SOME EXTREME POINTS

LOREDANA CIURDARIU

ABSTRACT. In this paper we will obtain using a method with principal minors,
the local extreme points for two special functions which can be used for a
Young-type inequality.

1. Introduction

The classical inequality of Young is
a’b*™" < va+ (1 —v)b,

where @ and b are distinct positive real numbers and 0 < v < 1, see [9)].

In the paper of [1] are proven new inequalities which extend many generalizations
of Young ’s inequality given before. The following inequality is a refinement of the
left-hand side of a refinement of the inequality of Young proved in 2010 and 2011
by Kittaneh and Manasrah [8] and [7]. Many generalizations and refinements of
Young’s inequality are given also in [2], [3], [4], [5] and references therein.

Theorem 1. ([1]) Let A, v and 7 be real numbers with A>1 and 0 < v <7 < 1.
Then
A A(a,b) - Gy(a,b)? 11—\
- (=

T A;(a,b)* — Gr(a,b)* 1—7
for all positive and distinct real numbers a and b. Moreover, both bounds are sharp.

2. Local extreme points using principal minors of Hessian matrix for a
special two variable function

We soppose that a, b > 0 are two distinct numbers. In [1]), the authors proved in
Theorem 1 a generalization of Young inequality considering a function where they
used the variable v instead of % and variablse a and b.We shall consider instead the
two variables function

1 1 1 p o a
fla,b) = —a? + —b? — ab — by (ap—i— — b1 —qn bq1> ,
p q p
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where a, b >0, a %21, b# 1, p, p1, ¢, g1 > 0 and we study some properties of
this function.
We will find below the stationary points of this function.

Proposition 1. (a) The stationary points of previous function are A(b?1,b), for
every b >0 and b # 1, if%—i—%:l andp%—i—q%:l.

(b) The local extreme points of previous function are A(b?~1,b), if in adittion,
p > p1 > 1. In this case previous local extreme points are local minimum points.

Proof. (a) In order to find the stationary points it is necessary to solve the sistem:
{ 9 — _p4aritpar =0

Af _pa—1(1_ pa) _ P, ar L =
9 — (1 qlp) a+ DigFpa ' =0

, which, by calculus becomes,

[ T
ar1 1bt11 1 =1
a=bi"1 ’

o
because we can replace b1 by —
aP1

account that % # 1 in our hypothesis, when p; # p.

— in the second equation and take into

We can see that the second equation of our last system, a = b?~! verifies the
first equation of the system, avi par Tt = 1,if % + % =1 and p% + qil =1.

Therefore the stationary points are the points, A(b9~1,b). We see also that
F(b71b) = 0.

(b) Now we will compute the Hessian matrix of the function f in these points.
The partial second derivatives of the function f will be:

82f p P _9 4
ot = (1) B,

a2f 82f q »_1,49_ 1
= fr— —]_ —Qa P1 bq
9adb _ 9boa T i
32f p1q pbiq [ q 2.4 _3
S T Y R I o A R
ob? (g )( q1p * a@ip \q1 anon
Then A; = (z% — 1) a~'h > 0if pﬂl >1and A; <0 if pﬂl < 1. By calculus we
have,
2
e (2B ()
P1 q1p ap \q1 q1
or

AQ = Oa
by calculus, taking into account that % + % =1 and p% + q% =1.
Because A; > 0, Ay = 0. that means they are greather or equal than zero and
the principal minors of Hessian of f are positive , i.e. d; = Ay > 0 and

a p1q piq [ q a p—p1
PR A Y PN
2 b{(q )< Q1P> @p \q1 bpi(p—1)2

then the Hessian matrix of the function f is semi-positive definite.The used criterion
is like a generalization of Sylvester criterion and can be found also on [10], [11] and
many books and papers. |
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FIGURE 1. The function g(x,y) on [0,16] x [0,16] when p = Z,¢ = 1.

Here the function
g\r,y) = 7 7?/ Yy

from Figure 1 is used in the classical Young’s inequality for particular values of p
and q.

3. Local extreme points using principal minors of Hessian matrix for a
special three variable function

We suppose that a, b, ¢ > 0 are three distinct numbers and p;, p2, ps > 0,

’ ’ / . 1 1 1 1 1 1
p17p2ap3>OWIthE+E+E_landP;+p,2+pé_1'

Theorem 2. The stationary points for the three variables function

o

1 1 1 e 1 1 BL B2 o2
fla,b,c) = P b2 —cPs —gbe— 2L (,apl + b2+ —cP —aribr2cr )
D1 D2 D3 P1 \Pq Do D3

w ~

are A(C%,C%,C) with ¢ > 0, ¢ # 1.
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Proof. Like before first we will find the stationary points from the following system:
P1_q P2 P3

9 = —bc+arr brzcrs =0

ga ’ 4 Bl 1 P2 1 B3
O =l (1 - D12 ) —ge(1—BB2grm pra s =0
P1 p, P1 p,
5 / / L1 P21 B3
8—f =cP3l (1 BB ) _gp(1—Dalsgr pra  crs =0
c P1 pg P1 pg

, which, by calculus becomes,

’ ’ P1_q Pf/Z_l L?_l

bz (1 —Brp2 ) —gpe (1 — BrP2gri pra v
P1 p, p1 p,
4 ’ 211 B2 41 B3
P31 -0k ) —ghe(1—BaBigr  pr2  ¢Ps
P1 py P1 pgy
When ¢ # 1, by calculus using the hypothesis that pil + p% + p% = 1 and
1 1 1 . p3 r3
+ = 4+ = = 1 we obtain a = c¢rr and b = crz. If ¢ = 1 then we have, the

E Py P3
stationary point A(1,1,1). but then a, b, ¢ are not distinct numbers. We find by
an easy calculus that,

P3 P3

flerr,erz,¢) =0.

The function
Fz,y) = 3.3 + éy% — a2y — ?(%m% + gy% — xsy™)
’ 7 7 75 5
in the Figure 2 is a particular case from the generalized Young’s inequality for
A =1, given by [1].
Theorem 3. The local extreme points of the above function are A(c%,c%,c). If
the following conditions are satisfied

D1 1 p1 p2, 1 p1 p3
——1> Inax{—|—, - 7/|3 *‘*f - */|}7
D1 P2 Py Py P3 P D3
R S T (2 - )’
SR N ACACNE B RCACNY SO v, o
T BB py BB P1p2p3<g_@)(@_@)'
Py Do Dy D3 P, Py P, Py

then these points are local minimum points for the function f.

Proof. We use the criterion with principal minors because we will see that the third
determinant , As from Sylvester criterion will be zero.

Bu,t for the begining it is necessary to compute the second derivatives of the
p3

p3
function f and then the Hessian matrix in our points A(c?1,cP2,c).

We have,
2 B2 2z 23
6f: ]i,l_l a®’1 bpchg_
0a? o)

0? : / BBy B
7f — (p2_1)b1)2_2 1_p71pi,2 +&p7/2 11/2_1 aP1br2 cPs
ob2 P1 Dy P1 Py \ P2
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FIGURE 2. The function f(x,y) on [0,16] x [0,16] when p = I,¢ =
gapl = qul =

ot

|

0 ’ ’ } o2 2o
agz%_nwzo_mm>+mm<m_oww%%

Pips)  PLps \Dj
2 2 o1 By B
6f — 8f :—C—{-pf/zapl bIJ2 Cpg,
0adb  0boa Do
? 2 By ooy
0 f _ 0 f =—b+ ]i?apl bP2 cP3
dadc  Ocda D5
2 2 ! Bl P2y B
OF _OF _  papaps h Rt
oboc dcdb P1Py P3

In our points, these derivatives, by calculus, become:

2 . )
O (o8, ch o) = (p} - 1) 0=,
by

)

2 L2 ! 2
ﬂ(c%70%7c): pz_l_&@+& p,2 Cp3(1*%)
p1py D1 (py)?
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PI s o= (py—1- P28 Py DS
gc T pips  p1(ps)?
O%f »s s 0%f »s s
Jadh "0 = g (e = ¢
O*f  pa s O?f  wm m P3
aaac(cm ,CP2 c) = Deda (cm ,CP2 C) = cp2
O?f »s O?f  »a m s [ p)
abac(cm ’cpz’c) = acab(cpz’cpz’c) = ¢r1

Then we replace thiese values in the Hessian matrix,

) Cp3*2’

_1)2}

82 P3 Pr3 82 Pr3 P3 82 r3
g (coenod) (e o) ggglen
M= | ggalepsepa gulen.eniol gelen
8f(cfl3 cre ¢) 6f(cﬁ cra c) 2f (err
Ocda ’ ’ Ocdb ’ ’ dc?
and we compute the three determinant from the Sylvester’s criterion, Ay, As
and As.
We get,
Ay = (p,l - 1) =),
Dy
p1 pip3 | p P} P2
A2:CQ{</—1> pp—1—-2=2 42 ,22 - (/
P pipy  p1(p2) Py
and

Az = detH (A) =0,

like in the case of the two variable function f which have two variables.

Therefore we will use the principal minors criterion, see [10], [11] which implies
the calculation of all determinants obtained by elimination of the same rows and
columns of the Hessian matrix, in this case. These determinants must be greather

or equal with zero in order that the Hessian to be semi-positive definite.

In this way we have, in addition, the following principal minors:

! 2 ! 2
! - pP1pP3 | P1 D3
A :Cp32p3_]-_77/ T )
1212 [ AU
A (@) [ _PiPE Py P
1313 = —1l-—="F+=-= ,
p1py  p1(py)?
A2323 = Ay,
/9 ’ 9 g , 9
An:aQ{ps—l—&pfi3 &1332.]02_1_&177/2 &17122
pips  p1(p3) pipy  p1(py)

M

_ PiP2Dps

P15 Py

)



C (P npd  p P s\
Bz =b {(p; 1) b D1 p,3 * P (pz/s)Q ( : ) J
and
Agy = Ay
We can notice that Ay, > 0 and Alz;5 > 0 are fulfilled when p; > p; because
the conditions Ay > 0 and A;Q > 0 are stronger. So we have thus only the

following three conditions: As > 0, A,QQ >0 and A/ll > 0.

By calculus these conditions will be: py (p—,l - 1) > |2 — B
Py Py Pa

ps (B —1) = |2 - 2|, and
Py Ps

Py
2
R B s (2 -2)
R A R AN S Py P
- b1 _ P2 P1 P3
D2 v v p v 7 Py P2P3 (L _ P2 b1 _ p3
1 2 Py P2 Py Ps

Example 1. We choose p1 = 10, po = 2, p3 = % and p; =6, plg =3, p;, =2 and
the function f is,

wlot
i
o

10 5 5
We see that Az = 0 and the three hypothesis of Theorem 3 are satisfied, where

1 1 2 5 3/1 1 1 s
f(a,b7c)—a10+2b2+c2—abc—<6a10+3b2+2c2—a b3c )

2 _1 1
3 3 1
Hi(A)=| -t =T 1
! PR B
1 2 16
and the principal minors are positive.
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