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1 Introduction
The Indian mathematician Ramanujan (see [1, p. 531] and [11, p. 276]) claimed the following

asymptotic expansion for the nth harmonic number:

Hn :=

n∑
k=1

1

k
∼ 1

2
ln(2m) + γ +

1

12m
− 1

120m2
+

1

630m3
− 1

1680m4
+

1

2310m5

− 191

360360m6
+

29

30030m7
− 2833

1166880m8
+

140051

17459442m9
− · · · (1.1)

as n→∞, where m = n(n+ 1)/2 is the nth triangular number and γ is the Euler-Mascheroni constant.
Ramanujan’s formula (1.1) has been the subject of intense investigations and has motivated a large

number of research papers (see, for example, [2, 4–10, 12, 13]).
Villarino [12, Theorem 1.1] first gave a complete proof of expansion (1.1) in terms of the Bernoulli

polynomials. Recently, Chen [5] gave a recursive relation for determining the coefficients of Ramanujan’s
asymptotic expansion (1.1), without the Bernoulli numbers and polynomials

Hn ∼
1

2
ln(2m) + γ +

∞∑
`=1

a`
m`

, n→∞, (1.2)
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where the coefficients a` (` ∈ N := {1, 2, . . .}) are given by the recurrence relation

a1 =
1

12
, a` =

1

2`+1`

 1

2`+ 1
−
`−1∑
j=1

2j+1aj

(
2`− j

2`− 2j + 1

) , ` ≥ 2. (1.3)

Mortici and Villarino [10, Theorem 2] and Chen [2, Theorem 3.3] obtained the following asymptotic
expansion:

Hn ∼
1

2
ln

(
2m+

1

3

)
+ γ +

∞∑
j=2

ρj

(2m+ 1
3 )j

, n→∞. (1.4)

Moreover, these authors gave a formula for determining the coefficients ρj in (1.4). From a computational
viewpoint, (1.4) is an improvement on the formula (1.2).

Chen [2, Theorem 3.1] obtained the following asymptotic expansion:

Hn ∼ γ +
1

2
ln

(
2m+

1

3
+

∞∑
`=1

ω`
(2m)`

)
, n→∞, (1.5)

with the coefficients ω` (` ∈ N) given by the recursive relation

ω1 = − 1

90
, ω` = b2(`+1) −

`−1∑
j=1

(
2`− j − 1

2`− 2j

)
ωj , ` ≥ 2, (1.6)

where bj are given by

bj =
∑

k1+2k2+···+jkj=j

(−2)k1+k2+···+kj

k1!k2! · · · kj !

(
B1

1

)k1 (B2

2

)k2
· · ·
(
Bj
j

)kj
, (1.7)

and Bj are the Bernoulli numbers and the summation is taken over all nonnegative integers kj satisfying
the equation k1 + 2k2 + · · ·+ jkj = j.

It follows from [3, Corollary 3.1] that

Hn − ln

(
n+

1

2

)
− γ =

1
48

m+ 17
80

+O

(
1

n6

)
, n→∞. (1.8)

In this paper, we provide a method to construct a continued fraction approximation based on a given
asymptotic expansion. We establish some asymptotic expansions for the harmonic number which employ
the nth triangular number. Based on these expansions, we derive the corresponding continued fraction
approximations for the harmonic number. All results of the present paper are motivated by (1.1), (1.4),
(1.5) and (1.8).

The following lemma will be useful in pour present investigation.

Lemma 1.1. Let a1 6= 0 and

A(x) ∼
∞∑
j=1

aj
xj
, x→∞
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be a given asymptotic expansion. Define the function B by

A(x) =
a1
B(x)

.

Then the function B(x) = a1/A(x) has asymptotic expansion of the following form

B(x) ∼ x+

∞∑
j=0

bj
xj
, x→∞,

where

b0 = −a2
a1
, bj = − 1

a1

(
aj+2 +

j∑
k=1

ak+1bj−k

)
, j ≥ 1. (1.9)

Proof. We can let
a1
A(x)

∼ x+

∞∑
j=0

bj
xj
, x→∞, (1.10)

where bj (for j ∈ N0 := N ∪ {0}) are real numbers to be determined. Write (1.10) as

∞∑
j=1

aj
xj

(
x+

∞∑
k=0

bk
xk

)
∼ a1,

∞∑
j=0

aj+2

xj
∼ −

∞∑
j=0

aj+1

xj

∞∑
k=0

bk
xk
,

∞∑
j=0

aj+2x
−j ∼

∞∑
j=0

(
j∑

k=0

(−ak+1bj−k)

)
x−j . (1.11)

Equating coefficients of equal powers of x in (1.11), we obtain

aj+2 = −
j∑

k=0

ak+1bj−k, j ≥ 0,

For j = 0 we obtain b0 = −a2/a1, and for j ≥ 1 we have

aj+2 = −
j∑

k=1

ak+1bj−k − a1bj , j ≥ 1,

which gives the desired formula (1.9).

Lemma 1.1 provides a method to construct a continued fraction approximation based on a given
asymptotic expansion. We state this method as a consequence of Lemma 1.1.
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Corollary 1.1. Let a1 6= 0 and

A(x) ∼
∞∑
j=1

aj
xj
, x→∞ (1.12)

be a given asymptotic expansion. Then the functionA has the following continued fraction approximation
of the form

A(x) ≈ a1

x+ b0 +
b1

x+ c0 +
c1

x+ d0 +
. . .

, x→∞, (1.13)

where the constants in the right-hand side of (1.13) are given by the following recurrence relations:

b0 = −a2a1 , bj = − 1
a1

(
aj+2 +

∑j
k=1 ak+1bj−k

)
c0 = − b2b1 , cj = − 1

b1

(
bj+2 +

∑j
k=1 bk+1cj−k

)
d0 = − c2c1 , dj = − 1

c1

(
cj+2 +

∑j
k=1 ck+1dj−k

)
. . . . . .

(1.14)

Remark 1.1. Clearly, aj =⇒ bj =⇒ cj =⇒ dj =⇒ . . .. Thus, the asymptotic expansion (1.12) =⇒ the
continued fraction approximation (1.13). Corollary 1.1 transforms the asymptotic expansion (1.12) into
a corresponding continued fraction of the form (1.13), and provides the system (1.14) to determine the
constants in the right-hand side of (1.13).

2 Main results
Theorem 2.1 transforms the asymptotic expansion (1.1) into a corresponding continued fraction of

the form (2.1).

Theorem 2.1. Let m = 1
2n(n+ 1). As n→∞, we have

Hn ≈
1

2
ln(2m) + γ +

a1

m+ b0 +
b1

m+ c0 +
c1

m+ d0 +
. . .

, (2.1)

where

a1 =
1

12
, b0 =

1

10
, b1 = − 19

2100
, c0 =

91

190
, c1 = −16585

83391
, d0 =

2357167

1638598
, . . . . (2.2)

Proof. Denote

A(m) = Hn −
1

2
ln(2m)− γ.
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It follows from (1.2) that

A(m) ∼
∞∑
`=1

a`
m`

=
1

12m
− 1

120m2
+

1

630m3
− 1

1680m4
+

1

2310m5

− 191

360360m6
+

29

30030m7
− 2833

1166880m8
+

140051

17459442m9
− · · · (2.3)

as m → ∞, where the coefficients a` (` ∈ N) are given in (1.3). Then, A(m) has the continued fraction
approximation of the form

A(m) = Hn −
1

2
ln(2m)− γ ≈ a1

m+ b0 +
b1

m+ c0 +
c1

m+ d0 +
. . .

, m→∞, (2.4)

where the constants in the right-hand side of (2.4) can be determined using (1.14). Noting that

a1 =
1

12
, a2 = − 1

120
, a3 =

1

630
, a4 = − 1

1680
, a5 =

1

2310
, a6 = − 191

360360
, . . . ,

we obtain from the first recurrence relation in (1.14) that

b0 = −a2
a1

=
1

10
,

b1 = −a3 + a2b0
a1

= − 19

2100
,

b2 = −a4 + a2b1 + a3b0
a1

=
13

3000
,

b3 = −a5 + a2b2 + a3b1 + a4b0
a1

= − 187969

48510000
,

b4 = −a6 + a2b3 + a3b2 + a4b1 + a5b0
a1

=
3718037

700700000
.

We obtain from the second recurrence relation in (1.14) that

c0 = −b2
b1

=
91

190
,

c1 = −b3 + b2c0
b1

= −16585

83391
,

c2 = −b4 + b2c1 + b3c0
b1

=
11785835

41195154
.

Continuing the above process, we find

d0 = −c2
c1

=
2357167

1638598
, . . . .

The proof is complete.
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Remark 2.1. It is well known that

Hn − lnn− γ ∼ −
∞∑
k=1

Bk
knk

=
1

2n
− 1

12n2
+

1

120n4
− 1

252n6
+ . . . , n→∞, (2.5)

where Bk are the Bernoulli numbers. Following the same method as was used in the proof of Theorem
2.1, we derive

Hn ≈ lnn+ γ +
1
2

n+ 1
6 +

1
36

n+ 13
30+

9
25

n+ 17
630

+

. . .

, n→∞. (2.6)

Theorem 2.2. Let m = 1
2n(n+ 1). The harmonic number has the following asymptotic expansion:

Hn ∼ ln

(
n+

1

2

)
+ γ +

∞∑
`=1

r`
m`

= ln

(
n+

1

2

)
+ γ +

1

48m
− 17

3840m2
+

407

322560m3
− 1943

3440640m4

+
32537

75694080m5
− 25019737

47233105920m6
+ . . . (2.7)

as n→∞, where the coefficients r` (` ∈ N) are given by the recurrence relation

r1 =
1

48
, r` =

1

2`+1`

 1

22`(2`+ 1)
−
`−1∑
j=1

2j+1rj

(
2`− j

2`− 2j + 1

) , ` ≥ 2. (2.8)

Proof. Denote

In = Hn − ln

(
n+

1

2

)
− γ and Jn =

∞∑
`=1

r`
m`

.

Let In ∼ Jn and

∆In := In+1 − In ∼ ∆Jn := Jn+1 − Jn

as n→∞, where r` (` ∈ N) are real numbers to be determined.
It is easy to see that

∆In =
1

n+ 1
−
{

ln

(
1 +

1

2(n+ 1)

)
− ln

(
1− 1

2(n+ 1)

)}
=

1

n+ 1
−
∞∑
k=1

(−1)k−1 + 1

2kk(n+ 1)k
= −

∞∑
`=1

1

22`(2`+ 1)
(n+ 1)−2`−1. (2.9)
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and

∆Jn =

∞∑
k=1

2krk
(n+ 1)2k

(
1 +

1

n+ 1

)−k
−
∞∑
k=1

2krk
(n+ 1)2k

(
1− 1

n+ 1

)−k
. (2.10)

Direct computation yields

∞∑
k=1

2krk
(n+ 1)2k

(
1 +

1

n+ 1

)−k
=

∞∑
k=1

2krk
(n+ 1)2k

∞∑
j=0

(
−k
j

)
1

(n+ 1)j

=

∞∑
k=1

2krk
(n+ 1)2k

∞∑
j=0

(−1)j
(
k + j − 1

j

)
1

(n+ 1)j

=

∞∑
k=1

k∑
j=1

2jrj(−1)k−j
(
k − 1

k − j

)
1

(n+ 1)k+j

=

∞∑
`=2

b `2 c∑
j=1

2jrj(−1)`
(
`− j − 1

`− 2j

)
1

(n+ 1)`
(2.11)

and
∞∑
k=1

2krk
(n+ 1)2k

(
1− 1

n+ 1

)−k
=

∞∑
k=1

2krk
(n+ 1)2k

∞∑
j=0

(
−k
j

)
(−1)j

(n+ 1)j

=

∞∑
k=1

2krk
(n+ 1)2k

∞∑
j=0

(
k + j − 1

j

)
1

(n+ 1)j

=

∞∑
k=1

k∑
j=1

2jrj

(
k − 1

k − j

)
1

(n+ 1)k+j

=

∞∑
`=2

b `2 c∑
j=1

2jrj

(
`− j − 1

`− 2j

)
1

(n+ 1)`
. (2.12)

Substituting (2.11) and (2.12) into (2.10) yields

∆Jn =

∞∑
`=2

b `2 c∑
j=1

(
(−1)` − 1

)
2jrj

(
`− j − 1

`− 2j

)
1

(n+ 1)`
. (2.13)

Replacement of ` by 2`+ 1 in (2.13) yields

∆Jn = −
∞∑
`=1

∑̀
j=1

2j+1rj

(
2`− j

2`− 2j + 1

)
(n+ 1)−2`−1. (2.14)

Equating coefficients of the term (n+ 1)−2`−1 on the right-hand sides of (2.9) and (2.14) yields

∑̀
j=1

2j+1rj

(
2`− j

2`− 2j + 1

)
=

1

22`(2`+ 1)
, ` ≥ 1. (2.15)
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For ` = 1 in (2.15) we obtain r1 = 1
48 , and for ` ≥ 2 we have

`−1∑
j=1

2j+1rj

(
2`− j

2`− 2j + 1

)
+ 2`+1`r` =

1

22`(2`+ 1)
,

which gives the desired formula (2.8).

Remark 2.2. We here gave the recursive relation (2.8) for determining the coefficients r` in expansion
(2.7), without the Bernoulli numbers and polynomials.

Remark 2.3. Denote

A∗(m) = Hn − ln

(
n+

1

2

)
− γ.

It follows from (2.7) that

A∗(m) ∼
∞∑
`=1

r`
m`

=
1

48m
− 17

3840m2
+

407

322560m3
− 1943

3440640m4

+
32537

75694080m5
− 25019737

47233105920m6
+ . . . (2.16)

as m→∞, where the coefficients r` (` ∈ N) are given in (2.8). Following the same method as was used
in the proof of Theorem 2.1, we derive

Hn ≈ ln

(
n+

1

2

)
+ γ +

λ1

m+ u1 + λ2

m+µ2+
λ3

m+µ3+

. . .

, (2.17)

where

λ1 =
1

48
, µ1 =

17

80
, λ2 = − 2071

134400
, µ2 =

117863

165680
,

λ3 = −15685119025

63409182144
, µ3 =

2312217133079747

1351329470432240
, . . . . (2.18)

Thus, we develop the approximation formula (1.8) to produce a continued fraction approximation.

Theorem 2.3. Let m = 1
2n(n+ 1). The harmonic number has the following asymptotic expansion:

Hn ∼
1

2
ln

(
2m+

1

3

)
+ γ +

∞∑
`=2

s`
m`

=
1

2
ln

(
2m+

1

3

)
+ γ − 1

720m2
+

37

45360m3
− 181

362880m4
+

503

1197504m5

− 1480211

2802159360m6
+

2705333

2802159360m7
− 793046533

326651719680m8
+

470463477509

58650316268544m9
− . . .

(2.19)
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as n→∞, with the coefficients s` given by

s` = a` −
(−1)`−1

6`2`
, ` ≥ 2, (2.20)

where a` are given in (1.3).

Proof. We find by (1.2) that, as n→∞,

Hn −
1

2
ln

(
2m+

1

3

)
− γ = Hn −

1

2
ln(2m)− γ − 1

2
ln

(
1 +

1

6m

)
∼
∞∑
`=1

a`
m`
− 1

2

∞∑
`=1

(−1)`−1

`(6m)`
.

Noting that a1 = 1
12 , we obtain, as n→∞,

Hn ∼
1

2
ln

(
2m+

1

3

)
+ γ +

∞∑
`=2

{
a` −

(−1)`−1

6`2`

}
1

m`
.

The proof is complete.

Theorem 2.4. Let m = 1
2n(n+ 1). As n→∞, we have

Hn ≈
1

2
ln

(
2m+

1

3

)
+ γ +

p1

m2 + 37
63m+ q1 + p2

m+q2+
p3

m+q3+

. . .

, (2.21)

where

p1 = − 1

720
, q1 = − 451

31752
, p2 =

228764

2750517
, q2 =

21448004509

11990893824
,

p3 = −36637398233630775

36226136230395904
, q3 =

86442719924955272247584297

26612223343933404862713600
, . . . . (2.22)

Proof. Denote

F (m) = Hn −
1

2
ln

(
2m+

1

3

)
− γ.

It follows from (2.19) that

F (m) ∼
∞∑
`=2

s`
m`

= − 1

720m2
+

37

45360m3
− 181

362880m4
+

503

1197504m5
− 1480211

2802159360m6

+
2705333

2802159360m7
− 793046533

326651719680m8
+

470463477509

58650316268544m9
− . . . (2.23)

as m→∞, where the coefficients s` (` ∈ N) are given in (2.20).
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Define the function G(m) by
F (m) =

s2
G(m)

.

We obtain by (2.23) and Lemma 1.1 that

G(m) =
s2

F (m)
∼ s2∑∞

`=2 s`m
−` = m

(
s2∑∞

`=1 s`+1m−`

)
= m2 +

37

63
m− 451

31752
+A∗∗(m),

where

A∗∗(m) ∼ 228764

2750517m
− 21448004509

144171099072m2
+

3180925176497

9082779241536m3

− 898929405728511653

856033777956284928m4
+

2008288563825356198279

512336216106836529408m5
− · · · , (2.24)

We then obtain

F (m) ∼
− 1

720

m2 + 37
63m−

451
31752 +A∗∗(m)

. (2.25)

Following the same method as was used in the proof of Theorem 2.1, we derive the continued fraction
approximation of A∗∗(m) (we here omit the derivation of (2.26))

A∗∗(m) ≈ p2
m+ q2 + p3

m+q3+
. . .

(2.26)

as m → ∞, where pj and qj (for j ≥ 2) are given in (2.22). Substituting (2.26) into (2.25) yields
(2.21).

Theorem 2.5. Let m = 1
2n(n+ 1). As n→∞, we have

Hn ≈
1

2
ln

2m+
1

3
+

α1

m+ β1 + α2

m+β2+
α3

m+β3+

. . .

+ γ, (2.27)

where

α1 = − 1

180
, β1 =

53

126
, α2 = − 26329

317520
, β2 =

42684239

36491994
,

α3 = −487447163992501

785108985906960
, β3 =

2049473595024948803087

847043761130064882714
, . . . . (2.28)

Proof. Write (1.5) as

e2(Hn−γ) ∼ 2m+
1

3
+

∞∑
`=1

d`
m`

, n→∞,

with the coefficients d` given by

d1 = − 1

180
, d` =

ω`
2`
, ` ≥ 2, (2.29)
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where ω` are given in (1.6). Denote

A∗∗∗(m) = e2(Hn−γ) − 2m− 1

3
.

We have, as m→∞,

A∗∗∗(m) ∼
∞∑
`=1

d`
m`

= − 1

180m
+

53

22680m2
− 3929

2721600m3
+

240673

179625600m4
− 488481881

267478848000m5

+
8834570273

2521943424000m6
− 652512638837083

72026704189440000m7
+ . . . . (2.30)

Following the same method as was used in the proof of Theorem 2.1, we derive

A∗∗∗(m) ≈ α1

m+ β1 + α2

m+β2+
α3

m+β3+

. . .

(2.31)

as m → ∞, where αj and βj are given in (2.28). We here omit the derivation of (2.31). Formula (2.31)
can be written as (2.27).

3 Comparison
Define the sequences {un}n∈N, {vn}n∈N, {xn}n∈N and {yn}n∈N by

Hn ≈
1

2
ln(2m) + γ +

1
12

m+ 1
10 +

− 19
2100

m+ 91
190+

− 16585
83391

m+2357167
1638598

= un, (3.1)

Hn ≈ ln

(
n+

1

2

)
+ γ +

1
48

m+ 17
80 +

− 2071
134400

m+ 117863
165680+

− 15685119025
63409182144

m+2312217133079747
1351329470432240

= vn, (3.2)

Hn ≈
1

2
ln

2m+
1

3
+

α1

m+ β1 + α2

m+β2+
α3

m+β3+

. . .

+ γ = xn, (3.3)

Hn ≈
1

2
ln

(
2m+

1

3

)
+ γ +

p1

m2 + 37
63m+ q1 + p2

m+q2+
p3

m+q3

= yn, (3.4)

where αj and βj (for 1 ≤ j ≤ 3) are given in (2.28), pj and qj (for 1 ≤ j ≤ 3) are given in (2.22).
It is observed from Table 1 that, among approximation formulas (3.1)-(3.4), for n ∈ N, the formula

(3.4) would be the best one.
Table 1. Comparison among approximation formulas (3.1)-(3.4).
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n Hn − un Hn − vn xn −Hn Hn − yn
1 4.61559× 10−6 1.25202× 10−6 5.1364× 10−7 3.75796× 10−7

10 9.65618× 10−17 5.65274× 10−17 1.62639× 10−18 7.04292× 10−20

100 1.98169× 10−30 1.19140× 10−30 3.98848× 10−34 2.01636× 10−37

1000 2.11271× 10−44 1.27055× 10−44 4.29495× 10−50 2.19258× 10−55

In fact, we have (by using the Maple software), as n→∞,

Hn = un +O(n−14), Hn = vn +O(n−14), Hn = xn +O(n−16), Hn = yn +O(n−18).

4 Conjecture
In view (1.1), (2.7), (2.19) and (2.30), we propose the following conjecture.

Conjecture 4.1. (i) Let a` (` ∈ N) be given in (1.2). Then we have

(−1)`−1a` > 0, ` ∈ N (4.1)

and
2p∑
`=1

a`
m`

< Hn −
1

2
ln(2m)− γ <

2p+1∑
`=1

a`
m`

, (4.2)

where m = n(n+ 1)/2, n ∈ N and p ∈ N0 := N ∪ {0}.
(ii) Let r` (` ∈ N) be given in (2.8). Then we have

(−1)`−1r` > 0, ` ∈ N (4.3)

and
2p∑
`=1

r`
m`

< Hn − ln

(
n+

1

2

)
− γ <

2p+1∑
`=1

r`
m`

, (4.4)

where m = n(n+ 1)/2, n ∈ N and p ∈ N0.
(iii) Let s` (` ≥ 2) be given in (2.20). Then we have

(−1)`−1s` > 0, ` ≥ 2 (4.5)

and
2q∑
`=2

s`
m`

< Hn −
1

2
ln

(
2m+

1

3

)
− γ <

2q+1∑
`=2

s`
m`

, (4.6)

where m = n(n+ 1)/2, n ∈ N and q ∈ N.
(iv) Let d` (` ∈ N) be given in (2.29). Then we have

(−1)`d` > 0, ` ≥ 1 (4.7)

and

1

2
ln

(
2m+

1

3
+

2q−1∑
`=1

ω`
m`

)
< Hn − γ <

1

2
ln

(
2m+

1

3
+

2q∑
`=1

ω`
m`

)
, (4.8)

where m = n(n+ 1)/2, n ∈ N and q ∈ N.
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