
NEW TRAPEZOID TYPE RIEMANN-STIELTJES INTEGRAL
INEQUALITIES FOR MONOTONIC INTEGRANDS AND

CONVEX INTEGRATORS

SILVESTRU SEVER DRAGOMIR

Abstract. In this paper we obtain some inequalities for the trapezoid di¤er-
ence

[u (x)� u (a)] f (a) + [u (b)� u (x)] f (b)�
Z b

a
f (t) du (t)

where f is a monotonic nondecreasing function on [a; b] ; u is continuous convex
on [a; b] and x 2 (a; b) : Some particular inequalities for the Riemann integral
are also given.

1. Introduction

We start with the following result concerning two inequalities of trapezoid type
for convex functions obtained in [6]:

Theorem 1. Let f : [a; b] � R! R be a convex function on [a; b]. Then for any
x 2 [a; b] one has the inequality

(1.1)
1

2

h
(b� x)2 f 0+ (x)� (x� a)

2
f 0� (x)

i
� (x� a) f (a) + (b� x) f (b)�

Z b

a

f (t) dt

� 1

2

h
(b� x)2 f 0� (b)� (x� a)

2
f 0+ (a)

i
:

The constant 12 is sharp in both inequalities.
The second inequality also holds for x = a or x = b.

We have a simpler �rst inequality in the case of di¤erentiability:

Corollary 1. With the assumptions of Lemma 1 and if x 2 (a; b) is a point of
di¤erentiability for f , then

(1.2)
�
a+ b

2
� x
�
(b� a) f 0 (x) � (x� a) f (a) + (b� x) f (b)�

Z b

a

f (t) dt:

Now, recall that the following inequality, which is well known in the literature
as the Hermite-Hadamard inequality for convex functions, holds

(1.3) f

�
a+ b

2

�
(b� a) �

Z b

a

f (t) dt � f (a) + f (b)

2
(b� a) :
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The following corollary provides some sharp bounds for the trapezoid di¤erence

f (a) + f (b)

2
(b� a)�

Z b

a

f (t) dt:

Corollary 2. Let f : [a; b] ! R be a convex function on [a; b]. Then we have the
inequality

(1.4) 0 � 1

8

�
f 0+

�
a+ b

2

�
� f 0�

�
a+ b

2

��
(b� a)2

� f (a) + f (b)

2
(b� a)�

Z b

a

f (t) dt

� 1

8

�
f 0� (b)� f 0+ (a)

�
(b� a)2 :

The constant 18 is sharp in both inequalities.

For various trapezoid type inequalities involving Riemann-Stieltjes integral, see
[1]-[12] and [8]-[16].
Motivated by the above results, in this paper we obtain some inequalities for the

Riemann-Stieltjes integral trapezoid di¤erence

[u (x)� u (a)] f (a) + [u (b)� u (x)] f (b)�
Z b

a

f (t) du (t)

where f is a convex function on [a; b] ; u is monotonic nondecreasing and x 2 (a; b) :
In the case of Riemann integral, namely for u (t) = t; some particular inequalities
are also given.

2. Main Results

We have the following main result:

Theorem 2. Assume that f : [a; b] ! R is monotonic nondecreasing and u :
[a; b]! R is continuous convex on [a; b] : Then for x 2 (a; b) we have the inequalities

(2.1) u0+ (x)

"
(b� x) f (b)�

Z b

x

f (t) dt

#
+ u0� (x)

�
(x� a) f (a)�

Z x

a

f (t) dt

�
� [u (b)� u (x)] f (b) + [u (x)� u (a)] f (a)�

Z b

a

f (t) du (t)

�
Z x

a

(t� x)
�
u0+ (t)� u0� (x)

�
df (t) +

Z b

x

(t� x)
�
u0� (t)� u0+ (x)

�
df (t)

+ u0+ (x)

"
(b� x) f (b)�

Z b

x

f (t) dt

#
+ u0� (x)

�
(x� a) f (a)�

Z x

a

f (t) dt

�

provided the Riemann-Stieltjes integrals
R x
a
u0+ (t) (t� x) df (t) and

R b
x
u0� (t) (t� x) df (t)

exist.
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This is equivalent to

(2.2) 0 � [u (b)� u (x)] f (b) + [u (x)� u (a)] f (a)

� u0+ (x)
"
(b� x) f (b)�

Z b

x

f (t) dt

#
� u0� (x)

�
(x� a) f (a)�

Z x

a

f (t) dt

�
�
Z b

a

f (t) du (t)

�
Z x

a

(t� x)
�
u0+ (t)� u� (x)

�
df (t) +

Z b

x

(t� x)
�
u0� (t)� u0+ (x)

�
df (t)

for x 2 (a; b) :

Proof. Using the integration by parts rule for the Riemann-Stieltjes integral, we
have

(2.3)
Z b

a

[u (t)� u (x)] df (t)

= [u (b)� u (x)] f (b) + [u (x)� u (a)] f (a)�
Z b

a

f (t) du (t)

for all x 2 [a; b] :
We also have

(2.4)
Z b

a

[u (t)� u (x)] df (t) =
Z x

a

[u (t)� u (x)] df (t) +
Z b

x

[u (t)� u (x)] df (t)

for all x 2 (a; b) :
Using the gradient inequality for the convex function u we have

u (x)� u (t) � (x� t)u0� (x) for t 2 [a; x]

and
u (t)� u (x) � (t� x)u0+ (x) for t 2 [x; b] :

Since f is monotonic nondecreasing and by using integration by parts we getZ b

x

[u (t)� u (x)] df (t) � u0+ (x)
Z b

x

(t� x) df (t)(2.5)

= u0+ (x)

"
(b� x) f (b)�

Z b

x

f (t) dt

#
and Z x

a

[u (x)� u (t)] df (t) � u0� (x)

Z x

a

(x� t) df (t)

= u0� (x)

�Z x

a

f (t) dt� (x� a) f (a)
�
;

which is equivalent to

(2.6)
Z x

a

[u (x)� u (t)] df (t) � u0� (x)
�
(x� a) f (a)�

Z x

a

f (t) dt

�
for all x 2 (a; b) :
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If we add (2.5) and (2.6), then we getZ x

a

[u (t)� u (x)] df (t) +
Z b

x

[u (t)� u (x)] df (t)

� u0+ (x)
"
(b� x) f (b)�

Z b

x

f (t) dt

#
+ u0� (x)

�
(x� a) f (a)�

Z x

a

f (t) dt

�
;

which together with (2.3) and (2.4) provide the �rst inequality in (2.1).
Using the gradient inequality we also have

u (x)� u (t) � (x� t)u0+ (t) for t 2 [a; x]
and

u (t)� u (x) � (t� x)u0� (t) for t 2 [x; b] :
Since f is monotonic nondecreasing and by using integration by parts we get

(2.7)
Z x

a

[u (x)� u (t)] df (t) �
Z x

a

(x� t)u0+ (t) df (t)

and

(2.8)
Z b

x

[u (t)� u (x)] df (t) �
Z b

x

(t� x)u0� (t) df (t)

=

Z b

x

(t� x)
�
u0� (t)� u0+ (x)

�
df (t) + u0+ (x)

Z b

x

(t� x) df (t)

=

Z b

x

(t� x)
�
u0� (t)� u0+ (x)

�
df (t)

+ u0+ (x)

"
(b� x) f (b)�

Z b

x

f (t) dt

#
:

From (2.7) we get

(2.9)
Z x

a

[u (t)� u (x)] df (t) �
Z x

a

(t� x)u0+ (t) df (t)

=

Z x

a

(t� x)
�
u0+ (t)� u� (x)

�
df (t) + u0� (x)

Z x

a

(t� x) df (t)

=

Z x

a

(t� x)
�
u0+ (t)� u0� (x)

�
df (t)

+ u� (x)

�
(x� a) f (a)�

Z x

a

f (t) dt

�
:

If we add (2.8) and (2.9) we getZ b

x

[u (t)� u (x)] df (t) +
Z x

a

[u (t)� u (x)] df (t)

�
Z b

x

(t� x)
�
u0� (t)� u0+ (x)

�
df (t) + u0+ (x)

"
(b� x) f (b)�

Z b

x

f (t) dt

#

+

Z x

a

(t� x)
�
u0+ (t)� u0� (x)

�
df (t) + u0� (x)

�
(x� a) f (a)�

Z x

a

f (t) dt

�
;

which together with (2.3) and (2.4) give the second inequality in (2.1). �
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Corollary 3. With the assumptions of Theorem 2 and if u is di¤erentiable in x;
then from (2.1) we get

(2.10) u0 (x)

"
(b� x) f (b) + (x� a) f (a)�

Z b

a

f (t) dt

#

� [u (b)� u (x)] f (b) + [u (x)� u (a)] f (a)�
Z b

a

f (t) du (t)

�
Z x

a

(t� x)
�
u0+ (t)� u0 (x)

�
df (t) +

Z b

x

(t� x)
�
u0� (t)� u0 (x)

�
df (t)

+ u0 (x)

"
(b� x) f (b) + (x� a) f (a)�

Z b

a

f (t) dt

#
;

and, equivalently,

(2.11) 0 � [u (b)� u (x)] f (b) + [u (x)� u (a)] f (a)

� u0 (x)
"
(b� x) f (b) + (x� a) f (a)�

Z b

a

f (t) dt

#
�
Z b

a

f (t) du (t)

�
Z x

a

(t� x)
�
u0+ (t)� u0 (x)

�
df (t) +

Z b

x

(t� x)
�
u0� (t)� u0 (x)

�
df (t) ;

Remark 1. If we take x = a+b
2 ; in (2.1) and (2.2) we get

(2.12) u0+

�
a+ b

2

�"
1

2
(b� a) f (b)�

Z b

a+b
2

f (t) dt

#

+ u0�

�
a+ b

2

�"
1

2
(b� a) f (a)�

Z a+b
2

a

f (t) dt

#

�
�
u (b)� u

�
a+ b

2

��
f (b) +

�
u

�
a+ b

2

�
� u (a)

�
f (a)�

Z b

a

f (t) du (t)

�
Z a+b

2

a

�
t� a+ b

2

��
u0+ (t)� u0�

�
a+ b

2

��
df (t)

+

Z b

a+b
2

�
t� a+ b

2

��
u0� (t)� u0+

�
a+ b

2

��
df (t)

+ u0+

�
a+ b

2

�"
1

2
(b� a) f (b)�

Z b

a+b
2

f (t) dt

#

+ u0�

�
a+ b

2

�"
1

2
(b� a) f (a)�

Z a+b
2

a

f (t) dt

#

provided the Riemann-Stieltjes integrals
R a+b

2

a
u0+ (t)

�
t� a+b

2

�
df (t) and

R b
a+b
2
u0� (t)

�
t� a+b

2

�
df (t)

exist.
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This is equivalent to

(2.13) 0 �
�
u (b)� u

�
a+ b

2

��
f (b) +

�
u

�
a+ b

2

�
� u (a)

�
f (a)

� u0+
�
a+ b

2

�"
1

2
(b� a) f (b)�

Z b

a+b
2

f (t) dt

#

� u0�
�
a+ b

2

�"
1

2
(b� a) f (a)�

Z a+b
2

a

f (t) dt

#

�
Z b

a

f (t) du (t)

�
Z a+b

2

a

�
t� a+ b

2

��
u0+ (t)� u0�

�
a+ b

2

��
df (t)

+

Z b

a+b
2

�
t� a+ b

2

��
u0� (t)� u0+

�
a+ b

2

��
df (t) :

If u is di¤erentiable in a+b
2 ; then by (2.10) we get

(2.14) u0
�
a+ b

2

�"
f (b) + f (a)

2
(b� a)�

Z b

a

f (t) dt

#

�
�
u (b)� u

�
a+ b

2

��
f (b) +

�
u

�
a+ b

2

�
� u (a)

�
f (a)�

Z b

a

f (t) du (t)

�
Z a+b

2

a

�
t� a+ b

2

��
u0+ (t)� u0

�
a+ b

2

��
df (t)

+

Z b

a+b
2

�
t� a+ b

2

��
u0� (t)� u0

�
a+ b

2

��
df (t)

+ u0
�
a+ b

2

�"
f (b) + f (a)

2
(b� a)�

Z b

a

f (t) dt

#
;

and, equivalently

(2.15) 0 �
�
u (b)� u

�
a+ b

2

��
f (b) +

�
u

�
a+ b

2

�
� u (a)

�
f (a)

� u0
�
a+ b

2

�"
f (b) + f (a)

2
(b� a)�

Z b

a

f (t) dt

#
�
Z b

a

f (t) du (t)

�
Z a+b

2

a

�
t� a+ b

2

��
u0+ (t)� u0

�
a+ b

2

��
df (t)

+

Z b

a+b
2

�
t� a+ b

2

��
u0� (t)� u0

�
a+ b

2

��
df (t) :
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Corollary 4. Assume that g : [a; b]! R is continuous and nondecreasing on [a; b]
and f : [a; b]! R is monotonic nondecreasing, then for x 2 (a; b) ;

(2.16) 0 � f (b)
Z b

x

g (t) dt+ f (a)

Z x

a

g (t) dt

� g (x)
"
(b� x) f (b) + (x� a) f (a)�

Z b

a

f (t) dt

#
�
Z b

a

f (t) g (t) dt

�
Z b

a

(t� x) [g (t)� g (x)] df (t) ;

and, in particular, for x = a+b
2

(2.17) 0 � f (b)
Z b

a+b
2

g (t) dt+ f (a)

Z a+b
2

a

g (t) dt

� g
�
a+ b

2

�"
f (b) + f (a)

2
(b� a)�

Z b

a

f (t) dt

#
�
Z b

a

f (t) g (t) dt

�
Z b

a

�
t� a+ b

2

��
g (t)� g

�
a+ b

2

��
df (t) :

The proof follows from Theorem 2 by taking u (t) :=
R t
a
g (s) ds which is convex

on [a; b] :

3. Inequalities for Riemann Integral

If we take f (t) = t; t 2 [a; b] in (2.1) we get for a convex function u : [a; b]! R
that

(3.1) u0+ (x)

"
(b� x) b�

Z b

x

tdt

#
+ u0� (x)

�
(x� a) a�

Z x

a

tdt

�
� [u (b)� u (x)] b+ [u (x)� u (a)] a�

Z b

a

tdu (t)

�
Z x

a

(t� x)
�
u0+ (t)� u0� (x)

�
dt+

Z b

x

(t� x)
�
u0� (t)� u0+ (x)

�
dt

+ u0+ (x)

"
(b� x) b�

Z b

x

tdt

#
+ u0� (x)

�
(x� a) a�

Z x

a

tdt

�
for x 2 (a; b) :
Observe that

(b� x) b�
Z b

x

tdt = (b� x) b� 1
2

�
b2 � x2

�
=
1

2
(b� x)2 ;

(x� a) a�
Z x

a

tdt = (x� a) a� 1
2

�
x2 � a2

�
= �1

2
(x� a)2
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and

[u (b)� u (x)] b+ [u (x)� u (a)] a�
Z b

a

tdu (t)

= [u (b)� u (x)] b+ [u (x)� u (a)] a�
 
bu (b)� au (a)�

Z b

a

u (t) dt

!

=

Z b

a

u (t) dt� u (x) (b� a)

for x 2 (a; b) :
Using (3.1) we get

(3.2)
1

2
(b� x)2 u0+ (x)�

1

2
(x� a)2 u0� (x) �

Z b

a

u (t) dt� u (x) (b� a)

�
Z x

a

(t� x)
�
u0+ (t)� u0� (x)

�
dt+

Z b

x

(t� x)
�
u0� (t)� u0+ (x)

�
dt

+
1

2
(b� x)2 u0+ (x)�

1

2
(x� a)2 u0� (x)

for x 2 (a; b) :
Since u is convex, then the lateral derivatives u0+ (�) and u0� (�) are monotonic

nondecreasing and equal except in a countable number of points. Then

Z x

a

(t� x)
�
u0+ (t)� u0� (x)

�
dt =

Z x

a

(t� x)
�
u0� (t)� u0� (x)

�
dt

� sup
t2(a;x)

�
u0� (x)� u0� (t)

� 1
2
(x� a)2 = 1

2
(x� a)2

�
u0� (x)� u0+ (a)

�

and

Z b

x

(t� x)
�
u0� (t)� u0+ (x)

�
dt =

Z b

x

(t� x)
�
u0+ (t)� u0+ (x)

�
dt

� sup
t2(x;b)

�
u0+ (t)� u0+ (x)

� 1
2
(b� x)2 = 1

2
(b� x)2

�
u0� (b)� u0+ (x)

�

for x 2 (a; b) :
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Therefore

(3.3)
Z x

a

(t� x)
�
u0+ (t)� u0� (x)

�
dt+

Z b

x

(t� x)
�
u0� (t)� u0+ (x)

�
dt

+
1

2
(b� x)2 u0+ (x)�

1

2
(x� a)2 u0� (x)

� 1

2
(x� a)2

�
u0� (x)� u0+ (a)

�
+
1

2
(b� x)2

�
u0� (b)� u0+ (x)

�
+
1

2
(b� x)2 u0+ (x)�

1

2
(x� a)2 u0� (x)

=
1

2
(b� x)2 u0� (b)�

1

2
(x� a)2 u0+ (a) +

1

2
(x� a)2 u0� (x)

� 1
2
(x� a)2 u0� (x) +

1

2
(b� x)2 u0+ (x)�

1

2
(b� x)2 u0+ (x)

=
1

2
(b� x)2 u0� (b)�

1

2
(x� a)2 u0+ (a)

for x 2 (a; b) :
Therefore, by (3.2) and (3.3) we get

(3.4)
1

2
(b� x)2 u0+ (x)�

1

2
(x� a)2 u0� (x)

�
Z b

a

u (t) dt� u (x) (b� a)

�
Z x

a

(t� x)
�
u0+ (t)� u0� (x)

�
dt+

Z b

x

(t� x)
�
u0� (t)� u0+ (x)

�
dt

+
1

2
(b� x)2 u0+ (x)�

1

2
(x� a)2 u0� (x)

� 1

2
(b� x)2 u0� (b)�

1

2
(x� a)2 u0+ (a)

for x 2 (a; b) :
If u is di¤erentiable in x 2 (a; b) ; then from (3.4) we get

(3.5) (b� a)
�
a+ b

2
� x
�
u0 (x) �

Z b

a

u (t) dt� u (x) (b� a)

�
Z x

a

(t� x)
�
u0+ (t)� u0 (x)

�
dt+

Z b

x

(t� x)
�
u0� (t)� u0 (x)

�
dt

+ (b� a)
�
a+ b

2
� x
�
u0 (x) � 1

2
(b� x)2 u0� (b)�

1

2
(x� a)2 u0+ (a)

for x 2 (a; b) :
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If in (3.4) we take x = a+b
2 ; then we get

(3.6) 0 � 1

8
(b� a)2

�
u0+

�
a+ b

2

�
� u0�

�
a+ b

2

��
�
Z b

a

u (t) dt� u
�
a+ b

2

�
(b� a)

�
Z a+b

2

a

�
t� a+ b

2

��
u0+ (t)� u0�

�
a+ b

2

��
dt

+

Z b

a+b
2

�
t� a+ b

2

��
u0� (t)� u0+

�
a+ b

2

��
dt

+
1

8
(b� a)2

�
u0+

�
a+ b

2

�
� u0�

�
a+ b

2

��
� 1

8
(b� a)2

�
u0� (b)� u0+ (a)

�
:

If u is di¤erentiable in a+b
2 ; then we obtain from (3.6) that

(3.7) 0 �
Z b

a

u (t) dt� u
�
a+ b

2

�
(b� a)

�
Z a+b

2

a

�
t� a+ b

2

��
u0+ (t)� u0

�
a+ b

2

��
dt

+

Z b

a+b
2

�
t� a+ b

2

��
u0� (t)� u0

�
a+ b

2

��
dt � 1

8
(b� a)2

�
u0� (b)� u0+ (a)

�
:

If we take in (2.16) g (t) = � 1
t ; t 2 [a; b] � (0;1) ; then for monotonic nonde-

creasing functions f : [a; b]! R we have

(3.8) 0 �
Z b

a

f (t)

t
dt+

1

x

"
(b� x) f (b) + (x� a) f (a)�

Z b

a

f (t) dt

#

� f (b) ln
�
b

x

�
� f (a) ln

�x
a

�
� 1

x

Z b

a

(t� x)2

t
df (t) ;

for x 2 (a; b) ;
For x = a+b

2 we get

(3.9) 0 �
Z b

a

f (t)

t
dt+

2

a+ b

"
f (b) + f (a)

2
(b� a)�

Z b

a

f (t) dt

#

� f (b) ln
�
2b

a+ b

�
� f (a) ln

�
a+ b

2a

�
� 2

a+ b

Z b

a

�
t� a+b

2

�2
t

df (t) ;

while for x =
p
ab we get

(3.10) 0 �
Z b

a

f (t)

t
dt+

1p
ab

"�
b�

p
ab
�
f (b) +

�p
ab� a

�
f (a)�

Z b

a

f (t) dt

#

� f (b) + f (a)
2

ln

�
b

a

�
� 1p

ab

Z b

a

�
t�

p
ab
�2

t
df (t) ;
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