AN INTEGRAL REPRESENTATION OF THE REMAINDER IN
TAYLOR’S EXPANSION FORMULA FOR ANALYTIC
FUNCTION ON GENERAL DOMAINS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish an integral representation of the re-
mainder in Taylor’s expansion formula for analytic function defined on non-
necessarily convex domains. Error bounds are provided and some examples
for the complex logarithm and complex exponential are also given.

1. INTRODUCTION

Suppose v is a smooth path parametrized by z (t), t € [a,b] and f is a complex
function which is continuous on 7. Put z (a) = u and z (b) = w with u, w € C. We
define the integral of f on v, , =~ as

b
/f(z)dz: f(z)dz ::/ F(z(t) 2 () dt.

We observe that that the actual choice of parametrization of 7 does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose
v is parametrized by z (¢), t € [a,b], which is differentiable on the intervals [a, ]
and [c, b], then assuming that f is continuous on  we define

(2)dz := (2)dz + f(z)dz
Yu,w Yu,v Yo,w

where v := z (¢). This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

b
ﬂmm:/fmmMWﬁ

and the length of the curve v is then

awzﬁjwzlmwwt

Let f and ¢ be holomorphic in G, an open domain and suppose v C G is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
by parts formula

(1.1) f(2)g (2)dz = f(w) g (w) = f (u) g (u) - / f(2)g(2)dz.

Yu,w
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We recall also the triangle inequality for the complex integral, namely
[r@a| < [1r @l <171, o 00)
¥ ¥

where [|f]l, o := sup.e, [f (2)] -
We also define the p-norm with p > 1 by

191~ [ier |dz|)1/p.

1Al = / 1 (2)]|dz]
Yy

If p, ¢ > 1 with % + % = 1, then by Holder’s inequality we have

11,0 < N, -

Let f : D C C — C be an analytic function on the convex domain D and y,
x € D, then we have the following Taylor’s expansion with integral remainder

13) )= @ -o*
k=0

- "“/fw — s o+ syl (1—s)" ds

for n > 0, see for instance [13].

Consider the function f(z) = Log(z) where Log(z) = In|z| + ¢ Arg(z) and
Arg(z) is such that —7 < Arg(z) < w. Log is called the "principal branch" of
the complex logarithmic function. The function f is analytic on all of C, :=
C\{z+iy:z <0, y=0} and

—1)" (k= 1)!

Using the representation (1.3) we then have

(14) Log(z) = Log(z +Zn: : (Z;ﬂﬁ)k

k=1

(1.2)

For p =1 we have

, k>1, ze€ Cy.

! —8)"ds
+(*1)n(zfz)”+1/0 T (1-s)d

1—s)a+ 2"

for all z, z € C; with (1 —s)x + sz € C, for s € [0,1].
Consider the complex exponential function f (z) = exp (z), then by (1.3) we get

n
1
(1.5) exp(z ZH z— )" exp (z)
k=0

1
+ % (2 —:c)n+1/0 (1—s)"exp[(1 —s)x+ sz]ds

for all z, x € C.

For various inequalities related to Taylor’s expansions for real functions see [1]-
[12].
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In this paper we establish a representation of the remainder in Taylor’s expansion
formula for analytic function defined on non-necessarily convex domains. Error
bounds are provided and some examples for the complex logarithm and complex
exponential are also given.

2. INTEGRAL REMAINDER REPRESENTATION

We can extend the Taylor’s representation formula (1.3) for non-necessarily con-
vex domains D as follows:

Theorem 1. Let f: D C C — C be an analytic function on the domain D and y,
x € D. Suppose v is a smooth path parametrized by z (t), t € [a,b] with z (a) = x
and z (b) =y then

n k
ey tw=Y W@t [ - e

forn > 0.

Proof. We prove the identity (2.1) by induction over n > 0.
For n = 0 we have
fy)=f()+ f'(2) dz,
Y,y
which is obviously true.
Let assume that (2.1) holds for a natural number m > 1, namely

m k
e2)  f=Y U@ L [ g s (s

k=0
and let us prove it that it also holds for m + 1, namely

SR -2 1 L pm 2
(23)  f(y) = Z Tf( ) () + m/ (y —=2) f(m+ ) (2) dz.
k=0 Va,y

Using integration by parts we have

(2.4 [t s
Ty

(m+1)!

1

) e e e)

1
(m+1)!

(y—=)"" D (2)

x

Fmr) [ e ) dz]

T,y

(m+1)!
1
m!

(m+1) / (y—2)" D (2)dz = (y — )™ oD (5’3)]

x,y

/ (y—2)" f ) (2) dz —

T,y

(m +1)! (y — )" fom ) (2).

Using the induction hypothesis (2.2) we have

m

k
nllv/w (y—2)" f D (2)dz = f(y) = (y—Ta:)f(k) (2)

@,y k=0
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and by (2.4) we then get

sy SCAEIMEACL
m o k
= f (y) - Z %f‘(k) (ZE) _ m (y _ x)m+1 f(7rL+1) (.’IJ)

k=0

_ . = (y — x)k (k)
=) - Y TP @),

k=0

which proves the desired equality (2.3). O

Using the representation (2.1) we then have

_ Ly R U
(2.5) Log(y)—Log(”f)*; k ( x ) Fey /v 2

forall y, z € Cp and vy =1, , C C,.
Consider the complex exponential function f (z) = exp (2), then by (1.3) we get

26 eww =Y pu-o et [ G- enl)d
k=0 """ * Yy

for all y, x € C and a smooth path v =+, , joining the complex numbers y, z.

Corollary 1. With the assumptions of Theorem 1, then for any A € C we have the
perturbed identity

-0 -z
@7) fw=) Y@+ A

k=0

forn > 0.

3. ERROR BOUNDS
We have the following error bounds for the general perturbed Taylor’s expansion
(2.7).

Theorem 2. Let f: D C C — C be an analytic function on the domain D and y,
x € D. Suppose 7y is a smooth path parametrized by z (t), t € [a,b] with z(a) = x
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and z (b) =y and X € C, then

zn: f(k) ()~ W x)"“A|

P (n+1)!
1
<= ly —2["
nl /.

—)\‘ |dz|

maXyey, ly — Z|n ||f(nJr1 )‘H% 1

nj l/p n
(f, o= =" Jael) 7+ = x
P, g>1 wz‘th%—l—%:l,

IA
AR

Ya,y-q

Syl =2z £ =AY

1
<o e
n. Yooy

— el )

In particular, for A =0,

n

k
32 |1~ YD @

k=0

Fo (2)]

maxzen,mw

Va,yrl

1 w1 )7 )
L) (0 = alas) e
p,og>1 wz‘th%+§=1,

IN
s

oy =2z 0
Proof. Using the representation (2.7) and Holder’s inequality, we have
n n+1
‘ Z f<k> (2) — % A‘
= (n+1)!

S e[ e -] as

n!

T,y

< / =2 [£ (2) = ]| It

1 n n
= [y | (2) A
nJy,
maxe,, [y — 2" [ ’f(”"’l) )\‘ |dz],

" 1/p
(‘fvz ‘y B Z| ’ |dZ|P (f'\/w,y |f(n+1) )\| |d ‘)

P, q >1W1th Jrf:l

IN
AN

f’yx,y |y — Z|n |dZ| maXzeww,y ’f(n+1) (2) - )\| )
which proves the desired result (3.1).
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By using the first inequality in (3.2) we have

n — k n

z ly — 2|
Lo — Lo e < dz
() ~Log(e) ~ > — <>‘—/ FRaae

k=1

(3.3)

forall y, x € Cp and y =1, , C C,.
Now, if we assume that d, , = infzeym. |z| € (0,00), then by (3.3) we get

n — k
-z 1 n
Log (y) — Log (z Z ( > | < pTEss / ly — 2|" |dz| .
Ty Jy

=1 T,y

(3.4)

By using the first inequality in (3.2) we also have

(3.5) exp (y Z % *exp (x)

k=0

<[ -l expRe()dzl,
Y

for all y, x € C and a smooth path v =+, , joining the complex numbers y, z.
If Re(z) < M for z € v, ,,, then by (3.5) we get

n

(3.6) |exp(y) =Y % (y— )" exp ()
k=0 "

1
< —'expM/ ly — z|" expRe (2) |dz| .
n!

Tz,y

Suppose v C C is a piecewise smooth path parametrized by z(t), ¢t € « from
z(a) = u to z (b) = w. Now, for ¢, ® € C and v an interval of real numbers, define
the sets of complex-valued functions

U, (¢,®) := {f:fyﬂ(C\Re {(fl)ff(z)) (W*Eﬂ >0 for each zE’y}

and

A, (¢,®) = {f:’y—>(C| 'f(z)¢+<1>'

1
< — — .
5| =3 |® — ¢| for each z € ’y}

The following representation result may be stated.

Proposition 1. For any ¢, ® € C, ¢ # ®, we have that U, (¢, ®) and A, (¢, ®)
are nonempty, convex and closed sets and

(3.7) Uy (¢,0) = A, (4, @)
Proof. We observe that for any w € C we have the equivalence

_ 9+

2| < 51— 6 it Re [(@ —w) (@~ 3)] 20

This follows by the equality
2

1 o+ S
4<I>—q52—’w—2 =Re [(® —w) (W — ¢)]
that holds for any w € C.
The equality (3.7) is thus a simple consequence of this fact. ([l

On making use of the complex numbers field properties we can also state that:
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Corollary 2. For any ¢, ® € C, ¢ # ®,we have that
(38)  Uy(¢,@)={f:7—C| (Re® —Ref(2)) (Ref(2) —Re)
+(Im® —Im f(2)) (Im f (2) —Im¢) >0 for each z € v} .

Now, if we assume that Re (®) > Re (¢) and Im (®) > Im (¢), then we can define
the following set of functions as well:

(3.9) Sy (¢, @) :={f:7—C|[ Re(®) = Ref(2) > Re(¢)
and Im (®) > Im f (2) > Im (¢) for each z € ~}.

One can easily observe that S, (¢, ®) is closed, convex and

(3.10) 0#5,(6.9) CT, (6,9).

Corollary 3. Let f: D C C — C be an analytic function on the domain D and y,
x € D. Suppose v is a smooth path parametrized by z (t), t € [a,b] with z (a) =
and z(b) =y. If p, 2 € C, ¢ # @ and f™T) € A (¢, ®) for some n >0, then

- ®) (y—o)"" o+ @
(3.11) ‘ kzzo fk (z) = (n+1)! 2

|® — ¢ ly — 2" |dz] .

RERY

,2|

Proof. Since f(*1) € A, (¢,®), hence by (3.1) for A\ = % we get

(n+1! 2

1 n
<o [ el
n: Yoy

|f -3 0= g gy =2l Dot e

k=0

n+1)7¢+q)
2

RS

1
<S8 —gl [ ly—2l"ld,
Yo,y

which proves the desired result (3.11). d

Corollary 4. Let f: D C C — C be an analytic function on the domain D and vy,
x € D. Suppose 7 is a smooth path parametrized by z (t), t € [a,b] with z(a) = x
and z (b) = y. If f*+V) | for some n > 0, satisfies the Holder type condition on ~

FOY () = fOD ()| < H |z —y|"
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for z, y € v, where H > 0 and r € (0,1] are given, then

k

(y—2)" & 1 i
(312) |f) =Y M @) < SH [y =2 |z —al |z
k=0 ’ : Yo,y
max.e,, |y —z[" fﬂ{w |z —z|" |dz],
n 1/p . 1/q
<lm (. == \dzl) (£, 1= =al" |az])
v p, g > 1 with + + 1 =1,
maXzE'yI’y ‘Z — £E|T f”/z,y |y — Z‘n \dz|

and

)TL+1

. (y_$)k (y—.’l? n+1
(3.13)  |f(y) - kZ:on(k) (z) - mf( U (y)

1
<—H ly — 2" |d2] .
n!
Ya,y

In particular, if f"tV) is Lipschitzian with the constant L > 0, then

S - (k) 1 n
(3.14) f(y)_ZTf (@) = L ly —2|" |z — [ |dz|
k=0 ’ ’ Vay
maXzewz,y ‘y - Z|n f'Yz,y ‘Z - .’El |dZ| )
1/p 1/q
< Lol (o=t sl) 7 (f fealtla)
”' P, q>1with 5+, =1
maxse,, , [z =@l [, ly—z|"|d]

and

)yt

(3.15)  |f(y) — Z %f(k) (z) — (y(n—i—l)!f(n+ ) (y)

1 )
< —L/ ly — 2"+ |dz].
n! .
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Proof. From Theorem 2 we have

‘f (y) — i Mf(k) (z) — wf(nﬂ) ()
(n+1)!

1 n n
<= [ =2 |1 @) = £ (@) Ja
'Y

1
<ol [yl al s
nt J,

z,y

maXzE’Yw,y ‘y - Z|n f'Yz.y |Z - xlr ‘d2| ’

IN
AR

1/p - 1/q
wd (5 o=al el (f Je el e
L

. 1 _
P, q>1w1th;+6—

maxzey, |2 =2l [, ly—2|"|dz],

which proves the desired inequality (3.12).
From Theorem 2 we also have

n —x k _x n+1
|f =X s w0 - £ W

*/ ly — 2["

<—,H/ ly— 21" |2 — " 2] = —H/ ly— 2™ |dz],
n: ~

@,y

FOD () = £ () a2

which proves (3.13). O
We also have:

Corollary 5. Let f: D C C — C be an analytic function on the domain D and vy,
x € D. Suppose v is a smooth path parametrized by z (t), t € [a,b] with z (a) = x
and z (b) =y and x # y, then

n
—2)" 71, (n)
(3.16) f(k) (z) - 7 ) = 1 (@)
;O Gy | |
< i/ y— " |0 () - LW ST
n Yoy y—=
_n (n+1) _ w
maxXzey, | 2"\ f y—a 717y71’
L (n+1) _ M@= (@)
<o ([, Iy == |dz|) | T T
n.

4211
D, q>1wzth5+a—1,

n W) - (@)
f( +1) _ yyfx

n
Lty = 2" 1d2)

Vi, 200
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We observe that

Ve y—
- / ly— 2" | (2) (y — ) — / £ (w) duo |d2]
Ya,y Y,y
:/ ly— 2" |fO (@) [ dw— [ FOD (w) dwl |dz]
Yy Yo,y Va,y
_ | (n+1) _ p(n+1) d d
/ e / (1@ = g0 ) a6
=/ ly — z["
Y,y
(n+1) _ (n+1) d + (n+1) _ (n+1) d d
AL (@ = ) o / (540 (2) = 50 () ) 2

T,z

s/ ly — 2|
;

[ @ s ) | [ (507 @) - 10 @) aw

s/ ly — 2"
:

T,y

+

] a2

’f(n+1) (2) — D (w)' |dw| +/ ‘f(n+1) (z) — fitY) (w)‘ |dw|] |dz|
Vzy
=: B,

|
g

T,z

Since

/ ‘f(n+1) (Z) _ f(n-‘rl) (’U))‘ |d’LU| < Hf(n-‘rQ)
Yo,z

/ 12 — w| |duw|
Ya,z,%0 Jy, .

/ 12— w] |dwl
Va,y, 0 Sy,

< H F+2)

and

j[ ‘f<n+1)(z)—-f(n+1)(ug’|du4 < Hf(n+2)

Vz.y

/ 12 — w| |duw|
Vz,y, Vzy

/ 12— w||duw|.
Yoy, Iy,

SHfm+m
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z,y

Therefore
B, < / ly — Z|n
Ya,y
Al [ el ][ e wllawl| e
Va2, Jy, Ve,V
<[] wwﬁ/ 2wl o] + | vmwwbw
Va,y, Sy, Yo,z v

_ Hf(n+2)

/"|yz"</'|zwumw>u4
Ya,y,® Y,y Yo,y

and by (3.16) we get

- —z)" —x)"
(317) P@»—}%@kﬂ)fmcw—%;+$!pwww—fwwww

y—x

[ ow=elr ([l ulidul ) 1a.
Tow, % gy Y,y

|dz|

We also have:

Corollary 6. Let f: D C C — C be an analytic function on the domain D and vy,

x € D. Suppose v is a smooth path parametrized by z (t), t € [a,b] with z (a) = x
and z (b) =y, then

(3.18) ‘f (y) — zn: Mf(k) () — (y — z)n+1 f(n+1) (z) + f(n+1) (y)

e (n+1)! 2
1 nl oin FHD) () 4 D) (y
<o [ e - 28 ®)|4
)y 2
z,y
, (1) () 4 (4D
max.e,, |y —z[" |[fF) - S )42-1‘ (y)‘ ,

Vol

1/p (n+1) (4 (n+1)
1 (fyw Iy—ZI””Idzl) Hf<”+1> L@ ()

- 1 1 _
p,q>1wzth5+5—1,

IN

Ya,yod

Flot1) SO @)+ ()
3

n
Lo, Iy = 2]"1de]

Vi, 200
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Observe that
n FU (@) + D (y
[y | o) - L0 g,
REN

_ / |y B Z‘n ’f(n-&-l) (,z) — f(n-i—l) ($> T f(n-i—l) (z) _ f(n+1) (y) ’
v 2

|dz|

z,y

1/ N
<5 ly — 2| [
2 v

1 n n
<3 [ e[
v

z,y

1
<2 (n+2)‘
<3

f(”+1) (2) f(n+l) (a:)’ + ‘f(n+1) (z) — f(n+1) (y)H |dz]

2 = al + | £+

Vz,2,0 Vz,y,

[ t=alt = ol + 1y - 2z,
Ya,y, R Y,y

w—z@ua

then by (3.18) we get

(3.19) ‘f (y) — i: (y — “’)kf(k) (@) — (y — )" FOtD () + fr+D) ()

e (n+1)! 2
1 wl on f(n+1) T +f(n+1) y
n! J, 5
z,y
1
. (n+2) o B 3
= o) Hf ‘700/7 ) ly — 2" [lz — x| + |y — 2] |d=|.

4. EXAMPLES FOR CIRCULAR PATHS

Let [a,b] C [0,27] and the circular path [, ;) r centered in 0 and with radius
R>0

z(t) = Rexp (it) = R(cost + isint), t € [a,b].
If [a,b] = [0, 7] then we get a half circle while for [a,b] = [0,27] we get the full
circle.

If u = Rexp (it) and w = Rexp (is) then

w—u = Rlexp (is) — exp (it)] = R[cos s + isins — cost — isint]

= Rcoss — cost + i (sins —sint)].

. t+ s . s—t
coss —cost = —2¢in [ —— | sin
2 2
. . . [s—t t+s
sins —sint = 2sin | —— | cos ,
2 2

Since

and
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hence

1u—u=}%L2$n(t;S>$n(8;t>+2mm<€gt)aw<t;8>}
:2R$n(sgt>[—ﬁn(t;S>+%am<t28>}
_QRmm( ;t)[am<t;s>+iﬁn<t;s>}
_zRign(S2t)exp{<t;S>i}-

Let f : D € C— C be an analytic function on the domain D and y, z € D.
Suppose Va4, C D and such that z = Re', y = Re® and z = Re® then

dz = Rie'dt
(y — z)F = 28 R** sin® (b;a) exp [n <b—|2—a) z] ,

(y—2)" =2"R"i" sin" <I)2—t> exp {n (t—;b> z}

and by (2.1) we get for n > 0 that

X 2k Rkik sin® (252) exp [n (252) 4 )
(41) f(Rezb) Z ( Qk') [ ( 2 ) ]f(k:) (Reza)
k=0
1 ’ npn:n t+0bY . (n+1) it . it
+ — o 2 R™i" sin™ exp |n|—— )| f (Re )Rze dt
kk b—a b+a

M:
&
W
2.
:3
~—~
[V}
S—
oD
k)
o]
3
— w
]
SN—
~.

=
=

—

=

o)

.
S]
SN—

27l —_ .
+ —|R”+1i"+1 / sin™ (b> exp { ({n <t+b> + t}) z} fntn) (Re”) dt
n! o 2 2

If a =0, R€ D and Re® € D, then from (4.1) we get

n k kiksink b exp |n b i
(M)N&MZZQR (3P[Q”ﬂmm

k=0

n b _ .
+ z'R"Hi"H/ sin™ (l)t) exp { ( [n (W)) + t]) z} ftn (Re’t) dt

We have from (4.2) that

" 9k Rkik gin® (55%) exp [n (552)

43) |f (R =Y y )2 o) (e

k=0
b
b—t
[ (250
R Ja 2

< anJrl H (
— nl

for n > 0.
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Since

b _ b : b—t n _ n _ n+1
/ sin” b=t dt :/ sin (%) bt dt < R Gl
o 2 o % 2 2 n+1

hence by (4.3) we get for n > 0 that

" 9k Rkik sin® (b_T“) exp [n (bT“

(44) |f (Re®) =3 0 )] F®) (Re'™)

k=0

‘f(n+1) H Rn+1 (b o a)n+1 )

Yla,b],R

1
P —
~ (n+1)! ‘
If a=0, R€ D and Re® € D, then by (4.4) we get

" 28 RFiF sin® (8) exp [n () ]

(45) |f(Re®) =Y . ™ (R)

(1]

k=0
< ; H (n+1)‘ prtlpntl
~ (n+1)!

Y[0,b],R
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