NEW TRAPEZOID TYPE RIEMANN-STIELTJES INTEGRAL
INEQUALITIES FOR MONOTONIC INTEGRANDS AND
CONVEX INTEGRATORS

SILVESTRU SEVER DRAGOMIR

ABSTRACT. In this paper we obtain some inequalities for the trapezoid differ-
ence

b
[u(2) —u(a)l f(a) + [u(b) —u(z)] f () */ f(t) du(t)

where f is a monotonic nondecreasing function on [a, b] , u is continuous convex
on [a,b] and z € (a,b). Some particular inequalities for the Riemann integral
are also given.

1. INTRODUCTION

We start with the following result concerning two inequalities of trapezoid type
for convex functions obtained in [6]:

Theorem 1. Let f : [a,b] C R — R be a convex function on [a,b]. Then for any
x € [a,b] one has the inequality

1) 5 [6-22 7@ - @ £ )]
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The constant % s sharp in both inequalities.
The second inequality also holds for x = a or x = b.

We have a simpler first inequality in the case of differentiability:

Corollary 1. With the assumptions of Lemma 1 and if x € (a,b) is a point of
differentiability for f, then

1 (L -0)0-0s @ <E-ai@+ -0 /f

Now, recall that the following inequality, which is well known in the literature
as the Hermite-Hadamard inequality for convex functions, holds

(1.3) f(a;b) /f 1) dt < ”f()( —a).
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The following corollary provides some sharp bounds for the trapezoid difference

@10, /°f

Corollary 2. Let f : [a,b] — R be a convex function on [a,b]. Then we have the
inequality
a+b a+b
) (e

ggw<>—ﬁmﬂw—w?

(1.4)

OO\'—‘

The constant é s sharp in both inequalities.

For various trapezoid type inequalities involving Riemann-Stieltjes integral, see
[1]-[12] and [8]-[16].

Motivated by the above results, in this paper we obtain some inequalities for the
Riemann-Stieltjes integral trapezoid difference

[u(z) —u(a)] f(a) + [u(b) —u(z)] f(b) —/ f(#) du(t)

where f is a convex function on [a,b], u is monotonic nondecreasing and z € (a,b) .
In the case of Riemann integral, namely for u (¢t) = ¢, some particular inequalities
are also given.

2. MAIN RESULTS

We have the following main result:

Theorem 2. Assume that f : [a,b] — R is monotonic nondecreasing and u :
[a,b] — R is continuous convex on [a,b]. Then for x € (a,b) we have the inequalities

x

sl @|@-ar@- [ rwa

a

(2.1) ug_()lbx /f t)dt
b

a

x b
< / (t — =) [u (t) —u_ (z)] df (2) —|—/ (t— =) [u_(t) — !y (2)] df (2)
b x
+MAm[®—@f®%:/f@Mt+ML@ﬂ@—aHﬂw—/.ﬂﬂﬁ}

provided the Riemann-Stieltjes integrals [ !, (t) (t — x) df () and f u (t) (t —x)df (¢)
exist.
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This is equivalent to

(22) 0<[u(b) —u(@)]f(b)+[u(z)—ula)lf(a)

b
—/ £ (8) du (1)
¢ b

< / (=) [u, (8) — u_ (2)] df (1) + / (t—2) [ (t) — oy ()] df (1)

x

for x € (a,b).

Proof. Using the integration by parts rule for the Riemann-Stieltjes integral, we
have

b
(2.3) / [ (8) — w (2)] df (8)
b
:[U(b)*U(fv)]f(b)HU(:r)*U(a)]f(a)*/ £ (t) du ()

for all z € [a,b].
We also have

2 [ wO-u@d 0= [ bo-u@ g0+ [ bO-u@ao

for all z € (a,b).
Using the gradient inequality for the convex function u we have

u(r) —u(t) < (x—t)u_(z) for t € [a,x]
and
u(t) —u(z) > (t —z)u, (x) fort e [z,b].
Since f is monotonic nondecreasing and by using integration by parts we get
b

(2.5) / () — w (@)] df (£) > o, (x) / (t— ) df (1)

= u} (x) [(b—w)f(b)—/ f(t)dt]

and

IN

/z [u(z) —u ()] df () u’ () /I (z —t)df (t)

i (2) [/ Pt - - @).

which is equivalent to

20 [ -u@ a0z ©[c-0s@- [ o

for all z € (a,b).
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If we add (2.5) and (2.6), then we get

T b
/[u() u ()] df (t) + /[u() u (x)] df (t)

[ - [ 10| viele-wro- o,

which together with (2.3) and (2.4) provide the first inequality in (2.1).
Using the gradient inequality we also have

u(x) —u(t) > (z—t)u, (t) for t € [a,x]

and
w(t) —u(z) < (t—=z)u_(t) for t € [z,0].
Since f is monotonic nondecreasing and by using integration by parts we get

(27) [ w@-v@iao = [ @-ndao

and
b b
(2.8) / s (8) — ()] f (£) < / (t— ) (t)df (1)
b b
- [e-—opw-v@do+i@ [ t-oao
b
_ / (t—2) [u (&) — o} (@)] df (8)

+ul, (z l / ft dt] .
From (2.7) we get

29 [ wO-uv@ld o< [ -0l 0ao
= [ e-o L @-w @ g0+ @ [ -ad
-/ (=) [uls (6) — o ()] dF (1)

ro@ e [ 104

/: [u(t)—U(x)]df(t)wL/j fu (t) — (@) df ()
g/:(tx)[u'_(t)uﬁr(x)]df(t)Jr [bm /f dt]
+/le(t—x)[u’+(t)—u/(a:)]df(t)-i— [CE—(I /f ]a

which together with (2.3) and (2.4) give the second inequality in (2.1).

If we add (2.8) and (2.9) we get
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Corollary 3. With the assumptions of Theorem 2 and if u is differentiable in x,
then from (2.1) we get

b
(210) o (x) [(b—:c>f(b)+(x—a)f(a>— / f(t)dt]
b
<fu(®) = u @] FO) + lu(@) - u@] £ (@)~ [ FOdu(0)
x b
<[ O-v@FO+ [ ) WO @]
b
T+l (2) l(b—w)f(b)ﬂx—a)f(a)—/ f(t)dt],
and, equivalently,
(211) 0< [u(®) —u(@)] f () + [u() — u(a)] f (a)
b b
i (2) l(b—x)f(b)Jr(x—a)f(a)—/ f(t)dt]—/ £ (t) du ()
x b
< / (t—2) [y (8) — o ()] df (&) + / (t—2) [ (&) — o (@)] df (1),

x

Remark 1. If we take x = “E2, in (2.1) and (2.2) we get

(2.12) o, (a ; b)

1 b
2 ats

a+b

provided the Riemann-Stieltjes integrals [ > u/, (t) (t — 252) df (t) and f% u(t) (t— <k

exist.
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Corollary 4. Assume that g : [a,b] — R is continuous and nondecreasing on [a, b]
and f : [a,b] — R is monotonic nondecreasing, then for x € (a,b),

b T
(2.16) Oéf(b)/ Q(t)dtJrf(a)/ g (1) dt
b b
(@) [(bm)f(b)ﬂxa)f(a)/ f(t)dt]/ £ (t) g (t) dt
b

s/ (t—2)[g(t) — g (2)df (1),

s/ab (ta;b> [g(ﬂg(‘t;bﬂdf@).

The proof follows from Theorem 2 by taking u (¢) := f; g (s) ds which is convex
on [a,b].

3. INEQUALITIES FOR RIEMANN INTEGRAL

If we take f(t) =t, t € [a,b] in (2.1) we get for a convex function u : [a,b] — R

that
+u’ (z) {(m—a)a—/jtdt}

b
<u(®) = u(@)b+u() ~ul@]a- [ tdu(t

b
(3.1) o (x) l(b —z)b —/ tdt

g/x (t — =) [u) (t) —u_ (z)] dt+/ (t — ) [u_ (t) —uly ()] dt

+ 1, (z) l(b—x)b—ébtdt +u’ (x) [(m—a)a—/jtdt}

for « € (a,b).
Observe that

b
(b—x)b—/ tdt:(b—x)b—%(bZ—xQ):f(b—x)Q,

(m—a)a—/ tdt:(ac—a)a—%(acQ—cLQ):—%(:v—a)2
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and
b
[U(b)*U(w)]bJr[u(x)*U(a)]a*/ tdu (t)
b
:[u(b)—u(x)]b—&—[u(m)—u(a)}a—<bu(b)—au(a)—/ u(t)dt>
b
:/ u(t)dt —u(x) (b—a)
for x € (a,b).

Using (3.1) we get

for « € (a,b).
Since u is convex, then the lateral derivatives v/, (-) and u’ (-) are monotonic
nondecreasing and equal except in a countable number of points. Then

and

for z € (a,b).
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Therefore

F5 -2 (@)~ 3 (@ -l (a)
:%(b—gc)2 " (b) i(m—a)2u’+(a)—l—%(m—a)QuL(m)
1 2 1 2 1 2,
Lm0t @+ L= @) -, (@)

1

for x € (a,b).
Therefore, by (3.2) and (3.3) we get

(34) = (b—=z)u, (x) - =

for z € (a,b).
If u is differentiable in = € (a,b), then from (3.4) we get

35) (b—a) (“;rb _

:c) u' (z) S/abu(t)dtu(m)(ba)
b

S/x(t—x) [uly (1) — v (2)] dt+/ (t—x) [u_ (t) — v (x)] dt

a+b

+(ba)< 5

x) o (z) < %(b—x)Zu’_ (b)—%(x—a)Zuﬁr(a)

for z € (a,b).
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If in (3.4) we take x = %2, then we get

(3.6) OSé(b_af [u; (a—;b) o (a—2|—b)
b

“Lo-a [u;(“;b) - (a;b)} < 20— [ ()~ oy (a)].

If u is differentiable in “t®, then we obtain from (3.6) that

(3.7) Og/abu(t)dt—u(a;b)(b—a)

</a;b <ta;rb> {u;(t)u’<a;b>}dt
é _
00),

( a+b) [u <a+b>} o)’ [u_ (b) = o} (a)] .

If we take in (2.16) g (t) = —1, t € [a,b] C (0,
creasing functions f : [a,b] — R We have

b
(3.8) 0</ It dt+x (b— ) )+(xa)f(a)/f(t)dt]

rom (L) —sam (@) <t [Py,

a

(b

then for monotonic nonde-

for x € (a,b),

For x:%bweget

Flt 2
. < ) at
(3.9) 0*/(1 ot ——

—f(b)ln(ffb)—fm)ln(";)saib/ =5 ),

while for z = Vab we get

(3.10) 0</abf](ft)dt+\/1a»b[(b—\/@)f /f dt]

(D)= w/
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