NEW TRAPEZOID TYPE RIEMANN-STIELTJES INTEGRAL INEQUALITIES FOR MONOTONIC INTEGRANDS AND CONVEX INTEGRATORS

SILVESTRU SEVER DRAGOMIR

Abstract

In this paper we obtain some inequalities for the trapezoid difference $$
[u(x)-u(a)] f(a)+[u(b)-u(x)] f(b)-\int_{a}^{b} f(t) d u(t)
$$ where f is a monotonic nondecreasing function on $[a, b], u$ is continuous convex on $[a, b]$ and $x \in(a, b)$. Some particular inequalities for the Riemann integral are also given.

1. Introduction

We start with the following result concerning two inequalities of trapezoid type for convex functions obtained in [6]:

Theorem 1. Let $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ be a convex function on $[a, b]$. Then for any $x \in[a, b]$ one has the inequality

$$
\begin{align*}
& \frac{1}{2}\left[(b-x)^{2} f_{+}^{\prime}(x)-(x-a)^{2} f_{-}^{\prime}(x)\right] \tag{1.1}\\
& \leq(x-a) f(a)+(b-x) f(b)-\int_{a}^{b} f(t) d t \\
& \quad \leq \frac{1}{2}\left[(b-x)^{2} f_{-}^{\prime}(b)-(x-a)^{2} f_{+}^{\prime}(a)\right] .
\end{align*}
$$

The constant $\frac{1}{2}$ is sharp in both inequalities.
The second inequality also holds for $x=a$ or $x=b$.
We have a simpler first inequality in the case of differentiability:
Corollary 1. With the assumptions of Lemma 1 and if $x \in(a, b)$ is a point of differentiability for f, then

$$
\begin{equation*}
\left(\frac{a+b}{2}-x\right)(b-a) f^{\prime}(x) \leq(x-a) f(a)+(b-x) f(b)-\int_{a}^{b} f(t) d t \tag{1.2}
\end{equation*}
$$

Now, recall that the following inequality, which is well known in the literature as the Hermite-Hadamard inequality for convex functions, holds

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right)(b-a) \leq \int_{a}^{b} f(t) d t \leq \frac{f(a)+f(b)}{2}(b-a) \tag{1.3}
\end{equation*}
$$

1991 Mathematics Subject Classification. 26D15, 41A55.
Key words and phrases. Riemann-Stieltjes integral, Trapezoid inequality.

The following corollary provides some sharp bounds for the trapezoid difference

$$
\frac{f(a)+f(b)}{2}(b-a)-\int_{a}^{b} f(t) d t
$$

Corollary 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function on $[a, b]$. Then we have the inequality

$$
\begin{align*}
& 0 \leq \frac{1}{8}\left[f_{+}^{\prime}\left(\frac{a+b}{2}\right)-f_{-}^{\prime}\left(\frac{a+b}{2}\right)\right](b-a)^{2} \tag{1.4}\\
& \leq \frac{f(a)+f(b)}{2}(b-a)-\int_{a}^{b} f(t) d t \\
& \\
& \quad \leq \frac{1}{8}\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right](b-a)^{2}
\end{align*}
$$

The constant $\frac{1}{8}$ is sharp in both inequalities.
For various trapezoid type inequalities involving Riemann-Stieltjes integral, see [1]-[12] and [8]-[16].

Motivated by the above results, in this paper we obtain some inequalities for the Riemann-Stieltjes integral trapezoid difference

$$
[u(x)-u(a)] f(a)+[u(b)-u(x)] f(b)-\int_{a}^{b} f(t) d u(t)
$$

where f is a convex function on $[a, b], u$ is monotonic nondecreasing and $x \in(a, b)$. In the case of Riemann integral, namely for $u(t)=t$, some particular inequalities are also given.

2. Main Results

We have the following main result:
Theorem 2. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is monotonic nondecreasing and u : $[a, b] \rightarrow \mathbb{R}$ is continuous convex on $[a, b]$. Then for $x \in(a, b)$ we have the inequalities

$$
\begin{align*}
& u_{+}^{\prime}(x)\left[(b-x) f(b)-\int_{x}^{b} f(t) d t\right]+u_{-}^{\prime}(x)\left[(x-a) f(a)-\int_{a}^{x} f(t) d t\right] \tag{2.1}\\
& \leq[u(b)-u(x)] f(b)+[u(x)-u(a)] f(a)-\int_{a}^{b} f(t) d u(t) \\
& \leq \int_{a}^{x}(t-x)\left[u_{+}^{\prime}(t)-u_{-}^{\prime}(x)\right] d f(t)+\int_{x}^{b}(t-x)\left[u_{-}^{\prime}(t)-u_{+}^{\prime}(x)\right] d f(t) \\
& +u_{+}^{\prime}(x)\left[(b-x) f(b)-\int_{x}^{b} f(t) d t\right]+u_{-}^{\prime}(x)\left[(x-a) f(a)-\int_{a}^{x} f(t) d t\right]
\end{align*}
$$

provided the Riemann-Stieltjes integrals $\int_{a}^{x} u_{+}^{\prime}(t)(t-x) d f(t)$ and $\int_{x}^{b} u_{-}^{\prime}(t)(t-x) d f(t)$ exist.

This is equivalent to

$$
\begin{align*}
& 0 \leq[u(b)-u(x)] f(b)+[u(x)-u(a)] f(a) \tag{2.2}\\
& -u_{+}^{\prime}(x)\left[(b-x) f(b)-\int_{x}^{b} f(t) d t\right]-u_{-}^{\prime}(x)\left[(x-a) f(a)-\int_{a}^{x} f(t) d t\right] \\
& -\int_{a}^{b} f(t) d u(t) \\
& \leq \int_{a}^{x}(t-x)\left[u_{+}^{\prime}(t)-u_{-}(x)\right] d f(t)+\int_{x}^{b}(t-x)\left[u_{-}^{\prime}(t)-u_{+}^{\prime}(x)\right] d f(t)
\end{align*}
$$

for $x \in(a, b)$.
Proof. Using the integration by parts rule for the Riemann-Stieltjes integral, we have

$$
\begin{align*}
& \int_{a}^{b}[u(t)-u(x)] d f(t) \tag{2.3}\\
& \quad=[u(b)-u(x)] f(b)+[u(x)-u(a)] f(a)-\int_{a}^{b} f(t) d u(t)
\end{align*}
$$

for all $x \in[a, b]$.
We also have

$$
\begin{equation*}
\int_{a}^{b}[u(t)-u(x)] d f(t)=\int_{a}^{x}[u(t)-u(x)] d f(t)+\int_{x}^{b}[u(t)-u(x)] d f(t) \tag{2.4}
\end{equation*}
$$

for all $x \in(a, b)$.
Using the gradient inequality for the convex function u we have

$$
u(x)-u(t) \leq(x-t) u_{-}^{\prime}(x) \text { for } t \in[a, x]
$$

and

$$
u(t)-u(x) \geq(t-x) u_{+}^{\prime}(x) \text { for } t \in[x, b]
$$

Since f is monotonic nondecreasing and by using integration by parts we get

$$
\begin{align*}
\int_{x}^{b}[u(t)-u(x)] d f(t) & \geq u_{+}^{\prime}(x) \int_{x}^{b}(t-x) d f(t) \tag{2.5}\\
& =u_{+}^{\prime}(x)\left[(b-x) f(b)-\int_{x}^{b} f(t) d t\right]
\end{align*}
$$

and

$$
\begin{aligned}
\int_{a}^{x}[u(x)-u(t)] d f(t) & \leq u_{-}^{\prime}(x) \int_{a}^{x}(x-t) d f(t) \\
& =u_{-}^{\prime}(x)\left[\int_{a}^{x} f(t) d t-(x-a) f(a)\right]
\end{aligned}
$$

which is equivalent to

$$
\begin{equation*}
\int_{a}^{x}[u(x)-u(t)] d f(t) \geq u_{-}^{\prime}(x)\left[(x-a) f(a)-\int_{a}^{x} f(t) d t\right] \tag{2.6}
\end{equation*}
$$

for all $x \in(a, b)$.

If we add (2.5) and (2.6), then we get

$$
\begin{aligned}
& \int_{a}^{x}[u(t)-u(x)] d f(t)+\int_{x}^{b}[u(t)-u(x)] d f(t) \\
& \quad \geq u_{+}^{\prime}(x)\left[(b-x) f(b)-\int_{x}^{b} f(t) d t\right]+u_{-}^{\prime}(x)\left[(x-a) f(a)-\int_{a}^{x} f(t) d t\right],
\end{aligned}
$$

which together with (2.3) and (2.4) provide the first inequality in (2.1).
Using the gradient inequality we also have

$$
u(x)-u(t) \geq(x-t) u_{+}^{\prime}(t) \text { for } t \in[a, x]
$$

and

$$
u(t)-u(x) \leq(t-x) u_{-}^{\prime}(t) \text { for } t \in[x, b]
$$

Since f is monotonic nondecreasing and by using integration by parts we get

$$
\begin{equation*}
\int_{a}^{x}[u(x)-u(t)] d f(t) \geq \int_{a}^{x}(x-t) u_{+}^{\prime}(t) d f(t) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{align*}
& \int_{x}^{b}[u(t)-u(x)] d f(t) \leq \int_{x}^{b}(t-x) u_{-}^{\prime}(t) d f(t) \tag{2.8}\\
& =\int_{x}^{b}(t-x)\left[u_{-}^{\prime}(t)-u_{+}^{\prime}(x)\right] d f(t)+u_{+}^{\prime}(x) \int_{x}^{b}(t-x) d f(t) \\
& =\int_{x}^{b}(t-x)\left[u_{-}^{\prime}(t)-u_{+}^{\prime}(x)\right] d f(t) \\
& +u_{+}^{\prime}(x)\left[(b-x) f(b)-\int_{x}^{b} f(t) d t\right] .
\end{align*}
$$

From (2.7) we get

$$
\begin{align*}
\int_{a}^{x} & {[u(t)-u(x)] d f(t) \leq \int_{a}^{x}(t-x) u_{+}^{\prime}(t) d f(t) } \tag{2.9}\\
=\int_{a}^{x}(t-x) & {\left[u_{+}^{\prime}(t)-u_{-}(x)\right] d f(t)+u_{-}^{\prime}(x) \int_{a}^{x}(t-x) d f(t) } \\
& =\int_{a}^{x}(t-x)\left[u_{+}^{\prime}(t)-u_{-}^{\prime}(x)\right] d f(t) \\
& +u_{-}(x)\left[(x-a) f(a)-\int_{a}^{x} f(t) d t\right]
\end{align*}
$$

If we add (2.8) and (2.9) we get

$$
\begin{aligned}
& \int_{x}^{b} {[u(t)-u(x)] d f(t)+\int_{a}^{x}[u(t)-u(x)] d f(t) } \\
& \quad \leq \int_{x}^{b}(t-x)\left[u_{-}^{\prime}(t)-u_{+}^{\prime}(x)\right] d f(t)+u_{+}^{\prime}(x)\left[(b-x) f(b)-\int_{x}^{b} f(t) d t\right] \\
&+\int_{a}^{x}(t-x)\left[u_{+}^{\prime}(t)-u_{-}^{\prime}(x)\right] d f(t)+u_{-}^{\prime}(x)\left[(x-a) f(a)-\int_{a}^{x} f(t) d t\right],
\end{aligned}
$$

which together with (2.3) and (2.4) give the second inequality in (2.1).

Corollary 3. With the assumptions of Theorem 2 and if u is differentiable in x, then from (2.1) we get

$$
\begin{align*}
& u^{\prime}(x)\left[(b-x) f(b)+(x-a) f(a)-\int_{a}^{b} f(t) d t\right] \tag{2.10}\\
& \leq[u(b)-u(x)] f(b)+[u(x)-u(a)] f(a)-\int_{a}^{b} f(t) d u(t) \\
& \leq \int_{a}^{x}(t-x)\left[u_{+}^{\prime}(t)-u^{\prime}(x)\right] d f(t)+\int_{x}^{b}(t-x)\left[u_{-}^{\prime}(t)-u^{\prime}(x)\right] d f(t) \\
& +u^{\prime}(x)\left[(b-x) f(b)+(x-a) f(a)-\int_{a}^{b} f(t) d t\right]
\end{align*}
$$

and, equivalently,

$$
\begin{align*}
0 & \leq[u(b)-u(x)] f(b)+[u(x)-u(a)] f(a) \tag{2.11}\\
- & u^{\prime}(x)\left[(b-x) f(b)+(x-a) f(a)-\int_{a}^{b} f(t) d t\right]-\int_{a}^{b} f(t) d u(t) \\
& \leq \int_{a}^{x}(t-x)\left[u_{+}^{\prime}(t)-u^{\prime}(x)\right] d f(t)+\int_{x}^{b}(t-x)\left[u_{-}^{\prime}(t)-u^{\prime}(x)\right] d f(t),
\end{align*}
$$

Remark 1. If we take $x=\frac{a+b}{2}$, in (2.1) and (2.2) we get

$$
\begin{align*}
& u_{+}^{\prime}\left(\frac{a+b}{2}\right) {\left[\frac{1}{2}(b-a) f(b)-\int_{\frac{a+b}{2}}^{b} f(t) d t\right] } \tag{2.12}\\
&+u_{-}^{\prime}\left(\frac{a+b}{2}\right)\left[\frac{1}{2}(b-a) f(a)-\int_{a}^{\frac{a+b}{2}} f(t) d t\right] \\
& \leq\left[u(b)-u\left(\frac{a+b}{2}\right)\right] f(b)+\left[u\left(\frac{a+b}{2}\right)-u(a)\right] f(a)-\int_{a}^{b} f(t) d u(t) \\
& \leq \int_{a}^{\frac{a+b}{2}}\left(t-\frac{a+b}{2}\right)\left[u_{+}^{\prime}(t)-u_{-}^{\prime}\left(\frac{a+b}{2}\right)\right] d f(t) \\
&+ \int_{\frac{a+b}{2}}^{b}\left(t-\frac{a+b}{2}\right)\left[u_{-}^{\prime}(t)-u_{+}^{\prime}\left(\frac{a+b}{2}\right)\right] d f(t) \\
&+u_{+}^{\prime}\left(\frac{a+b}{2}\right)\left[\frac{1}{2}(b-a) f(b)-\int_{\frac{a+b}{2}}^{b} f(t) d t\right] \\
&+u_{-}^{\prime}\left(\frac{a+b}{2}\right)\left[\frac{1}{2}(b-a) f(a)-\int_{a}^{\frac{a+b}{2}} f(t) d t\right]
\end{align*}
$$

provided the Riemann-Stieltjes integrals $\int_{a}^{\frac{a+b}{2}} u_{+}^{\prime}(t)\left(t-\frac{a+b}{2}\right) d f(t)$ and $\int_{\frac{a+b}{2}}^{b} u_{-}^{\prime}(t)\left(t-\frac{a+b}{2}\right) d f(t)$ exist.

This is equivalent to

$$
\begin{align*}
& 0 \leq\left[u(b)-u\left(\frac{a+b}{2}\right)\right] f(b)+\left[u\left(\frac{a+b}{2}\right)-u(a)\right] f(a) \tag{2.13}\\
&-u_{+}^{\prime}\left(\frac{a+b}{2}\right) {\left[\frac{1}{2}(b-a) f(b)-\int_{\frac{a+b}{2}}^{b} f(t) d t\right] } \\
&-u_{-}^{\prime}\left(\frac{a+b}{2}\right) {\left[\frac{1}{2}(b-a) f(a)-\int_{a}^{\frac{a+b}{2}} f(t) d t\right] } \\
&-\int_{a}^{b} f(t) d u(t) \\
& \leq \int_{a}^{\frac{a+b}{2}}\left(t-\frac{a+b}{2}\right)\left[u_{+}^{\prime}(t)-u_{-}^{\prime}\left(\frac{a+b}{2}\right)\right] d f(t) \\
&+\int_{\frac{a+b}{b}}^{b}\left(t-\frac{a+b}{2}\right)\left[u_{-}^{\prime}(t)-u_{+}^{\prime}\left(\frac{a+b}{2}\right)\right] d f(t)
\end{align*}
$$

If u is differentiable in $\frac{a+b}{2}$, then by (2.10) we get

$$
\begin{align*}
& \text { 4) } \begin{aligned}
u^{\prime}\left(\frac{a+b}{2}\right) & {\left[\frac{f(b)+f(a)}{2}(b-a)-\int_{a}^{b} f(t) d t\right] } \\
\leq & {\left[u(b)-u\left(\frac{a+b}{2}\right)\right] f(b)+\left[u\left(\frac{a+b}{2}\right)-u(a)\right] f(a)-\int_{a}^{b} f(t) d u(t) } \\
\leq & \int_{a}^{\frac{a+b}{2}}\left(t-\frac{a+b}{2}\right)\left[u_{+}^{\prime}(t)-u^{\prime}\left(\frac{a+b}{2}\right)\right] d f(t) \\
& +\int_{\frac{a+b}{2}}^{b}\left(t-\frac{a+b}{2}\right)\left[u_{-}^{\prime}(t)-u^{\prime}\left(\frac{a+b}{2}\right)\right] d f(t) \\
& +u^{\prime}\left(\frac{a+b}{2}\right)\left[\frac{f(b)+f(a)}{2}(b-a)-\int_{a}^{b} f(t) d t\right]
\end{aligned} \tag{2.14}
\end{align*}
$$

and, equivalently

$$
\begin{align*}
& 0 \leq\left[u(b)-u\left(\frac{a+b}{2}\right)\right] f(b)+\left[u\left(\frac{a+b}{2}\right)-u(a)\right] f(a) \tag{2.15}\\
& -u^{\prime}\left(\frac{a+b}{2}\right)\left[\frac{f(b)+f(a)}{2}(b-a)-\int_{a}^{b} f(t) d t\right]-\int_{a}^{b} f(t) d u(t) \\
& \leq \int_{a}^{\frac{a+b}{2}}\left(t-\frac{a+b}{2}\right)\left[u_{+}^{\prime}(t)-u^{\prime}\left(\frac{a+b}{2}\right)\right] d f(t) \\
& \quad+\int_{\frac{a+b}{2}}^{b}\left(t-\frac{a+b}{2}\right)\left[u_{-}^{\prime}(t)-u^{\prime}\left(\frac{a+b}{2}\right)\right] d f(t)
\end{align*}
$$

Corollary 4. Assume that $g:[a, b] \rightarrow \mathbb{R}$ is continuous and nondecreasing on $[a, b]$ and $f:[a, b] \rightarrow \mathbb{R}$ is monotonic nondecreasing, then for $x \in(a, b)$,

$$
\begin{align*}
& 0 \leq f(b) \int_{x}^{b} g(t) d t+f(a) \int_{a}^{x} g(t) d t \tag{2.16}\\
& -g(x)\left[(b-x) f(b)+(x-a) f(a)-\int_{a}^{b} f(t) d t\right]-\int_{a}^{b} f(t) g(t) d t \\
& \\
&
\end{align*}
$$

and, in particular, for $x=\frac{a+b}{2}$

$$
\begin{align*}
& 0 \leq f(b) \int_{\frac{a+b}{2}}^{b} g(t) d t+f(a) \int_{a}^{\frac{a+b}{2}} g(t) d t \tag{2.17}\\
& -g\left(\frac{a+b}{2}\right)\left[\frac{f(b)+f(a)}{2}(b-a)-\int_{a}^{b} f(t) d t\right]-\int_{a}^{b} f(t) g(t) d t \\
& \quad \leq \int_{a}^{b}\left(t-\frac{a+b}{2}\right)\left[g(t)-g\left(\frac{a+b}{2}\right)\right] d f(t)
\end{align*}
$$

The proof follows from Theorem 2 by taking $u(t):=\int_{a}^{t} g(s) d s$ which is convex on $[a, b]$.

3. Inequalities for Riemann Integral

If we take $f(t)=t, t \in[a, b]$ in (2.1) we get for a convex function $u:[a, b] \rightarrow \mathbb{R}$ that

$$
\begin{align*}
& u_{+}^{\prime}(x)\left[(b-x) b-\int_{x}^{b} t d t\right]+u_{-}^{\prime}(x)\left[(x-a) a-\int_{a}^{x} t d t\right] \tag{3.1}\\
& \leq[u(b)-u(x)] b+[u(x)-u(a)] a-\int_{a}^{b} t d u(t) \\
& \leq \int_{a}^{x}(t-x)\left[u_{+}^{\prime}(t)-u_{-}^{\prime}(x)\right] d t+\int_{x}^{b}(t-x)\left[u_{-}^{\prime}(t)-u_{+}^{\prime}(x)\right] d t \\
& \quad+u_{+}^{\prime}(x)\left[(b-x) b-\int_{x}^{b} t d t\right]+u_{-}^{\prime}(x)\left[(x-a) a-\int_{a}^{x} t d t\right]
\end{align*}
$$

for $x \in(a, b)$.
Observe that

$$
\begin{gathered}
(b-x) b-\int_{x}^{b} t d t=(b-x) b-\frac{1}{2}\left(b^{2}-x^{2}\right)=\frac{1}{2}(b-x)^{2} \\
(x-a) a-\int_{a}^{x} t d t=(x-a) a-\frac{1}{2}\left(x^{2}-a^{2}\right)=-\frac{1}{2}(x-a)^{2}
\end{gathered}
$$

and

$$
\begin{aligned}
& {[u(b)-u(x)] b+[u(x)-u(a)] a-\int_{a}^{b} t d u(t)} \\
& =[u(b)-u(x)] b+[u(x)-u(a)] a-\left(b u(b)-a u(a)-\int_{a}^{b} u(t) d t\right) \\
& =\int_{a}^{b} u(t) d t-u(x)(b-a)
\end{aligned}
$$

for $x \in(a, b)$.
Using (3.1) we get

$$
\begin{align*}
& \frac{1}{2}(b-x)^{2} u_{+}^{\prime}(x)-\frac{1}{2}(x-a)^{2} u_{-}^{\prime}(x) \leq \int_{a}^{b} u(t) d t-u(x)(b-a) \tag{3.2}\\
& \leq \int_{a}^{x}(t-x)\left[u_{+}^{\prime}(t)-u_{-}^{\prime}(x)\right] d t+\int_{x}^{b}(t-x)\left[u_{-}^{\prime}(t)-u_{+}^{\prime}(x)\right] d t \\
&+\frac{1}{2}(b-x)^{2} u_{+}^{\prime}(x)-\frac{1}{2}(x-a)^{2} u_{-}^{\prime}(x)
\end{align*}
$$

for $x \in(a, b)$.
Since u is convex, then the lateral derivatives $u_{+}^{\prime}(\cdot)$ and $u_{-}^{\prime}(\cdot)$ are monotonic nondecreasing and equal except in a countable number of points. Then

$$
\begin{aligned}
\int_{a}^{x}(t-x) & {\left[u_{+}^{\prime}(t)-u_{-}^{\prime}(x)\right] d t=\int_{a}^{x}(t-x)\left[u_{-}^{\prime}(t)-u_{-}^{\prime}(x)\right] d t } \\
& \leq \sup _{t \in(a, x)}\left[u_{-}^{\prime}(x)-u_{-}^{\prime}(t)\right] \frac{1}{2}(x-a)^{2}=\frac{1}{2}(x-a)^{2}\left[u_{-}^{\prime}(x)-u_{+}^{\prime}(a)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{x}^{b}(t-x) & {\left[u_{-}^{\prime}(t)-u_{+}^{\prime}(x)\right] d t=\int_{x}^{b}(t-x)\left[u_{+}^{\prime}(t)-u_{+}^{\prime}(x)\right] d t } \\
& \leq \sup _{t \in(x, b)}\left[u_{+}^{\prime}(t)-u_{+}^{\prime}(x)\right] \frac{1}{2}(b-x)^{2}=\frac{1}{2}(b-x)^{2}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(x)\right]
\end{aligned}
$$

for $x \in(a, b)$.

Therefore

$$
\begin{align*}
& \int_{a}^{x}(t-x)\left[u_{+}^{\prime}(t)-u_{-}^{\prime}(x)\right] d t+\int_{x}^{b}(t-x)\left[u_{-}^{\prime}(t)-u_{+}^{\prime}(x)\right] d t \tag{3.3}\\
& \\
& \quad+\frac{1}{2}(b-x)^{2} u_{+}^{\prime}(x)-\frac{1}{2}(x-a)^{2} u_{-}^{\prime}(x) \\
& \leq
\end{align*} \begin{array}{r}
\frac{1}{2}(x-a)^{2}\left[u_{-}^{\prime}(x)-u_{+}^{\prime}(a)\right]+\frac{1}{2}(b-x)^{2}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(x)\right] \\
\quad+\frac{1}{2}(b-x)^{2} u_{+}^{\prime}(x)-\frac{1}{2}(x-a)^{2} u_{-}^{\prime}(x)
\end{array} \quad \begin{array}{r}
=\frac{1}{2}(b-x)^{2} u_{-}^{\prime}(b)-\frac{1}{2}(x-a)^{2} u_{+}^{\prime}(a)+\frac{1}{2}(x-a)^{2} u_{-}^{\prime}(x) \\
-\frac{1}{2}(x-a)^{2} u_{-}^{\prime}(x)+\frac{1}{2}(b-x)^{2} u_{+}^{\prime}(x)-\frac{1}{2}(b-x)^{2} u_{+}^{\prime}(x) \\
\quad=\frac{1}{2}(b-x)^{2} u_{-}^{\prime}(b)-\frac{1}{2}(x-a)^{2} u_{+}^{\prime}(a)
\end{array}
$$

for $x \in(a, b)$.
Therefore, by (3.2) and (3.3) we get

$$
\begin{align*}
& \frac{1}{2}(b-x)^{2} u_{+}^{\prime}(x)-\frac{1}{2}(x-a)^{2} u_{-}^{\prime}(x) \tag{3.4}\\
& \leq \int_{a}^{b} u(t) d t-u(x)(b-a) \\
& \leq \int_{a}^{x}(t-x)\left[u_{+}^{\prime}(t)-u_{-}^{\prime}(x)\right] d t+\int_{x}^{b}(t-x)\left[u_{-}^{\prime}(t)-u_{+}^{\prime}(x)\right] d t \\
& +\frac{1}{2}(b-x)^{2} u_{+}^{\prime}(x)-\frac{1}{2}(x-a)^{2} u_{-}^{\prime}(x) \\
& \leq \frac{1}{2}(b-x)^{2} u_{-}^{\prime}(b)-\frac{1}{2}(x-a)^{2} u_{+}^{\prime}(a)
\end{align*}
$$

for $x \in(a, b)$.
If u is differentiable in $x \in(a, b)$, then from (3.4) we get

$$
\begin{align*}
(b-a) & \left(\frac{a+b}{2}-x\right) u^{\prime}(x) \leq \int_{a}^{b} u(t) d t-u(x)(b-a) \tag{3.5}\\
\leq & \int_{a}^{x}(t-x)\left[u_{+}^{\prime}(t)-u^{\prime}(x)\right] d t+\int_{x}^{b}(t-x)\left[u_{-}^{\prime}(t)-u^{\prime}(x)\right] d t \\
& +(b-a)\left(\frac{a+b}{2}-x\right) u^{\prime}(x) \leq \frac{1}{2}(b-x)^{2} u_{-}^{\prime}(b)-\frac{1}{2}(x-a)^{2} u_{+}^{\prime}(a)
\end{align*}
$$

for $x \in(a, b)$.

If in (3.4) we take $x=\frac{a+b}{2}$, then we get

$$
\begin{align*}
& 0 \leq \frac{1}{8}(b-a)^{2}\left[u_{+}^{\prime}\left(\frac{a+b}{2}\right)-u_{-}^{\prime}\left(\frac{a+b}{2}\right)\right] \tag{3.6}\\
& \quad \leq \int_{a}^{b} u(t) d t-u\left(\frac{a+b}{2}\right)(b-a) \\
& \quad \leq \int_{a}^{\frac{a+b}{2}}\left(t-\frac{a+b}{2}\right)\left[u_{+}^{\prime}(t)-u_{-}^{\prime}\left(\frac{a+b}{2}\right)\right] d t \\
& \quad+\int_{\frac{a+b}{2}}^{b}\left(t-\frac{a+b}{2}\right)\left[u_{-}^{\prime}(t)-u_{+}^{\prime}\left(\frac{a+b}{2}\right)\right] d t \\
& +\frac{1}{8}(b-a)^{2}\left[u_{+}^{\prime}\left(\frac{a+b}{2}\right)-u_{-}^{\prime}\left(\frac{a+b}{2}\right)\right] \leq \frac{1}{8}(b-a)^{2}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right]
\end{align*}
$$

If u is differentiable in $\frac{a+b}{2}$, then we obtain from (3.6) that

$$
\begin{gather*}
0 \leq \int_{a}^{b} u(t) d t-u\left(\frac{a+b}{2}\right)(b-a) \tag{3.7}\\
\leq \int_{a}^{\frac{a+b}{2}}\left(t-\frac{a+b}{2}\right)\left[u_{+}^{\prime}(t)-u^{\prime}\left(\frac{a+b}{2}\right)\right] d t \\
+\int_{\frac{a+b}{2}}^{b}\left(t-\frac{a+b}{2}\right)\left[u_{-}^{\prime}(t)-u^{\prime}\left(\frac{a+b}{2}\right)\right] d t \leq \frac{1}{8}(b-a)^{2}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right] .
\end{gather*}
$$

If we take in (2.16) $g(t)=-\frac{1}{t}, t \in[a, b] \subset(0, \infty)$, then for monotonic nondecreasing functions $f:[a, b] \rightarrow \mathbb{R}$ we have

$$
\begin{align*}
0 \leq \int_{a}^{b} \frac{f(t)}{t} d t+\frac{1}{x} & {\left[(b-x) f(b)+(x-a) f(a)-\int_{a}^{b} f(t) d t\right] } \tag{3.8}\\
& -f(b) \ln \left(\frac{b}{x}\right)-f(a) \ln \left(\frac{x}{a}\right) \leq \frac{1}{x} \int_{a}^{b} \frac{(t-x)^{2}}{t} d f(t)
\end{align*}
$$

for $x \in(a, b)$,
For $x=\frac{a+b}{2}$ we get

$$
\begin{align*}
0 \leq & \int_{a}^{b} \frac{f(t)}{t} d t+\frac{2}{a+b}\left[\frac{f(b)+f(a)}{2}(b-a)-\int_{a}^{b} f(t) d t\right] \tag{3.9}\\
& -f(b) \ln \left(\frac{2 b}{a+b}\right)-f(a) \ln \left(\frac{a+b}{2 a}\right) \leq \frac{2}{a+b} \int_{a}^{b} \frac{\left(t-\frac{a+b}{2}\right)^{2}}{t} d f(t)
\end{align*}
$$

while for $x=\sqrt{a b}$ we get

$$
\begin{array}{r}
0 \leq \int_{a}^{b} \frac{f(t)}{t} d t+\frac{1}{\sqrt{a b}}\left[(b-\sqrt{a b}) f(b)+(\sqrt{a b}-a) f(a)-\int_{a}^{b} f(t) d t\right] \tag{3.10}\\
-\frac{f(b)+f(a)}{2} \ln \left(\frac{b}{a}\right) \leq \frac{1}{\sqrt{a b}} \int_{a}^{b} \frac{(t-\sqrt{a b})^{2}}{t} d f(t)
\end{array}
$$

References

[1] M. W. Alomari, New sharp Ostrowski-type inequalities and generalized trapezoid-type inequalities for Riemann-Stieltjes integrals and their applications. Ukrainian Math. J. 65 (2013), no. 7, 995-1018.
[2] A. Asanov, M. Haluk Chelik and A. Chalish, Approximating the Stieltjes integral by using the generalized trapezoid rule. Matematiche (Catania) 66 (2011), no. 2, 13-21.
[3] N. S. Barnett, W.-S. Cheung, S. S. Dragomir and A. Sofo, Ostrowski and trapezoid type inequalities for the Stieltjes integral with Lipschitzian integrands or integrators. Comput. Math. Appl. 57 (2009), no. 2, 195-201.
[4] P. Cerone and S. S. Dragomir, Sharp error bounds in approximating the Riemann-Stieltjes integral by a generalised trapezoid formula and applications. J. Inequal. Appl. 2013, 2013:53, 11 pp .
[5] S. S. Dragomir, Some inequalities of midpoint and trapezoid type for the Riemann-Stieltjes integral. Proceedings of the Third World Congress of Nonlinear Analysts, Part 4 (Catania, 2000). Nonlinear Anal. 47 (2001), no. 4, 2333-2340.
[6] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3 (2002), no. 3, Article 35, 8 pp.
[7] S. S. Dragomir, Approximating the Riemann-Stieltjes integral in terms of generalised trapezoidal rules. Nonlinear Anal. 71 (2009), no. 12, e62-e72.
[8] S. S. Dragomir, Approximating the Riemann-Stieltjes integral by a trapezoidal quadrature rule with applications. Math. Comput. Modelling 54 (2011), no. 1-2, 243-260.
[9] S. S. Dragomir, Trapezoidal type inequalities for Riemann-Stieltjes integral via Čebyšev functional with applications. Nihonkai Math. J. 26 (2015), no. 1, 47-69.
[10] S. S. Dragomir, C. Buşe, M. V Boldea and L. Braescu,A generalization of the trapezoidal rule for the Riemann-Stieltjes integral and applications. Nonlinear Anal. Forum 6 (2001), no. 2, 337-351.
[11] S. S. Dragomir, Y. J. Cho, Y. H. Kim, On the trapezoid inequality for the Riemann-Stieltjes integral with Hölder continuous integrands and bounded variation integrators. Inequality theory and applications. Vol. 5, 71-79, Nova Sci. Publ., New York, 2007.
[12] S. S. Dragomir and I. Fedotov, Approximating the Stieltjes integral via a weighted trapezoidal rule with applications. Math. Comput. Modelling 57 (2013), no. 3-4, 602-611.
[13] P. R. Mercer, Hadamard's inequality and trapezoid rules for the Riemann-Stieltjes integral. J. Math. Anal. Appl. 344 (2008), no. 2, 921-926.
[14] W. Zhao and Z. Zhang, Derivative-based trapezoid rule for the Riemann-Stieltjes integral. Math. Probl. Eng. 2014, Art. ID 874651, 6 pp.
[15] W. Zhao, Z. Zhang and Z. Ye, Midpoint derivative-based trapezoid rule for the RiemannStieltjes integral. Ital. J. Pure Appl. Math. No. 33 (2014), 369-376.
[16] W. Zhao, Z. Zhang and Z. Ye, Composite trapezoid rule for the Riemann-Stieltjes integral and its Richardson extrapolation formula. Ital. J. Pure Appl. Math. No. 35 (2015), 311-318

Mathematics, School of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir/
DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, , School of Computer Science and Applied Mathematics, University of the Witwatersrand, Private Bag-3, Wits-2050, Johannesburg, South Africa

