \frac{a+b}{2}\right) \left[u'_{-}\left(t\right) - u'_{+}\left(\frac{a+b}{2}\right)\right]df\left(t\right) \\ &+ u'_{+}\left(\frac{a+b}{2}\right) \left[\frac{1}{2}\left(b-a\right)f\left(b\right) - \int_{\frac{a+b}{2}}^{b} f\left(t\right)dt\right] \\ &+ u'_{-}\left(\frac{a+b}{2}\right) \left[\frac{1}{2}\left(b-a\right)f\left(a\right) - \int_{a}^{\frac{a+b}{2}} f\left(t\right)dt\right] \end{aligned}$$

provided the Riemann-Stieltjes integrals $\int_{a}^{\frac{a+b}{2}} u'_{+}(t) \left(t - \frac{a+b}{2}\right) df(t)$ and $\int_{a}^{b} u'_{-}(t) \left(t - \frac{a+b}{2}\right) df(t)$ exist.

This is equivalent to

$$\begin{aligned} (2.13) \quad & 0 \leq \left[u\left(b\right) - u\left(\frac{a+b}{2}\right) \right] f\left(b\right) + \left[u\left(\frac{a+b}{2}\right) - u\left(a\right) \right] f\left(a\right) \\ & - u'_{+}\left(\frac{a+b}{2}\right) \left[\frac{1}{2}\left(b-a\right) f\left(b\right) - \int_{\frac{a+b}{2}}^{b} f\left(t\right) dt \right] \\ & - u'_{-}\left(\frac{a+b}{2}\right) \left[\frac{1}{2}\left(b-a\right) f\left(a\right) - \int_{a}^{\frac{a+b}{2}} f\left(t\right) dt \right] \\ & - \int_{a}^{b} f\left(t\right) du\left(t\right) \\ & \leq \int_{a}^{\frac{a+b}{2}} \left(t - \frac{a+b}{2}\right) \left[u'_{+}\left(t\right) - u'_{-}\left(\frac{a+b}{2}\right) \right] df\left(t\right) \\ & + \int_{\frac{a+b}{2}}^{b} \left(t - \frac{a+b}{2}\right) \left[u'_{-}\left(t\right) - u'_{+}\left(\frac{a+b}{2}\right) \right] df\left(t\right). \end{aligned}$$

If u is differentiable in $\frac{a+b}{2}$, then by (2.10) we get

$$\begin{aligned} (2.14) \quad u'\left(\frac{a+b}{2}\right) \left[\frac{f\left(b\right)+f\left(a\right)}{2}\left(b-a\right) - \int_{a}^{b} f\left(t\right) dt\right] \\ &\leq \left[u\left(b\right) - u\left(\frac{a+b}{2}\right)\right] f\left(b\right) + \left[u\left(\frac{a+b}{2}\right) - u\left(a\right)\right] f\left(a\right) - \int_{a}^{b} f\left(t\right) du\left(t\right) \\ &\leq \int_{a}^{\frac{a+b}{2}} \left(t - \frac{a+b}{2}\right) \left[u'_{+}\left(t\right) - u'\left(\frac{a+b}{2}\right)\right] df\left(t\right) \\ &+ \int_{\frac{a+b}{2}}^{b} \left(t - \frac{a+b}{2}\right) \left[u'_{-}\left(t\right) - u'\left(\frac{a+b}{2}\right)\right] df\left(t\right) \\ &+ u'\left(\frac{a+b}{2}\right) \left[\frac{f\left(b\right)+f\left(a\right)}{2}\left(b-a\right) - \int_{a}^{b} f\left(t\right) dt\right], \end{aligned}$$

and, equivalently

$$(2.15) \quad 0 \leq \left[u\left(b\right) - u\left(\frac{a+b}{2}\right)\right] f\left(b\right) + \left[u\left(\frac{a+b}{2}\right) - u\left(a\right)\right] f\left(a\right) \\ - u'\left(\frac{a+b}{2}\right) \left[\frac{f\left(b\right) + f\left(a\right)}{2}\left(b-a\right) - \int_{a}^{b} f\left(t\right) dt\right] - \int_{a}^{b} f\left(t\right) du\left(t\right) \\ \leq \int_{a}^{\frac{a+b}{2}} \left(t - \frac{a+b}{2}\right) \left[u'_{+}\left(t\right) - u'\left(\frac{a+b}{2}\right)\right] df\left(t\right) \\ + \int_{\frac{a+b}{2}}^{b} \left(t - \frac{a+b}{2}\right) \left[u'_{-}\left(t\right) - u'\left(\frac{a+b}{2}\right)\right] df\left(t\right).$$

6

Corollary 4. Assume that $g : [a, b] \to \mathbb{R}$ is continuous and nondecreasing on [a, b]and $f : [a, b] \to \mathbb{R}$ is monotonic nondecreasing, then for $x \in (a, b)$,

$$(2.16) \quad 0 \le f(b) \int_{x}^{b} g(t) dt + f(a) \int_{a}^{x} g(t) dt - g(x) \left[(b-x) f(b) + (x-a) f(a) - \int_{a}^{b} f(t) dt \right] - \int_{a}^{b} f(t) g(t) dt \le \int_{a}^{b} (t-x) \left[g(t) - g(x) \right] df(t) ,$$

and, in particular, for $x = \frac{a+b}{2}$

$$(2.17) \quad 0 \le f(b) \int_{\frac{a+b}{2}}^{b} g(t) dt + f(a) \int_{a}^{\frac{a+b}{2}} g(t) dt - g\left(\frac{a+b}{2}\right) \left[\frac{f(b)+f(a)}{2} (b-a) - \int_{a}^{b} f(t) dt\right] - \int_{a}^{b} f(t) g(t) dt \le \int_{a}^{b} \left(t - \frac{a+b}{2}\right) \left[g(t) - g\left(\frac{a+b}{2}\right)\right] df(t) dt$$

The proof follows from Theorem 2 by taking $u\left(t\right):=\int_{a}^{t}g\left(s\right)ds$ which is convex on [a,b].

3. Inequalities for Riemann Integral

If we take $f(t) = t, t \in [a, b]$ in (2.1) we get for a convex function $u : [a, b] \to \mathbb{R}$ that

$$(3.1) \quad u'_{+}(x) \left[(b-x)b - \int_{x}^{b} t dt \right] + u'_{-}(x) \left[(x-a)a - \int_{a}^{x} t dt \right]$$

$$\leq [u(b) - u(x)]b + [u(x) - u(a)]a - \int_{a}^{b} t du(t)$$

$$\leq \int_{a}^{x} (t-x) \left[u'_{+}(t) - u'_{-}(x) \right] dt + \int_{x}^{b} (t-x) \left[u'_{-}(t) - u'_{+}(x) \right] dt$$

$$+ u'_{+}(x) \left[(b-x)b - \int_{x}^{b} t dt \right] + u'_{-}(x) \left[(x-a)a - \int_{a}^{x} t dt \right]$$

for $x \in (a, b)$.

Observe that

$$(b-x)b - \int_{x}^{b} t dt = (b-x)b - \frac{1}{2}(b^{2} - x^{2}) = \frac{1}{2}(b-x)^{2},$$
$$(x-a)a - \int_{a}^{x} t dt = (x-a)a - \frac{1}{2}(x^{2} - a^{2}) = -\frac{1}{2}(x-a)^{2}$$

 and

$$[u(b) - u(x)]b + [u(x) - u(a)]a - \int_{a}^{b} t du(t)$$

= $[u(b) - u(x)]b + [u(x) - u(a)]a - \left(bu(b) - au(a) - \int_{a}^{b} u(t) dt\right)$
= $\int_{a}^{b} u(t) dt - u(x)(b - a)$

for $x \in (a, b)$. Using (3.1) we get

$$(3.2) \quad \frac{1}{2} (b-x)^2 u'_+(x) - \frac{1}{2} (x-a)^2 u'_-(x) \le \int_a^b u(t) dt - u(x) (b-a) \\ \le \int_a^x (t-x) \left[u'_+(t) - u'_-(x) \right] dt + \int_x^b (t-x) \left[u'_-(t) - u'_+(x) \right] dt \\ + \frac{1}{2} (b-x)^2 u'_+(x) - \frac{1}{2} (x-a)^2 u'_-(x)$$

for $x \in (a, b)$.

Since u is convex, then the lateral derivatives $u'_+(\cdot)$ and $u'_-(\cdot)$ are monotonic nondecreasing and equal except in a countable number of points. Then

$$\int_{a}^{x} (t-x) \left[u'_{+}(t) - u'_{-}(x) \right] dt = \int_{a}^{x} (t-x) \left[u'_{-}(t) - u'_{-}(x) \right] dt$$
$$\leq \sup_{t \in (a,x)} \left[u'_{-}(x) - u'_{-}(t) \right] \frac{1}{2} (x-a)^{2} = \frac{1}{2} (x-a)^{2} \left[u'_{-}(x) - u'_{+}(a) \right]$$

and

$$\int_{x}^{b} (t-x) \left[u'_{-}(t) - u'_{+}(x) \right] dt = \int_{x}^{b} (t-x) \left[u'_{+}(t) - u'_{+}(x) \right] dt$$
$$\leq \sup_{t \in (x,b)} \left[u'_{+}(t) - u'_{+}(x) \right] \frac{1}{2} (b-x)^{2} = \frac{1}{2} (b-x)^{2} \left[u'_{-}(b) - u'_{+}(x) \right]$$

for $x \in (a, b)$.

Therefore

$$(3.3) \quad \int_{a}^{x} (t-x) \left[u'_{+}(t) - u'_{-}(x) \right] dt + \int_{x}^{b} (t-x) \left[u'_{-}(t) - u'_{+}(x) \right] dt \\ \qquad + \frac{1}{2} (b-x)^{2} u'_{+}(x) - \frac{1}{2} (x-a)^{2} u'_{-}(x) \\ \leq \frac{1}{2} (x-a)^{2} \left[u'_{-}(x) - u'_{+}(a) \right] + \frac{1}{2} (b-x)^{2} \left[u'_{-}(b) - u'_{+}(x) \right] \\ \qquad + \frac{1}{2} (b-x)^{2} u'_{+}(x) - \frac{1}{2} (x-a)^{2} u'_{-}(x) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) - \frac{1}{2} (x-a)^{2} u'_{+}(a) + \frac{1}{2} (x-a)^{2} u'_{-}(x) \\ - \frac{1}{2} (x-a)^{2} u'_{-}(x) + \frac{1}{2} (b-x)^{2} u'_{+}(x) - \frac{1}{2} (b-x)^{2} u'_{+}(x) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) - \frac{1}{2} (x-a)^{2} u'_{+}(a) + \frac{1}{2} (b-x)^{2} u'_{+}(a) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) - \frac{1}{2} (x-a)^{2} u'_{+}(a) + \frac{1}{2} (b-x)^{2} u'_{+}(b) - \frac{1}{2} (x-a)^{2} u'_{+}(a) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) - \frac{1}{2} (x-a)^{2} u'_{+}(a) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) - \frac{1}{2} (x-a)^{2} u'_{+}(a) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) - \frac{1}{2} (x-a)^{2} u'_{+}(a) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) - \frac{1}{2} (x-a)^{2} u'_{+}(a) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) - \frac{1}{2} (x-a)^{2} u'_{+}(a) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) - \frac{1}{2} (x-a)^{2} u'_{+}(a) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) - \frac{1}{2} (x-a)^{2} u'_{+}(a) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) - \frac{1}{2} (x-a)^{2} u'_{+}(a) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) - \frac{1}{2} (x-a)^{2} u'_{+}(a) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) - \frac{1}{2} (x-a)^{2} u'_{+}(b) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) - \frac{1}{2} (x-a)^{2} u'_{+}(b) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) - \frac{1}{2} (x-a)^{2} u'_{+}(b) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) + \frac{1}{2} (b-x)^{2} u'_{+}(b) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) + \frac{1}{2} (b-x)^{2} u'_{-}(b) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) + \frac{1}{2} (b-x)^{2} u'_{+}(b) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) + \frac{1}{2} (b-x)^{2} u'_{-}(b) \\ = \frac{1}{2} (b-x)^{2} u'_{-}(b) + \frac{1}{2} (b-x)^{2} u'_{-}(b) \\ = \frac{$$

for $x \in (a, b)$.

Therefore, by (3.2) and (3.3) we get

$$(3.4) \quad \frac{1}{2} (b-x)^{2} u'_{+} (x) - \frac{1}{2} (x-a)^{2} u'_{-} (x) \\ \leq \int_{a}^{b} u(t) dt - u(x) (b-a) \\ \leq \int_{a}^{x} (t-x) \left[u'_{+} (t) - u'_{-} (x) \right] dt + \int_{x}^{b} (t-x) \left[u'_{-} (t) - u'_{+} (x) \right] dt \\ + \frac{1}{2} (b-x)^{2} u'_{+} (x) - \frac{1}{2} (x-a)^{2} u'_{-} (x) \\ \leq \frac{1}{2} (b-x)^{2} u'_{-} (b) - \frac{1}{2} (x-a)^{2} u'_{+} (a)$$

for $x \in (a, b)$. If u is differentiable in $x \in (a, b)$, then from (3.4) we get

$$(3.5) \quad (b-a)\left(\frac{a+b}{2}-x\right)u'(x) \le \int_{a}^{b}u(t)\,dt - u(x)\,(b-a)$$
$$\le \int_{a}^{x}(t-x)\left[u'_{+}(t) - u'(x)\right]dt + \int_{x}^{b}(t-x)\left[u'_{-}(t) - u'(x)\right]dt$$
$$+ (b-a)\left(\frac{a+b}{2}-x\right)u'(x) \le \frac{1}{2}(b-x)^{2}u'_{-}(b) - \frac{1}{2}(x-a)^{2}u'_{+}(a)$$

for $x \in (a, b)$.

If in (3.4) we take $x = \frac{a+b}{2}$, then we get

$$(3.6) \quad 0 \leq \frac{1}{8} (b-a)^2 \left[u'_+ \left(\frac{a+b}{2} \right) - u'_- \left(\frac{a+b}{2} \right) \right] \\ \leq \int_a^b u(t) dt - u \left(\frac{a+b}{2} \right) (b-a) \\ \leq \int_a^{\frac{a+b}{2}} \left(t - \frac{a+b}{2} \right) \left[u'_+(t) - u'_- \left(\frac{a+b}{2} \right) \right] dt \\ + \int_{\frac{a+b}{2}}^b \left(t - \frac{a+b}{2} \right) \left[u'_-(t) - u'_+ \left(\frac{a+b}{2} \right) \right] dt \\ + \frac{1}{8} (b-a)^2 \left[u'_+ \left(\frac{a+b}{2} \right) - u'_- \left(\frac{a+b}{2} \right) \right] \leq \frac{1}{8} (b-a)^2 \left[u'_-(b) - u'_+(a) \right].$$

If u is differentiable in $\frac{a+b}{2}$, then we obtain from (3.6) that

$$(3.7) \quad 0 \le \int_{a}^{b} u(t) dt - u\left(\frac{a+b}{2}\right)(b-a) \\ \le \int_{a}^{\frac{a+b}{2}} \left(t - \frac{a+b}{2}\right) \left[u'_{+}(t) - u'\left(\frac{a+b}{2}\right)\right] dt \\ + \int_{\frac{a+b}{2}}^{b} \left(t - \frac{a+b}{2}\right) \left[u'_{-}(t) - u'\left(\frac{a+b}{2}\right)\right] dt \le \frac{1}{8} (b-a)^{2} \left[u'_{-}(b) - u'_{+}(a)\right].$$

If we take in (2.16) $g(t) = -\frac{1}{t}, t \in [a, b] \subset (0, \infty)$, then for monotonic nondecreasing functions $f: [a, b] \to \mathbb{R}$ we have

$$(3.8) \quad 0 \le \int_{a}^{b} \frac{f(t)}{t} dt + \frac{1}{x} \left[(b-x) f(b) + (x-a) f(a) - \int_{a}^{b} f(t) dt \right] - f(b) \ln\left(\frac{b}{x}\right) - f(a) \ln\left(\frac{x}{a}\right) \le \frac{1}{x} \int_{a}^{b} \frac{(t-x)^{2}}{t} df(t),$$

for $x \in (a, b)$, For $x = \frac{a+b}{2}$ we get

$$(3.9) \quad 0 \le \int_{a}^{b} \frac{f(t)}{t} dt + \frac{2}{a+b} \left[\frac{f(b) + f(a)}{2} (b-a) - \int_{a}^{b} f(t) dt \right] - f(b) \ln\left(\frac{2b}{a+b}\right) - f(a) \ln\left(\frac{a+b}{2a}\right) \le \frac{2}{a+b} \int_{a}^{b} \frac{\left(t - \frac{a+b}{2}\right)^{2}}{t} df(t),$$

while for $x = \sqrt{ab}$ we get

$$(3.10) \quad 0 \le \int_{a}^{b} \frac{f(t)}{t} dt + \frac{1}{\sqrt{ab}} \left[\left(b - \sqrt{ab} \right) f(b) + \left(\sqrt{ab} - a \right) f(a) - \int_{a}^{b} f(t) dt \right] \\ - \frac{f(b) + f(a)}{2} \ln \left(\frac{b}{a} \right) \le \frac{1}{\sqrt{ab}} \int_{a}^{b} \frac{\left(t - \sqrt{ab} \right)^{2}}{t} df(t),$$

10

References

- M. W. Alomari, New sharp Ostrowski-type inequalities and generalized trapezoid-type inequalities for Riemann-Stieltjes integrals and their applications. Ukrainian Math. J. 65 (2013), no. 7, 995–1018.
- [2] A. Asanov, M. Haluk Chelik and A. Chalish, Approximating the Stieltjes integral by using the generalized trapezoid rule. *Matematiche* (Catania) 66 (2011), no. 2, 13–21.
- [3] N. S. Barnett, W.-S. Cheung, S. S. Dragomir and A. Sofo, Ostrowski and trapezoid type inequalities for the Stieltjes integral with Lipschitzian integrands or integrators. *Comput. Math. Appl.* 57 (2009), no. 2, 195–201.
- [4] P. Cerone and S. S. Dragomir, Sharp error bounds in approximating the Riemann-Stieltjes integral by a generalised trapezoid formula and applications. J. Inequal. Appl. 2013, 2013:53, 11 pp.
- [5] S. S. Dragomir, Some inequalities of midpoint and trapezoid type for the Riemann-Stieltjes integral. Proceedings of the Third World Congress of Nonlinear Analysts, Part 4 (Catania, 2000). Nonlinear Anal. 47 (2001), no. 4, 2333–2340.
- [6] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3 (2002), no. 3, Article 35, 8 pp.
- [7] S. S. Dragomir, Approximating the Riemann-Stieltjes integral in terms of generalised trapezoidal rules. Nonlinear Anal. 71 (2009), no. 12, e62–e72.
- [8] S. S. Dragomir, Approximating the Riemann-Stieltjes integral by a trapezoidal quadrature rule with applications. *Math. Comput. Modelling* 54 (2011), no. 1-2, 243–260.
- [9] S. S. Dragomir, Trapezoidal type inequalities for Riemann-Stieltjes integral via Čebyšev functional with applications. Nihonkai Math. J. 26 (2015), no. 1, 47–69.
- [10] S. S. Dragomir, C. Buşe, M. V Boldea and L. Braescu, A generalization of the trapezoidal rule for the Riemann-Stieltjes integral and applications. *Nonlinear Anal. Forum* 6 (2001), no. 2, 337–351.
- [11] S. S. Dragomir, Y. J. Cho, Y. H. Kim, On the trapezoid inequality for the Riemann-Stieltjes integral with Hölder continuous integrands and bounded variation integrators. *Inequality* theory and applications. Vol. 5, 71–79, Nova Sci. Publ., New York, 2007.
- [12] S. S. Dragomir and I. Fedotov, Approximating the Stieltjes integral via a weighted trapezoidal rule with applications. *Math. Comput. Modelling* 57 (2013), no. 3-4, 602–611.
- [13] P. R. Mercer, Hadamard's inequality and trapezoid rules for the Riemann-Stieltjes integral. J. Math. Anal. Appl. 344 (2008), no. 2, 921–926.
- [14] W. Zhao and Z. Zhang, Derivative-based trapezoid rule for the Riemann-Stieltjes integral. Math. Probl. Eng. 2014, Art. ID 874651, 6 pp.
- [15] W. Zhao, Z. Zhang and Z. Ye, Midpoint derivative-based trapezoid rule for the Riemann-Stieltjes integral. *Ital. J. Pure Appl. Math.* No. **33** (2014), 369–376.
- [16] W. Zhao, Z. Zhang and Z. Ye, Composite trapezoid rule for the Riemann-Stieltjes integral and its Richardson extrapolation formula. Ital. J. Pure Appl. Math. No. 35 (2015), 311–318

MATHEMATICS, SCHOOL OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO BOX 14428, MELBOURNE CITY, MC 8001, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir/

DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE AND APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, PRI-VATE BAG-3, WITS-2050, JOHANNESBURG, SOUTH AFRICA