Asymptotic expansions and continued fraction approximations for the harmonic number

Chao-Ping Chen* and Qin Wang
School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454000, Henan, China
Email: chenchaoping@sohu.com; wangqinttxs@ sohu.com

Abstract

In this paper, we provide a method to construct a continued fraction approximation based on a given asymptotic expansion. We establish some asymptotic expansions for the harmonic number which employ the nth triangular number. Based on these expansions, we derive the corresponding continued fraction approximations for the harmonic number.

2010 Mathematics Subject Classification. 40A05; 41A20
Key words and phrases. Harmonic number, Euler-Mascheroni constant, asymptotic expansion, continued fraction

1 Introduction

The Indian mathematician Ramanujan (see [1, p. 531] and [11, p. 276]) claimed the following asymptotic expansion for the nth harmonic number:

$$
\begin{align*}
H_{n}:=\sum_{k=1}^{n} \frac{1}{k} \sim & \frac{1}{2} \ln (2 m)+\gamma+\frac{1}{12 m}-\frac{1}{120 m^{2}}+\frac{1}{630 m^{3}}-\frac{1}{1680 m^{4}}+\frac{1}{2310 m^{5}} \\
& -\frac{191}{360360 m^{6}}+\frac{29}{30030 m^{7}}-\frac{2833}{1166880 m^{8}}+\frac{140051}{17459442 m^{9}}-\cdots \tag{1.1}
\end{align*}
$$

as $n \rightarrow \infty$, where $m=n(n+1) / 2$ is the nth triangular number and γ is the Euler-Mascheroni constant.
Ramanujan's formula (1.1) has been the subject of intense investigations and has motivated a large number of research papers (see, for example, $[2,4-10,12,13]$).

Villarino [12, Theorem 1.1] first gave a complete proof of expansion (1.1) in terms of the Bernoulli polynomials. Recently, Chen [5] gave a recursive relation for determining the coefficients of Ramanujan's asymptotic expansion (1.1), without the Bernoulli numbers and polynomials

$$
\begin{equation*}
H_{n} \sim \frac{1}{2} \ln (2 m)+\gamma+\sum_{\ell=1}^{\infty} \frac{a_{\ell}}{m^{\ell}}, \quad n \rightarrow \infty \tag{1.2}
\end{equation*}
$$

[^0]where the coefficients $a_{\ell}(\ell \in \mathbb{N}:=\{1,2, \ldots\})$ are given by the recurrence relation
\[

$$
\begin{equation*}
a_{1}=\frac{1}{12}, a_{\ell}=\frac{1}{2^{\ell+1} \ell}\left\{\frac{1}{2 \ell+1}-\sum_{j=1}^{\ell-1} 2^{j+1} a_{j}\binom{2 \ell-j}{2 \ell-2 j+1}\right\}, \quad \ell \geq 2 \tag{1.3}
\end{equation*}
$$

\]

Mortici and Villarino [10, Theorem 2] and Chen [2, Theorem 3.3] obtained the following asymptotic expansion:

$$
\begin{equation*}
H_{n} \sim \frac{1}{2} \ln \left(2 m+\frac{1}{3}\right)+\gamma+\sum_{j=2}^{\infty} \frac{\rho_{j}}{\left(2 m+\frac{1}{3}\right)^{j}}, \quad n \rightarrow \infty \tag{1.4}
\end{equation*}
$$

Moreover, these authors gave a formula for determining the coefficients ρ_{j} in (1.4). From a computational viewpoint, (1.4) is an improvement on the formula (1.2).

Chen [2, Theorem 3.1] obtained the following asymptotic expansion:

$$
\begin{equation*}
H_{n} \sim \gamma+\frac{1}{2} \ln \left(2 m+\frac{1}{3}+\sum_{\ell=1}^{\infty} \frac{\omega_{\ell}}{(2 m)^{\ell}}\right), \quad n \rightarrow \infty \tag{1.5}
\end{equation*}
$$

with the coefficients $\omega_{\ell}(\ell \in \mathbb{N})$ given by the recursive relation

$$
\begin{equation*}
\omega_{1}=-\frac{1}{90}, \quad \omega_{\ell}=b_{2(\ell+1)}-\sum_{j=1}^{\ell-1}\binom{2 \ell-j-1}{2 \ell-2 j} \omega_{j}, \quad \ell \geq 2 \tag{1.6}
\end{equation*}
$$

where b_{j} are given by

$$
\begin{equation*}
b_{j}=\sum_{k_{1}+2 k_{2}+\cdots+j k_{j}=j} \frac{(-2)^{k_{1}+k_{2}+\cdots+k_{j}}}{k_{1}!k_{2}!\cdots k_{j}!}\left(\frac{B_{1}}{1}\right)^{k_{1}}\left(\frac{B_{2}}{2}\right)^{k_{2}} \cdots\left(\frac{B_{j}}{j}\right)^{k_{j}} \tag{1.7}
\end{equation*}
$$

and B_{j} are the Bernoulli numbers and the summation is taken over all nonnegative integers k_{j} satisfying the equation $k_{1}+2 k_{2}+\cdots+j k_{j}=j$.

It follows from [3, Corollary 3.1] that

$$
\begin{equation*}
H_{n}-\ln \left(n+\frac{1}{2}\right)-\gamma=\frac{\frac{1}{48}}{m+\frac{17}{80}}+O\left(\frac{1}{n^{6}}\right), \quad n \rightarrow \infty \tag{1.8}
\end{equation*}
$$

In this paper, we provide a method to construct a continued fraction approximation based on a given asymptotic expansion. We establish some asymptotic expansions for the harmonic number which employ the nth triangular number. Based on these expansions, we derive the corresponding continued fraction approximations for the harmonic number. All results of the present paper are motivated by (1.1), (1.4), (1.5) and (1.8).

The following lemma will be useful in pour present investigation.
Lemma 1.1. Let $a_{1} \neq 0$ and

$$
A(x) \sim \sum_{j=1}^{\infty} \frac{a_{j}}{x^{j}}, \quad x \rightarrow \infty
$$

be a given asymptotic expansion. Define the function B by

$$
A(x)=\frac{a_{1}}{B(x)}
$$

Then the function $B(x)=a_{1} / A(x)$ has asymptotic expansion of the following form

$$
B(x) \sim x+\sum_{j=0}^{\infty} \frac{b_{j}}{x^{j}}, \quad x \rightarrow \infty
$$

where

$$
\begin{equation*}
b_{0}=-\frac{a_{2}}{a_{1}}, \quad b_{j}=-\frac{1}{a_{1}}\left(a_{j+2}+\sum_{k=1}^{j} a_{k+1} b_{j-k}\right), \quad j \geq 1 \tag{1.9}
\end{equation*}
$$

Proof. We can let

$$
\begin{equation*}
\frac{a_{1}}{A(x)} \sim x+\sum_{j=0}^{\infty} \frac{b_{j}}{x^{j}}, \quad x \rightarrow \infty \tag{1.10}
\end{equation*}
$$

where b_{j} (for $j \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$) are real numbers to be determined. Write (1.10) as

$$
\begin{gather*}
\sum_{j=1}^{\infty} \frac{a_{j}}{x^{j}}\left(x+\sum_{k=0}^{\infty} \frac{b_{k}}{x^{k}}\right) \sim a_{1}, \\
\sum_{j=0}^{\infty} \frac{a_{j+2}}{x^{j}} \sim-\sum_{j=0}^{\infty} \frac{a_{j+1}}{x^{j}} \sum_{k=0}^{\infty} \frac{b_{k}}{x^{k}}, \\
\sum_{j=0}^{\infty} a_{j+2} x^{-j} \sim \sum_{j=0}^{\infty}\left(\sum_{k=0}^{j}\left(-a_{k+1} b_{j-k}\right)\right) x^{-j} . \tag{1.11}
\end{gather*}
$$

Equating coefficients of equal powers of x in (1.11), we obtain

$$
a_{j+2}=-\sum_{k=0}^{j} a_{k+1} b_{j-k}, \quad j \geq 0
$$

For $j=0$ we obtain $b_{0}=-a_{2} / a_{1}$, and for $j \geq 1$ we have

$$
a_{j+2}=-\sum_{k=1}^{j} a_{k+1} b_{j-k}-a_{1} b_{j}, \quad j \geq 1
$$

which gives the desired formula (1.9).
Lemma 1.1 provides a method to construct a continued fraction approximation based on a given asymptotic expansion. We state this method as a consequence of Lemma 1.1.

Corollary 1.1. Let $a_{1} \neq 0$ and

$$
\begin{equation*}
A(x) \sim \sum_{j=1}^{\infty} \frac{a_{j}}{x^{j}}, \quad x \rightarrow \infty \tag{1.12}
\end{equation*}
$$

be a given asymptotic expansion. Then the function A has the following continued fraction approximation of the form

$$
\begin{equation*}
A(x) \approx \frac{a_{1}}{x+b_{0}+\frac{b_{1}}{x+c_{0}+\frac{c_{1}}{x+d_{0}+\ddots}}}, \quad x \rightarrow \infty \tag{1.13}
\end{equation*}
$$

where the constants in the right-hand side of (1.13) are given by the following recurrence relations:

$$
\left\{\begin{array}{c}
b_{0}=-\frac{a_{2}}{a_{1}}, \quad b_{j}=-\frac{1}{a_{1}}\left(a_{j+2}+\sum_{k=1}^{j} a_{k+1} b_{j-k}\right) \tag{1.14}\\
c_{0}=-\frac{b_{2}}{b_{1}}, \quad c_{j}=-\frac{1}{b_{1}}\left(b_{j+2}+\sum_{k=1}^{j} b_{k+1} c_{j-k}\right) \\
d_{0}=-\frac{c_{2}}{c_{1}}, \quad d_{j}=-\frac{1}{c_{1}}\left(c_{j+2}+\sum_{k=1}^{j} c_{k+1} d_{j-k}\right) \\
\ldots \quad \ldots
\end{array}\right.
$$

Remark 1.1. Clearly, $a_{j} \Longrightarrow b_{j} \Longrightarrow c_{j} \Longrightarrow d_{j} \Longrightarrow$... Thus, the asymptotic expansion (1.12) \Longrightarrow the continued fraction approximation (1.13). Corollary 1.1 transforms the asymptotic expansion (1.12) into a corresponding continued fraction of the form (1.13), and provides the system (1.14) to determine the constants in the right-hand side of (1.13).

2 Main results

Theorem 2.1 transforms the asymptotic expansion (1.1) into a corresponding continued fraction of the form (2.1).

Theorem 2.1. Let $m=\frac{1}{2} n(n+1)$. As $n \rightarrow \infty$, we have

$$
\begin{equation*}
H_{n} \approx \frac{1}{2} \ln (2 m)+\gamma+\frac{a_{1}}{m+b_{0}+\frac{b_{1}}{m+c_{0}+\frac{c_{1}}{m+d_{0}+\ddots}}}, \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{1}=\frac{1}{12}, \quad b_{0}=\frac{1}{10}, \quad b_{1}=-\frac{19}{2100}, \quad c_{0}=\frac{91}{190}, \quad c_{1}=-\frac{16585}{83391}, \quad d_{0}=\frac{2357167}{1638598}, \ldots \tag{2.2}
\end{equation*}
$$

Proof. Denote

$$
A(m)=H_{n}-\frac{1}{2} \ln (2 m)-\gamma
$$

It follows from (1.2) that

$$
\begin{align*}
A(m) \sim \sum_{\ell=1}^{\infty} \frac{a_{\ell}}{m^{\ell}}= & \frac{1}{12 m}-\frac{1}{120 m^{2}}+\frac{1}{630 m^{3}}-\frac{1}{1680 m^{4}}+\frac{1}{2310 m^{5}} \\
& -\frac{191}{360360 m^{6}}+\frac{29}{30030 m^{7}}-\frac{2833}{1166880 m^{8}}+\frac{140051}{17459442 m^{9}}-\cdots \tag{2.3}
\end{align*}
$$

as $m \rightarrow \infty$, where the coefficients $a_{\ell}(\ell \in \mathbb{N})$ are given in (1.3). Then, $A(m)$ has the continued fraction approximation of the form

$$
\begin{equation*}
A(m)=H_{n}-\frac{1}{2} \ln (2 m)-\gamma \approx \frac{a_{1}}{m+b_{0}+\frac{b_{1}}{m+c_{0}+\frac{c_{1}}{m+d_{0}+\ddots}}}, \quad m \rightarrow \infty \tag{2.4}
\end{equation*}
$$

where the constants in the right-hand side of (2.4) can be determined using (1.14). Noting that

$$
a_{1}=\frac{1}{12}, \quad a_{2}=-\frac{1}{120}, \quad a_{3}=\frac{1}{630}, \quad a_{4}=-\frac{1}{1680}, \quad a_{5}=\frac{1}{2310}, \quad a_{6}=-\frac{191}{360360}, \quad \ldots,
$$

we obtain from the first recurrence relation in (1.14) that

$$
\begin{aligned}
& b_{0}=-\frac{a_{2}}{a_{1}}=\frac{1}{10}, \\
& b_{1}=-\frac{a_{3}+a_{2} b_{0}}{a_{1}}=-\frac{19}{2100}, \\
& b_{2}=-\frac{a_{4}+a_{2} b_{1}+a_{3} b_{0}}{a_{1}}=\frac{13}{3000}, \\
& b_{3}=-\frac{a_{5}+a_{2} b_{2}+a_{3} b_{1}+a_{4} b_{0}}{a_{1}}=-\frac{187969}{48510000}, \\
& b_{4}=-\frac{a_{6}+a_{2} b_{3}+a_{3} b_{2}+a_{4} b_{1}+a_{5} b_{0}}{a_{1}}=\frac{3718037}{700700000} .
\end{aligned}
$$

We obtain from the second recurrence relation in (1.14) that

$$
\begin{aligned}
& c_{0}=-\frac{b_{2}}{b_{1}}=\frac{91}{190} \\
& c_{1}=-\frac{b_{3}+b_{2} c_{0}}{b_{1}}=-\frac{16585}{83391} \\
& c_{2}=-\frac{b_{4}+b_{2} c_{1}+b_{3} c_{0}}{b_{1}}=\frac{11785835}{41195154}
\end{aligned}
$$

Continuing the above process, we find

$$
d_{0}=-\frac{c_{2}}{c_{1}}=\frac{2357167}{1638598}, \quad \ldots
$$

The proof is complete.

Remark 2.1. It is well known that

$$
\begin{align*}
H_{n}-\ln n-\gamma & \sim-\sum_{k=1}^{\infty} \frac{B_{k}}{k n^{k}} \\
& =\frac{1}{2 n}-\frac{1}{12 n^{2}}+\frac{1}{120 n^{4}}-\frac{1}{252 n^{6}}+\ldots, \quad n \rightarrow \infty \tag{2.5}
\end{align*}
$$

where B_{k} are the Bernoulli numbers. Following the same method as was used in the proof of Theorem 2.1, we derive

$$
\begin{equation*}
H_{n} \approx \ln n+\gamma+\frac{\frac{1}{2}}{n+\frac{1}{6}+\frac{\frac{1}{36}}{n+\frac{13}{30}+\frac{\frac{9}{25}}{n+\frac{17}{630}+\ddots}}}, \quad n \rightarrow \infty . \tag{2.6}
\end{equation*}
$$

Theorem 2.2. Let $m=\frac{1}{2} n(n+1)$. The harmonic number has the following asymptotic expansion:

$$
\begin{align*}
H_{n} \sim & \ln \left(n+\frac{1}{2}\right)+\gamma+\sum_{\ell=1}^{\infty} \frac{r_{\ell}}{m^{\ell}} \\
= & \ln \left(n+\frac{1}{2}\right)+\gamma+\frac{1}{48 m}-\frac{17}{3840 m^{2}}+\frac{407}{322560 m^{3}}-\frac{1943}{3440640 m^{4}} \\
& +\frac{32537}{75694080 m^{5}}-\frac{25019737}{47233105920 m^{6}}+\ldots \tag{2.7}
\end{align*}
$$

as $n \rightarrow \infty$, where the coefficients $r_{\ell}(\ell \in \mathbb{N})$ are given by the recurrence relation

$$
\begin{equation*}
r_{1}=\frac{1}{48}, \quad r_{\ell}=\frac{1}{2^{\ell+1} \ell}\left\{\frac{1}{2^{2 \ell}(2 \ell+1)}-\sum_{j=1}^{\ell-1} 2^{j+1} r_{j}\binom{2 \ell-j}{2 \ell-2 j+1}\right\}, \quad \ell \geq 2 \tag{2.8}
\end{equation*}
$$

Proof. Denote

$$
I_{n}=H_{n}-\ln \left(n+\frac{1}{2}\right)-\gamma \quad \text { and } \quad J_{n}=\sum_{\ell=1}^{\infty} \frac{r_{\ell}}{m^{\ell}}
$$

Let $I_{n} \sim J_{n}$ and

$$
\Delta I_{n}:=I_{n+1}-I_{n} \sim \Delta J_{n}:=J_{n+1}-J_{n}
$$

as $n \rightarrow \infty$, where $r_{\ell}(\ell \in \mathbb{N})$ are real numbers to be determined.
It is easy to see that

$$
\begin{align*}
\Delta I_{n} & =\frac{1}{n+1}-\left\{\ln \left(1+\frac{1}{2(n+1)}\right)-\ln \left(1-\frac{1}{2(n+1)}\right)\right\} \\
& =\frac{1}{n+1}-\sum_{k=1}^{\infty} \frac{(-1)^{k-1}+1}{2^{k} k(n+1)^{k}}=-\sum_{\ell=1}^{\infty} \frac{1}{2^{2 \ell}(2 \ell+1)}(n+1)^{-2 \ell-1} \tag{2.9}
\end{align*}
$$

and

$$
\begin{equation*}
\Delta J_{n}=\sum_{k=1}^{\infty} \frac{2^{k} r_{k}}{(n+1)^{2 k}}\left(1+\frac{1}{n+1}\right)^{-k}-\sum_{k=1}^{\infty} \frac{2^{k} r_{k}}{(n+1)^{2 k}}\left(1-\frac{1}{n+1}\right)^{-k} \tag{2.10}
\end{equation*}
$$

Direct computation yields

$$
\begin{align*}
\sum_{k=1}^{\infty} \frac{2^{k} r_{k}}{(n+1)^{2 k}}\left(1+\frac{1}{n+1}\right)^{-k} & =\sum_{k=1}^{\infty} \frac{2^{k} r_{k}}{(n+1)^{2 k}} \sum_{j=0}^{\infty}\binom{-k}{j} \frac{1}{(n+1)^{j}} \\
& =\sum_{k=1}^{\infty} \frac{2^{k} r_{k}}{(n+1)^{2 k}} \sum_{j=0}^{\infty}(-1)^{j}\binom{k+j-1}{j} \frac{1}{(n+1)^{j}} \\
& =\sum_{k=1}^{\infty} \sum_{j=1}^{k} 2^{j} r_{j}(-1)^{k-j}\binom{k-1}{k-j} \frac{1}{(n+1)^{k+j}} \\
& =\sum_{\ell=2}^{\infty} \sum_{j=1}^{\left\lfloor\frac{\ell}{2}\right\rfloor} 2^{j} r_{j}(-1)^{\ell}\binom{\ell-j-1}{\ell-2 j} \frac{1}{(n+1)^{\ell}} \tag{2.11}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{k=1}^{\infty} \frac{2^{k} r_{k}}{(n+1)^{2 k}}\left(1-\frac{1}{n+1}\right)^{-k} & =\sum_{k=1}^{\infty} \frac{2^{k} r_{k}}{(n+1)^{2 k}} \sum_{j=0}^{\infty}\binom{-k}{j} \frac{(-1)^{j}}{(n+1)^{j}} \\
& =\sum_{k=1}^{\infty} \frac{2^{k} r_{k}}{(n+1)^{2 k}} \sum_{j=0}^{\infty}\binom{k+j-1}{j} \frac{1}{(n+1)^{j}} \\
& =\sum_{k=1}^{\infty} \sum_{j=1}^{k} 2^{j} r_{j}\binom{k-1}{k-j} \frac{1}{(n+1)^{k+j}} \\
& =\sum_{\ell=2}^{\infty} \sum_{j=1}^{\left\lfloor\frac{\ell}{2}\right\rfloor} 2^{j} r_{j}\binom{\ell-j-1}{\ell-2 j} \frac{1}{(n+1)^{\ell}} \tag{2.12}
\end{align*}
$$

Substituting (2.11) and (2.12) into (2.10) yields

$$
\begin{equation*}
\Delta J_{n}=\sum_{\ell=2}^{\infty} \sum_{j=1}^{\left\lfloor\frac{\ell}{2}\right\rfloor}\left((-1)^{\ell}-1\right) 2^{j} r_{j}\binom{\ell-j-1}{\ell-2 j} \frac{1}{(n+1)^{\ell}} \tag{2.13}
\end{equation*}
$$

Replacement of ℓ by $2 \ell+1$ in (2.13) yields

$$
\begin{equation*}
\Delta J_{n}=-\sum_{\ell=1}^{\infty} \sum_{j=1}^{\ell} 2^{j+1} r_{j}\binom{2 \ell-j}{2 \ell-2 j+1}(n+1)^{-2 \ell-1} \tag{2.14}
\end{equation*}
$$

Equating coefficients of the term $(n+1)^{-2 \ell-1}$ on the right-hand sides of (2.9) and (2.14) yields

$$
\begin{equation*}
\sum_{j=1}^{\ell} 2^{j+1} r_{j}\binom{2 \ell-j}{2 \ell-2 j+1}=\frac{1}{2^{2 \ell}(2 \ell+1)}, \quad \ell \geq 1 \tag{2.15}
\end{equation*}
$$

For $\ell=1$ in (2.15) we obtain $r_{1}=\frac{1}{48}$, and for $\ell \geq 2$ we have

$$
\sum_{j=1}^{\ell-1} 2^{j+1} r_{j}\binom{2 \ell-j}{2 \ell-2 j+1}+2^{\ell+1} \ell r_{\ell}=\frac{1}{2^{2 \ell(2 \ell+1)}}
$$

which gives the desired formula (2.8).
Remark 2.2. We here gave the recursive relation (2.8) for determining the coefficients r_{ℓ} in expansion (2.7), without the Bernoulli numbers and polynomials.

Remark 2.3. Denote

$$
A^{*}(m)=H_{n}-\ln \left(n+\frac{1}{2}\right)-\gamma
$$

It follows from (2.7) that

$$
\begin{align*}
A^{*}(m) \sim \sum_{\ell=1}^{\infty} \frac{r_{\ell}}{m^{\ell}}= & \frac{1}{48 m}-\frac{17}{3840 m^{2}}+\frac{407}{322560 m^{3}}-\frac{1943}{3440640 m^{4}} \\
& +\frac{32537}{75694080 m^{5}}-\frac{25019737}{47233105920 m^{6}}+\ldots \tag{2.16}
\end{align*}
$$

as $m \rightarrow \infty$, where the coefficients $r_{\ell}(\ell \in \mathbb{N})$ are given in (2.8). Following the same method as was used in the proof of Theorem 2.1, we derive

$$
\begin{equation*}
H_{n} \approx \ln \left(n+\frac{1}{2}\right)+\gamma+\frac{\lambda_{1}}{m+u_{1}+\frac{\lambda_{2}}{m+\mu_{2}+\frac{\lambda_{3}}{m_{+\mu_{3}+}} \ddots}}, \tag{2.17}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\lambda_{1}=\frac{1}{48}, \quad \mu_{1}=\frac{17}{80}, \quad \lambda_{2}=-\frac{2071}{134400}, \quad \mu_{2}=\frac{117863}{165680} \\
\lambda_{3}=-\frac{15685119025}{63409182144}, & \mu_{3}=\frac{2312217133079747}{1351329470432240}, \ldots \tag{2.18}
\end{array}
$$

Thus, we develop the approximation formula (1.8) to produce a continued fraction approximation.
Theorem 2.3. Let $m=\frac{1}{2} n(n+1)$. The harmonic number has the following asymptotic expansion:

$$
\begin{align*}
H_{n} \sim & \frac{1}{2} \ln \left(2 m+\frac{1}{3}\right)+\gamma+\sum_{\ell=2}^{\infty} \frac{s_{\ell}}{m^{\ell}} \\
= & \frac{1}{2} \ln \left(2 m+\frac{1}{3}\right)+\gamma-\frac{1}{720 m^{2}}+\frac{37}{45360 m^{3}}-\frac{181}{362880 m^{4}}+\frac{503}{1197504 m^{5}} \\
& -\frac{1480211}{2802159360 m^{6}}+\frac{2705333}{2802159360 m^{7}}-\frac{793046533}{326651719680 m^{8}}+\frac{470463477509}{58650316268544 m^{9}}-\ldots \tag{2.19}
\end{align*}
$$

as $n \rightarrow \infty$, with the coefficients s_{ℓ} given by

$$
\begin{equation*}
s_{\ell}=a_{\ell}-\frac{(-1)^{\ell-1}}{6^{\ell} 2 \ell}, \quad \ell \geq 2 \tag{2.20}
\end{equation*}
$$

where a_{ℓ} are given in (1.3).
Proof. We find by (1.2) that, as $n \rightarrow \infty$,

$$
\begin{aligned}
H_{n}-\frac{1}{2} \ln \left(2 m+\frac{1}{3}\right)-\gamma & =H_{n}-\frac{1}{2} \ln (2 m)-\gamma-\frac{1}{2} \ln \left(1+\frac{1}{6 m}\right) \\
& \sim \sum_{\ell=1}^{\infty} \frac{a_{\ell}}{m^{\ell}}-\frac{1}{2} \sum_{\ell=1}^{\infty} \frac{(-1)^{\ell-1}}{\ell(6 m)^{\ell}}
\end{aligned}
$$

Noting that $a_{1}=\frac{1}{12}$, we obtain, as $n \rightarrow \infty$,

$$
H_{n} \sim \frac{1}{2} \ln \left(2 m+\frac{1}{3}\right)+\gamma+\sum_{\ell=2}^{\infty}\left\{a_{\ell}-\frac{(-1)^{\ell-1}}{6^{\ell} 2 \ell}\right\} \frac{1}{m^{\ell}}
$$

The proof is complete.
Theorem 2.4. Let $m=\frac{1}{2} n(n+1)$. As $n \rightarrow \infty$, we have

$$
\begin{equation*}
H_{n} \approx \frac{1}{2} \ln \left(2 m+\frac{1}{3}\right)+\gamma+\frac{p_{1}}{m^{2}+\frac{37}{63} m+q_{1}+\frac{p_{2}}{m+q_{2}+\sum_{m+q_{3}+} \ddots}} \tag{2.21}
\end{equation*}
$$

where

$$
\begin{array}{ll}
p_{1}=-\frac{1}{720}, \quad q_{1}=-\frac{451}{31752}, & p_{2}=\frac{228764}{2750517}, \quad q_{2}=\frac{21448004509}{11990893824}, \\
p_{3}=-\frac{36637398233630775}{36226136230395904}, & q_{3}=\frac{86442719924955272247584297}{26612223343933404862713600}, \quad \ldots \tag{2.22}
\end{array}
$$

Proof. Denote

$$
F(m)=H_{n}-\frac{1}{2} \ln \left(2 m+\frac{1}{3}\right)-\gamma .
$$

It follows from (2.19) that

$$
\begin{align*}
F(m) \sim \sum_{\ell=2}^{\infty} \frac{s_{\ell}}{m^{\ell}}= & -\frac{1}{720 m^{2}}+\frac{37}{45360 m^{3}}-\frac{181}{362880 m^{4}}+\frac{503}{1197504 m^{5}}-\frac{1480211}{2802159360 m^{6}} \\
& +\frac{2705333}{2802159360 m^{7}}-\frac{793046533}{326651719680 m^{8}}+\frac{470463477509}{58650316268544 m^{9}}-\ldots \tag{2.23}
\end{align*}
$$

as $m \rightarrow \infty$, where the coefficients $s_{\ell}(\ell \in \mathbb{N})$ are given in (2.20).

Define the function $G(m)$ by

$$
F(m)=\frac{s_{2}}{G(m)}
$$

We obtain by (2.23) and Lemma 1.1 that

$$
G(m)=\frac{s_{2}}{F(m)} \sim \frac{s_{2}}{\sum_{\ell=2}^{\infty} s_{\ell} m^{-\ell}}=m\left(\frac{s_{2}}{\sum_{\ell=1}^{\infty} s_{\ell+1} m^{-\ell}}\right)=m^{2}+\frac{37}{63} m-\frac{451}{31752}+A^{* *}(m)
$$

where

$$
\begin{align*}
A^{* *}(m) \sim & \frac{228764}{2750517 m}-\frac{21448004509}{144171099072 m^{2}}+\frac{3180925176497}{9082779241536 m^{3}} \\
& -\frac{898929405728511653}{856033777956284928 m^{4}}+\frac{200828563825356198279}{512336216106836529408 m^{5}}-\cdots, \tag{2.24}
\end{align*}
$$

We then obtain

$$
\begin{equation*}
F(m) \sim \frac{-\frac{1}{720}}{m^{2}+\frac{37}{63} m-\frac{451}{31752}+A^{* *}(m)} \tag{2.25}
\end{equation*}
$$

Following the same method as was used in the proof of Theorem 2.1, we derive the continued fraction approximation of $A^{* *}(m)$ (we here omit the derivation of (2.26))

$$
\begin{equation*}
A^{* *}(m) \approx \frac{p_{2}}{m+q_{2}+\frac{p_{3}}{m+q_{3}+\ddots}} \tag{2.26}
\end{equation*}
$$

as $m \rightarrow \infty$, where p_{j} and q_{j} (for $j \geq 2$) are given in (2.22). Substituting (2.26) into (2.25) yields (2.21).

Theorem 2.5. Let $m=\frac{1}{2} n(n+1)$. As $n \rightarrow \infty$, we have

$$
\begin{equation*}
H_{n} \approx \frac{1}{2} \ln \left(2 m+\frac{1}{3}+\frac{\alpha_{1}}{m+\beta_{1}+\frac{\alpha_{2}}{m+\beta_{2}+\frac{\alpha_{3}}{m+\beta_{3}+\ddots}}}\right)+\gamma, \tag{2.27}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha_{1}=-\frac{1}{180}, \quad \beta_{1}=\frac{53}{126}, \quad \alpha_{2}=-\frac{26329}{317520}, \quad \beta_{2}=\frac{42684239}{36491994}, \\
& \alpha_{3}=-\frac{487447163992501}{785108985906960}, \quad \beta_{3}=\frac{2049473595024948803087}{847043761130064882714}, \quad \ldots \tag{2.28}
\end{align*}
$$

Proof. Write (1.5) as

$$
e^{2\left(H_{n}-\gamma\right)} \sim 2 m+\frac{1}{3}+\sum_{\ell=1}^{\infty} \frac{d_{\ell}}{m^{\ell}}, \quad n \rightarrow \infty
$$

with the coefficients d_{ℓ} given by

$$
\begin{equation*}
d_{1}=-\frac{1}{180}, \quad d_{\ell}=\frac{\omega_{\ell}}{2^{\ell}}, \quad \ell \geq 2 \tag{2.29}
\end{equation*}
$$

where ω_{ℓ} are given in (1.6). Denote

$$
A^{* * *}(m)=e^{2\left(H_{n}-\gamma\right)}-2 m-\frac{1}{3}
$$

We have, as $m \rightarrow \infty$,

$$
\begin{align*}
A^{* * *}(m) \sim & \sum_{\ell=1}^{\infty} \frac{d_{\ell}}{m^{\ell}} \\
= & -\frac{1}{180 m}+\frac{53}{22680 m^{2}}-\frac{3929}{2721600 m^{3}}+\frac{240673}{179625600 m^{4}}-\frac{488481881}{267478848000 m^{5}} \\
& +\frac{8834570273}{2521943424000 m^{6}}-\frac{652512638837083}{72026704189440000 m^{7}}+\ldots \tag{2.30}
\end{align*}
$$

Following the same method as was used in the proof of Theorem 2.1, we derive

$$
\begin{equation*}
A^{* * *}(m) \approx \frac{\alpha_{1}}{m+\beta_{1}+\frac{\alpha_{2} \alpha_{3}}{m+\beta_{2}+\frac{\alpha_{3}}{m+\beta_{3}+}}} \tag{2.31}
\end{equation*}
$$

as $m \rightarrow \infty$, where α_{j} and β_{j} are given in (2.28). We here omit the derivation of (2.31). Formula (2.31) can be written as (2.27).

3 Comparison

Define the sequences $\left\{u_{n}\right\}_{n \in \mathbb{N}},\left\{v_{n}\right\}_{n \in \mathbb{N}},\left\{x_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ by

$$
\begin{align*}
& H_{n} \approx \frac{1}{2} \ln (2 m)+\gamma+\frac{\frac{1}{12}}{m+\frac{1}{10}+\frac{-\frac{19}{2100}}{m+\frac{91}{190}+\frac{-16585}{83391}} m+\frac{23571677}{1638598}} \quad=u_{n} \tag{3.1}\\
& H_{n} \approx \ln \left(n+\frac{1}{2}\right)+\gamma+\frac{\frac{1}{48}}{m+\frac{17}{80}+\frac{-\frac{2071}{134400}}{m+\frac{117863}{165680}+\frac{-\frac{1568519025}{63409182144}}{m+\frac{2312217133079747}{1351329470432240}}}}=v_{n}, \tag{3.2}\\
& H_{n} \approx \frac{1}{2} \ln (2 m+\frac{1}{3}+\frac{\alpha_{1}}{m+\beta_{1}+\frac{\alpha_{2} \alpha_{3}}{m+\beta_{2}+\underbrace{}_{m+\beta_{3}+\ddots}}})+\gamma=x_{n} \tag{3.3}\\
& H_{n} \approx \frac{1}{2} \ln \left(2 m+\frac{1}{3}\right)+\gamma+\frac{p_{1}}{m^{2}+\frac{37}{63} m+q_{1}+\frac{p_{2}}{m+q_{2}+\frac{p_{3}}{m+q_{3}}}}=y_{n}, \tag{3.4}
\end{align*}
$$

where α_{j} and β_{j} (for $1 \leq j \leq 3$) are given in (2.28), p_{j} and q_{j} (for $1 \leq j \leq 3$) are given in (2.22).
It is observed from Table 1 that, among approximation formulas (3.1)-(3.4), for $n \in \mathbb{N}$, the formula (3.4) would be the best one.

Table 1. Comparison among approximation formulas (3.1)-(3.4).

n	$H_{n}-u_{n}$	$H_{n}-v_{n}$	$x_{n}-H_{n}$	$H_{n}-y_{n}$
1	4.61559×10^{-6}	1.25202×10^{-6}	5.1364×10^{-7}	3.75796×10^{-7}
10	9.65618×10^{-17}	5.65274×10^{-17}	1.62639×10^{-18}	7.04292×10^{-20}
100	1.98169×10^{-30}	1.19140×10^{-30}	3.98848×10^{-34}	2.01636×10^{-37}
1000	2.11271×10^{-44}	1.27055×10^{-44}	4.29495×10^{-50}	2.19258×10^{-55}

In fact, we have (by using the Maple software), as $n \rightarrow \infty$,

$$
H_{n}=u_{n}+O\left(n^{-14}\right), \quad H_{n}=v_{n}+O\left(n^{-14}\right), \quad H_{n}=x_{n}+O\left(n^{-16}\right), \quad H_{n}=y_{n}+O\left(n^{-18}\right)
$$

4 Conjecture

In view (1.1), (2.7), (2.19) and (2.30), we propose the following conjecture.
Conjecture 4.1. (i) Let $a_{\ell}(\ell \in \mathbb{N})$ be given in (1.2). Then we have

$$
\begin{equation*}
(-1)^{\ell-1} a_{\ell}>0, \quad \ell \in \mathbb{N} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\ell=1}^{2 p} \frac{a_{\ell}}{m^{\ell}}<H_{n}-\frac{1}{2} \ln (2 m)-\gamma<\sum_{\ell=1}^{2 p+1} \frac{a_{\ell}}{m^{\ell}} \tag{4.2}
\end{equation*}
$$

where $m=n(n+1) / 2, n \in \mathbb{N}$ and $p \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$.
(ii) Let $r_{\ell}(\ell \in \mathbb{N})$ be given in (2.8). Then we have

$$
\begin{equation*}
(-1)^{\ell-1} r_{\ell}>0, \quad \ell \in \mathbb{N} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\ell=1}^{2 p} \frac{r_{\ell}}{m^{\ell}}<H_{n}-\ln \left(n+\frac{1}{2}\right)-\gamma<\sum_{\ell=1}^{2 p+1} \frac{r_{\ell}}{m^{\ell}} \tag{4.4}
\end{equation*}
$$

where $m=n(n+1) / 2, n \in \mathbb{N}$ and $p \in \mathbb{N}_{0}$.
(iii) Let $s_{\ell}(\ell \geq 2)$ be given in (2.20). Then we have

$$
\begin{equation*}
(-1)^{\ell-1} s_{\ell}>0, \quad \ell \geq 2 \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\ell=2}^{2 q} \frac{s_{\ell}}{m^{\ell}}<H_{n}-\frac{1}{2} \ln \left(2 m+\frac{1}{3}\right)-\gamma<\sum_{\ell=2}^{2 q+1} \frac{s_{\ell}}{m^{\ell}} \tag{4.6}
\end{equation*}
$$

where $m=n(n+1) / 2, n \in \mathbb{N}$ and $q \in \mathbb{N}$.
(iv) Let $d_{\ell}(\ell \in \mathbb{N})$ be given in (2.29). Then we have

$$
\begin{equation*}
(-1)^{\ell} d_{\ell}>0, \quad \ell \geq 1 \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2} \ln \left(2 m+\frac{1}{3}+\sum_{\ell=1}^{2 q-1} \frac{\omega_{\ell}}{m^{\ell}}\right)<H_{n}-\gamma<\frac{1}{2} \ln \left(2 m+\frac{1}{3}+\sum_{\ell=1}^{2 q} \frac{\omega_{\ell}}{m^{\ell}}\right) \tag{4.8}
\end{equation*}
$$

where $m=n(n+1) / 2, n \in \mathbb{N}$ and $q \in \mathbb{N}$.

References

[1] B.C. Berndt, Ramanujan's Notebooks Part V. Springer, Berlin, 1998.
[2] C.-P. Chen, On the coefficients of asymptotic expansion for the harmonic number by Ramanujan, Ramanujan J. 40 (2016) 279-290.
[3] C.-P. Chen, Inequalities and asymptotics for the Euler-Mascheroni constant based on DeTemple's result, Numer. Algor. 73 (2016) 761-774.
[4] C.-P. Chen, Ramanujan's formula for the harmonic number, Appl. Math. Comput. 317 (2018) 121128.
[5] C.-P. Chen, On the Ramanujan harmonic number expansion, Results Math. 74 (2019) 1-7.
[6] C.-P. Chen, J.-X. Cheng, Ramanujan's asymptotic expansion for the harmonic numbers, Ramanujan J. 38 (2015) 123-128.
[7] L. Feng, W. Wang, Riordan array approach to the coefficients of Ramanujan's harmonic Number expansion, Results Math. 71 (2017) 1413-1419.
[8] M.D. Hirschhorn, Ramanujan's enigmatic formula for the harmonic series, Ramanujan J. 27 (2012) 343-347.
[9] A. Issaka, An asymptotic series related to Ramanujan's expansion for the nth Harmonic number, Ramanujan J. 39 (2016) 303-313.
[10] C. Mortici, On the Ramanujan-Lodge harmonic number expansion, Appl. Math. Comput. 251 (2015) 423-430.
[11] S. Ramanujan, Notebook II, Narosa, New Delhi, 1988.
[12] M.B. Villarino, Ramanujan's harmonic number expansion into negative powers of a triangular number, J. Inequal. Pure Appl. Math. 9 (3) (2008) Article 89. http: / /www. emis.de/journals / JIPAM/images/245_07_JIPAM/245_07.pdf.
[13] A. Xu, Ramanujan's harmonic number expansion and two identities for Bernoulli numbers, Results Math. 72 (2017) 1857-1864.

[^0]: * Corresponding Author.

