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Abstract. In this paper, we introduce a method to construct a continued fraction approximation based
on a given asymptotic expansion. We establish some asymptotic expansions related to the constant e.
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1 Introduction
The constant e can be defined by the limit

e = lim
x→∞

(
1 +

1

x

)x
.

With the possible exception of π, e is the most important constant in mathematics since it appears in
myriad mathematical contexts involving limits and derivatives. Joost Bürgi seems to have been the first
to formulate an approximation to e around 1620, obtaining three-decimal-place accuracy (see [12, p.
31], [19], and [26, pp. 26–27]).

There have been many results in generalizing Carleman-type inequality by estimating (1 + 1/n)
n

(see, for example, [3–5, 9, 11, 13, 21–24, 29, 31, 35–40]). For example, Xie and Zhong [35] proved that,
for x ≥ 1,

e

(
1− 7

14x+ 12

)
<

(
1 +

1

x

)x
< e

(
1− 6

12x+ 11

)
, (1.1)

and then applied it to obtain an improvement of Carleman-type inequality. For information about the
history of Carleman-type inequalities, see [17, 18, 20, 32].
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Some asymptotic expansions for (1 + 1/x)
x (as x→∞) can be found in [2, 3, 6, 8, 16, 19, 23, 30, 34,

38, 39]. For example, Brothers and Knox [2] (see also [6, 19] and [15, p. 14]) derived, without a formula
for the general term, the following expansion:(

1 +
1

x

)x
= e

(
1− 1

2x
+

11

24x2
− 7

16x3
+

2447

5760x4
− 959

2304x5
+

238043

580608x6
− · · ·

)
(1.2)

for x < −1 or x ≥ 1.
Adding approximation (1.2) and the approximation obtained by replacing x by −x in (1.2), and mul-

tiplying the resulting identity by 1/2, Knox and Brothers [19] (see also [2]) obtained the following better
approximation to e than that given by (1.2):

1

2

((
1 +

1

x

)x
+

(
1− 1

x

)−x)
= e

(
1 +

11

24x2
+

2447

5760x4
+

238043

580608x6
+ · · ·

)
. (1.3)

With (
1 +

1

x

)x
= e

∞∑
j=0

ωj
xj
, x < −1 or x ≥ 1, (1.4)

Chen and Choi [6] gave an explicit formula for successively determining the coefficients ωj in the form

ω0 = 1, ωj = (−1)j
∑

k1+2k2+···+jkj=j

(
1
2

)k1 ( 1
3

)k2 · · ·( 1
j+1

)kj
k1!k2! · · · kj !

, (1.5)

summed over all nonnegative integers kj satisfying the equation k1 + 2k2 + · · · + jkj = j. The above
result immediately shows that (−1)jωj > 0 so that (1.4) is an alternating series for positive x. The
following recurrence relation for θj = (−1)jωj can be found in [8]:

θ0 = 1 and θj =
1

j

j∑
k=1

k

k + 1
θj−k for j ≥ 1. (1.6)

The representation using a recursive algorithm for the coefficients (−1)jθj = ωj in (1.6) is more practical
for numerical evaluation than the expression in (1.5).

By using (1.4), we find, as x→∞,

1

2

((
1 +

1

x

)x
+

(
1− 1

x

)−x)
= e

∞∑
j=0

(
1 + (−1)j

)
ωj

2xj
= e

∞∑
j=0

ω2j

x2j
, (1.7)

where the ωj (for j ∈ N0) are given in (1.5).
The constant e is given in [2] (see also [15, p. 15]) by the unusual limit

lim
n→∞

(
(n+ 1)n+1

nn
− nn

(n− 1)n−1

)
= e. (1.8)

2



By using (1.4), we find the following asymptotic expansion:

(n+ 1)n+1

nn
− nn

(n− 1)n−1
= (1 + n)

(
1 +

1

n

)n
+ (1− n)

(
1− 1

n

)−n
= e

∞∑
j=0

2(ω2j + ω2j+1)

n2j

(1.9)

as n→∞, where the ωj (for j ∈ N0) are given in (1.5).
Some continued fraction approximations related to the constant e were presented in [14, 24, 25, 41].

For example, You et al. [41] proved, as x→∞,

(
1 +

1

x

)x
≈ e

1 +
− 1

2

x+ 11
12 +

− 5
144

x+ 34
75+

− 481
10000

x+357866
757575

+

. . .

 . (1.10)

Lu et al. [25] presented, as x→∞,

(
1 +

1

x

)x
≈ exp

1 +
− 1

2

x+ 2
3 +

− 1
18

x+ 8
15+

− 3
50

x+18
35

+

. . .

 . (1.11)

Lu et al. [24] presented, as n→∞,

1

e

(
1 +

1

n

)n
≈ 1 +

b1

n+ b2n

n+
b3n

n+
b4n

n+
b5n

n+
b6n

n+

. . .

, (1.12)

where

b1 = −1

2
, b2 =

11

12
, b3 =

5

132
, b4 =

457

1100
, b5 =

5291

45700
, b6 =

19753835

55393884
, . . . .

Fang et al. [14] presented, as n→∞,

1

e

(
1 +

1

n

)n
≈ exp


a1

n+ a2n
n+

a3n

n+
a4n

n+
a5n

n+

. . .

 , (1.13)
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where

a1 = −1

2
, a2 =

2

3
, a3 =

1

12
, a4 =

9

20
, a5 =

2

15
, a6 =

8

21
, . . . .

Very recently, Chen and Wang [10, Corollary 1.1] provided a method to construct a continued fraction
approximation based on a given asymptotic expansion. We state this method as follows. Let a1 6= 0 and

f(x) ∼
∞∑
j=1

aj
xj
, x→∞ (1.14)

be a given asymptotic expansion. Then the function f has the following continued fraction approximation
of the form

f(x) ≈ a1

x+ b0 +
b1

x+ c0 +
c1

x+ d0 +
. . .

, x→∞, (1.15)

where the constants in the right-hand side of (1.15) are given by the following recurrence relations:

b0 = −a2a1 , bj = − 1
a1

(
aj+2 +

∑j
k=1 ak+1bj−k

)
c0 = − b2b1 , cj = − 1

b1

(
bj+2 +

∑j
k=1 bk+1cj−k

)
d0 = − c2c1 , dj = − 1

c1

(
cj+2 +

∑j
k=1 ck+1dj−k

)
. . . . . .

(1.16)

Clearly, aj =⇒ bj =⇒ cj =⇒ dj =⇒ . . .. Thus, the asymptotic expansion (1.14) =⇒ the continued
fraction approximation (1.15).

Based on Ramanujan’s asymptotic expansion for the nth harmonic number (see [1, p. 531] and [33, p.
276])

Hn :=

n∑
k=1

1

k
∼ 1

2
ln(2m) + γ +

1

12m
− 1

120m2
+

1

630m3
− 1

1680m4
+

1

2310m5

− 191

360360m6
+

29

30030m7
− 2833

1166880m8
+

140051

17459442m9
− · · · , n→∞ (1.17)

and using (1.16), Chen and Wang [10, Theorem 2.1] derived the following continued fraction approxima-
tion for the nth harmonic number:

Hn ≈
1

2
ln(2m) + γ +

1
12

m+ 1
10 +

− 19
2100

m+ 91
190+

− 16585
83391

m+2357167
1638598

+

. . .

, n→∞, (1.18)

where m = n(n+ 1)/2 is the nth triangular number and γ is the Euler-Mascheroni constant.
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Remark 1.1. It is easy to see that

x ln

(
1 +

1

x

)
− 1 =

∞∑
j=1

(−1)j

(j + 1)xj
, |x| ≥ 1 and x 6= −1. (1.19)

Based on expansion (1.19) and using (1.16), we derive

x ln

(
1 +

1

x

)
− 1 ≈

− 1
2

x+ 2
3 +

− 1
18

x+ 8
15+

− 3
50

x+18
35

+

. . .

, x→∞,

which can be written as (1.11). Thus we give a different derivation of (1.11) from that in [25]. Based on
expansion (1.2) and using (1.16), we can easily derive the continued fraction approximation (1.10).

All results of the present paper are motivated by the paper [10]. We here present some asymptotic
expansions related to the constant e. Based on these expansions, we derive the corresponding continued
fraction approximations related to the constant e.

2 Lemmas
The following lemmas will be useful in pour present investigation.

Lemma 2.1 (see [7]). Let

A(x) ∼
∞∑
n=1

anx
−n, x→∞

be a given asymptotical expansion. Then the composition exp(A(x)) has asymptotic expansion of the
following form

exp(A(x)) ∼
∞∑
n=0

bnx
−n, x→∞, (2.1)

where

b0 = 1, bn =
1

n

n∑
k=1

kakbn−k, n ≥ 1. (2.2)

Lemma 2.2 (see [7]). Let a0 = 1 and

g(x) ∼
∞∑
n=0

anx
−n, x→∞

be a given asymptotic expansion. Then the composition ln(g(x)) has asymptotic expansion of the follow-
ing form

ln(g(x)) ∼
∞∑
n=1

bnx
−n, x→∞,
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where

bn = an −
1

n

n−1∑
k=1

kbkan−k, n ∈ N. (2.3)

3 Main results
Using the Maple software, we find, as n→∞,(
1 +

1

n

)n+ 1
2

∼ e
(
1 +

1

24m
− 7

5760m2
+

43

580608m3
− 7961

1393459200m4
+

182521

367873228800m5

− 1115593093

24103053950976000m6
+

2620419701

578473294823424000m7

− 333235214791

726206474732175360000m8
+

12937676612987993

271211974879377138647040000m9
− . . .

)
(3.1)

and(
1 +

1

n

)n+ 1
2

∼ exp

(
1 +

1

24m
− 1

480m2
+

1

6720m3
− 1

80640m4
+

1

887040m5
− 1

9225216m6

+
1

92252160m7
− 1

896163840m8
+

1

8513556480m9
− . . .

)
, (3.2)

which are analogues of (1.17).
Even though as many coefficients as we please in the right-hand sides of (3.1) and (3.2) can be obtained

by using the Maple software, here we aim at giving a formula for determining these coefficients. And
then, based on the obtained expansions (3.1) and (3.2) and using (1.16), we derive the corresponding
continued fraction approximations related to the constant e.

Theorem 3.1. Let m = 1
2n(n+ 1). As n→∞, we have(

1 +
1

n

)n+ 1
2

∼ e
∞∑
`=0

a`
m`

, (3.3)

with the coefficients a` (` ∈ N0 := N ∪ {0},N := {1, 2, . . .}) given by the recurrence relation

a0 = 1, a` =
1

2`

q2` − `−1∑
j=0

2jaj

(
2`− j − 1

2`− 2j

) , ` ≥ 1, (3.4)

where q` (` ∈ N0) can be calculated by

q0 = 1, q` =
1

`

∑̀
k=1

(−1)k(k − 1)

2(k + 1)
q`−k, ` ≥ 1. (3.5)
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Proof. Denote

In =
1

e

(
1 +

1

n

)n+ 1
2

and Jn =

∞∑
`=0

a`
m`

.

In view of (3.1), we can let In ∼ Jn (n→∞), where a` (` ∈ N0) are real numbers to be determined.
Direct computation yields

ln In =

(
n+

1

2

)
ln

(
1 +

1

n

)
− 1 =

(
n+

1

2

) ∞∑
k=1

(−1)k−1

knk
− 1 =

∞∑
k=1

{
(−1)k(k − 1)

2k(k + 1)

}
1

nk
.

We obtain by Lemma 2.1 that

In =

∞∑
`=0

q`
n`
, (3.6)

where

q0 = 1, q` =
1

`

∑̀
k=1

(−1)k(k − 1)

2(k + 1)
q`−k, ` ≥ 1.

Direct computation yields

Jn =

∞∑
k=0

2kak
n2k

(
1 +

1

n

)−k
=

∞∑
k=0

2kak
n2k

∞∑
j=0

(
−k
j

)
1

nj

=

∞∑
k=0

2kak
n2k

∞∑
j=0

(−1)j
(
k + j − 1

j

)
1

nj

=

∞∑
k=0

k∑
j=0

2jaj(−1)k−j
(
k − 1

k − j

)
1

(n+ 1)k+j

=

∞∑
`=0

b `2 c∑
j=0

2jaj(−1)`
(
`− j − 1

`− 2j

)
1

n`
. (3.7)

Equating coefficients of the term n−` on the right-hand sides of (3.6) and (3.7) yields

b `2 c∑
j=0

2jaj(−1)`
(
`− j − 1

`− 2j

)
= q`, ` ≥ 0. (3.8)

Replacement of ` by 2` in (3.8) yields

∑̀
j=0

2jaj

(
2`− j − 1

2`− 2j

)
= q2`, ` ≥ 0. (3.9)
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For ` = 0 in (3.9) we obtain a0 = q0 = 1, and for ` ≥ 1 we have

`−1∑
j=0

2jaj

(
2`− j − 1

2`− 2j

)
+ 2`a` = q2`,

which gives the desired formula (3.4).

Remark 3.1. Replacement of ` by 2`+ 1 in (3.8) yields

−
∑̀
j=0

2jaj

(
2`− j

2`− 2j + 1

)
= q2`+1, ` ≥ 0. (3.10)

For ` = 1 in (3.10) this yields a1 = − q32 = 1
24 , and for ` ≥ 2 we have

−
`−1∑
j=0

2jaj

(
2`− j

2`− 2j + 1

)
− 2``a` = q2`+1, ` ≥ 2.

We then obtain the alternative recurrence relation for the coefficients a` in (3.3) in terms of the odd
coefficients q`:

a0 = 1, a1 =
1

24
, a` = −

1

2``

q2`+1 +

`−1∑
j=0

2jaj

(
2`− j

2`− 2j + 1

) , ` ≥ 2. (3.11)

Theorem 3.2. Let m = 1
2n(n+ 1). As n→∞, we have

(
1 +

1

n

)n+ 1
2

≈ e


1 +

a1

m+ b0 +
b1

m+ c0 +
c1

m+ d0 +
. . .


, (3.12)

where

a1 =
1

24
, b0 =

7

240
, b1 = − 1121

1209600
, c0 =

1409

22420
,

c1 = − 651087191

668814499584
, d0 =

11867426245291

189765872688860
, . . . .

Proof. Denote

F1(m) =
1

e

(
1 +

1

n

)n+ 1
2

− 1.
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It follows from (3.3) that

F1(m) ∼
∞∑
`=1

a`
m`

=
1

24m
− 7

5760m2
+

43

580608m3
− 7961

1393459200m4
+

182521

367873228800m5

− 1115593093

24103053950976000m6
+

2620419701

578473294823424000m7

− 333235214791

726206474732175360000m8
+

12937676612987993

271211974879377138647040000m9
− . . . (3.13)

as m→∞, where the coefficients a` (` ∈ N) are given in (3.4). Then, F1(m) has the continued fraction
approximation of the form

F1(m) ≈ a1

m+ b0 +
b1

m+ c0 +
c1

m+ d0 +
. . .

, m→∞, (3.14)

where the constants in the right-hand side of (3.14) can be determined using (1.16). Noting that

a1 =
1

24
, a2 = − 7

5760
, a3 =

43

580608
, a4 = − 7961

1393459200
,

a5 =
182521

367873228800
, a6 = − 1115593093

24103053950976000
, . . . ,

we obtain from the first recurrence relation in (1.16) that

b0 = −a2
a1

=
7

240
,

b1 = −a3 + a2b0
a1

= − 1121

1209600
,

b2 = −a4 + a2b1 + a3b0
a1

=
1409

24192000
,

b3 = −a5 + a2b2 + a3b1 + a4b0
a1

= − 73430479

16094453760000
,

b4 = −a6 + a2b3 + a3b2 + a4b1 + a5b0
a1

=
557732611

1394852659200000
, . . . .

We obtain from the second recurrence relation in (1.16) that

c0 = −b2
b1

=
1409

22420
,

c1 = −b3 + b2c0
b1

= − 651087191

668814499584
,

c2 = −b4 + b2c1 + b3c0
b1

=
11867426245291

194932674048752640
, . . . .
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Continuing the above process, we find

d0 = −c2
c1

=
11867426245291

189765872688860
, . . . .

Formula (3.14) can be written as (3.12). The proof is complete.

Theorem 3.3. Let m = 1
2n(n+ 1). As n→∞, we have(

1 +
1

n

)n+ 1
2

∼ exp

(
1 +

∞∑
`=1

d`
m`

)
, (3.15)

with the coefficients d` (` ∈ N) given by the recurrence relation

d` = a` −
1

`

`−1∑
k=1

kdka`−k, ` ∈ N. (3.16)

where the coefficients a` are given in (3.4).

Proof. By Lemma 2.2, we obtain from (3.3) that(
n+

1

2

)
ln

(
1 +

1

n

)
− 1 ∼ ln

( ∞∑
`=0

a`
m`

)
∼
∞∑
`=1

d`
m`

, (3.17)

where

d` = a` −
1

`

`−1∑
k=1

kdka`−k, ` ∈ N,

and a` are given in (3.4). Formula (3.17) can be written as (3.15).

Based on the asymptotic expansion (3.15) and using (1.16), we derive another continued fraction ap-

proximation for the sequence
{(

1 + 1
n

)n+ 1
2
}
n≥1 asserted by Theorem 3.4. We here omit the calculations

of the constants αj and βj in the right-hand side of (3.18).

Theorem 3.4. Let m = 1
2n(n+ 1). As n→∞, we have

(
1 +

1

n

)n+ 1
2

≈ exp

1 +
α1

m+ β1 +
α2

m+ β2 +
α3

m+ β3 +
. . .

 , (3.18)

where

α1 =
1

24
, β1 =

1

20
, α2 = − 3

2800
, β2 =

11

180
, α3 = − 25

24948
, β3 =

29

468
, . . . .
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Remark 3.2. Write (1.9) as

(n+ 1)n+1

nn
− nn

(n− 1)n−1
= e

∞∑
j=0

bj
pj

= e

(
1 +

1

24p
+

11

640p2
+

5525

580608p3
+

1212281

199065600p4
+

772193

181665792p5

+
6889178449747

2191186722816000p6
+

107876982981287

44497945755648000p7
+

6225541612992329

3227584332143001600p8
+ . . .

)
, (3.19)

with the coefficients bj (for j ∈ N0) given by

bj = 2(ω2j + ω2j+1), (3.20)

where the ωj (for j ∈ N0) are given in (1.5), and p = n2 is the nth quadrangular number.
Based on the asymptotic expansion (3.19) and using (1.16), we derive the following continued fraction

approximation:

(n+ 1)n+1

nn
− nn

(n− 1)n−1
≈ e


1 +

λ1

p+ µ1 +
λ2

p+ µ2 +
λ3

p+ µ3 +
. . .


(3.21)

as n→∞, where

λ1 =
1

24
, µ1 = −33

80
, λ2 = − 70429

1209600
, µ2 = −4054307

8451480
,

λ3 = − 159009926405791

2639960924477184
, µ3 = − 8570632118726927402873

17470299766660188768840
, . . . .

Remark 3.3. Based on the asymptotic expansion (1.7) and using (1.16), we derive the following continued
fraction approximation:

1

2

((
1 +

1

n

)n
+

(
1− 1

n

)−n)
≈ e

1 +
τ1

p+ ν1 +
τ2

p+ ν2 +
τ3

p+ ν3 +
. . .

 (3.22)

as n→∞, where

τ1 =
11

24
, ν1 = −2447

2640
, τ2 = − 5179661

146361600
, ν2 = − 902753063

2279050840
,

τ3 = − 61929377534266549

1298088920616977664
, ν3 = − 75130865553803396336002597

166802054415628635879142280
, . . . ,

and p = n2 is the nth quadrangular number.
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4 Comparison
Using the Maple software, we find from (1.10), (1.11), (3.21), (3.22), (3.12) and (3.18) that, as

n→∞,

(
1 +

1

n

)n1 +
− 1

2

n+ 11
12 +

− 5
144

n+ 34
75+

− 481
10000

n+357866
757575


−1

= e+O

(
1

n7

)
, (4.1)

(
1 + 1

n

)n
exp

 − 1
2

n+ 2
3+

− 1
18

n+ 8
15

+
− 3

50
n+18

35


= e+O

(
1

n7

)
, (4.2)

un :=

(
(n+ 1)n+1

nn
− nn

(n− 1)n−1

)1 +
λ1

p+ µ1 +
λ2

p+µ2+
λ3

p+µ3+

. . .


−1

= e+O

(
1

n14

)
, (4.3)

vn :=
1

2

((
1 +

1

n

)n
+

(
1− 1

n

)−n)1 +
τ1

p+ ν1 +
τ2

p+ν2+
τ3

p+ν3+

. . .


−1

= e+O

(
1

n14

)
, (4.4)

xn :=

(
1 +

1

n

)n+ 1
2

1 +
1
24

m+ 7
240 +

− 1121
1209600

m+ 1409
22420+

− 651087191
668814499584

m+ 11867426245291
189765872688860


−1

= e+O

(
1

n14

)
, (4.5)

yn :=

(
1 + 1

n

)n+ 1
2

exp

 1
24

m+ 1
20+

− 3
2800

m+ 11
180

+
− 25

24948
m+ 29

468


= e+O

(
1

n14

)
. (4.6)

Clearly, the approximation formulas (4.3)-(4.6) are much stronger than (4.1) and (4.2). The following
numerical computations (see Table 1) would show that for n ≥ 2, the formula (4.5) would be the best
one.

Table 1. Comparison among approximation formulas (4.3)-(4.6).
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n vn − e un − e yn − e xn − e
2 1.85697× 10−8 3.59161× 10−9 4.80604× 10−14 3.98141× 10−14

10 1.17920× 10−18 2.50982× 10−19 7.83678× 10−23 6.50190× 10−23

100 1.13822× 10−32 2.43084× 10−33 1.43490× 10−36 1.19059× 10−36

1000 1.13782× 10−46 2.43007× 10−47 1.52781× 10−50 1.26768× 10−50

5 Conjecture
In view (3.1) and (3.2), we propose the following conjecture.

Conjecture 5.1. (i) Let a` (` ∈ N) be given in (3.4). Then we have

(−1)`−1a` > 0, ` ∈ N (5.1)

and

e

(
1 +

2q∑
`=1

a`
m`

)
<

(
1 +

1

n

)n+ 1
2

< e

(
1 +

2q+1∑
`=1

a`
m`

)
, (5.2)

where m = n(n+ 1)/2, n ∈ N and q ∈ N0.
(ii) Let d` (` ∈ N) be given in (3.16). Then we have

(−1)`−1d` > 0, ` ∈ N (5.3)

and

exp

(
1 +

2q∑
`=1

d`
m`

)
<

(
1 +

1

n

)n+ 1
2

< exp

(
1 +

2q+1∑
`=1

d`
m`

)
, (5.4)

where m = n(n+ 1)/2, n ∈ N and q ∈ N0.
(iii) Let m = n(n+ 1)/2. Then for all n ∈ N and q ∈ N0,

exp

(
1 +

2q∑
`=1

d`
m`

)
< e

(
1 +

2q∑
`=1

a`
m`

)
<

(
1 +

1

n

)n+ 1
2

< e

(
1 +

2q+1∑
`=1

a`
m`

)
< exp

(
1 +

2q+1∑
`=1

d`
m`

)
. (5.5)

This means that double inequality (5.2) is sharper than (5.4).

6 New derivations of (1.12) and (1.13)

Using a lemma of Mortic [27, 28], Lu et al. [24] proved (1.12), and Fang et al. [14] obtained (1.13).
However, these authors did not give a formula for determining the constants in the right-hand sides of
(1.12) and (1.13). By using system (6.6) below, we here give new derivations of (1.12) and (1.13). To this
end, we first establish the following lemma.
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Lemma 6.1. Let a1 6= 0 and

A(x) ∼
∞∑
j=1

aj
xj
, x→∞

be a given asymptotic expansion. Define the function g by

A(x) =
a1

x+ xB(x)
.

Then the function B(x) = a1
xA(x) − 1 has asymptotic expansion of the following form

B(x) ∼
∞∑
j=1

bj
xj
, x→∞,

where

b1 = −a2
a1
, bj = −

1

a1

(
aj+1 +

j∑
k=2

akbj−k+1

)
, j ≥ 2. (6.1)

Proof. We can let
a1
A(x)

∼ x+ x

∞∑
k=1

bk
xk
, x→∞, (6.2)

where bk (for k ∈ N) are real numbers to be determined. Write (6.2) as

∞∑
j=1

aj
xj

(
1 +

∞∑
k=1

bk
xk

)
∼ a1

x
,

−
∞∑
j=2

aj
xj
∼
∞∑
j=1

aj
xj

∞∑
k=1

bk
xk

=

∞∑
j=2

{
j−1∑
k=1

akbj−k

}
1

xj
. (6.3)

Equating coefficients of equal powers of x in (6.3), we obtain

−aj =
j−1∑
k=1

akbj−k, j ≥ 2.

For j = 2 we obtain b1 = −a2/a1, and for j ≥ 3 we have

−aj = a1bj−1 +

j−1∑
k=2

akbj−k, j ≥ 3,

which gives the desired formula (6.1). The proof is complete.

Lemma 6.1 provides a method to construct a continued fraction approximation based on a given
asymptotic expansion. We state this method as a consequence of Lemma 6.1.
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Corollary 6.1. Let a1 6= 0 and

A(x) ∼
∞∑
j=1

aj
xj
, x→∞ (6.4)

be a given asymptotic expansion. Then the function A(x) has the following continued fraction approxi-
mation of the form:

A(x) ≈ a1

x+
b1x

x+
c1x

x+
d1x

x+
. . .

, x→∞, (6.5)

where the constants in the right-hand side of (6.5) are given by the following recurrence relations:

b1 = −a2a1 , bj = − 1
a1

(
aj+1 +

∑j
k=2 akbj−k+1

)
c1 = − b2b1 , cj = − 1

b1

(
bj+1 +

∑j
k=2 bkcj−k+1

)
d1 = − c2c1 , dj = − 1

c1

(
cj+1 +

∑j
k=2 ckdj−k+1

)
. . . . . .

(6.6)

Clearly, aj =⇒ bj =⇒ cj =⇒ dj =⇒ . . .. Thus, the asymptotic expansion (6.4) =⇒ the continued
fraction approximation (6.5).

Based on the asymptotic expansions (1.4) and (1.19), respectively, and using (6.6), we can easily
derive the continued fraction approximations (1.12) and (1.13). Here, we only give a derivation of (1.12).
The derivation of (1.11) is analogous, and we omit it.

A new derivations of (1.12). Denote

A(x) =
1

e

(
1 +

1

x

)x
− 1.

It follows from (1.4) that

A(x) ∼
∞∑
j=1

aj
x`

= − 1

2x
+

11

24x2
− 7

16x3
+

2447

5760x4
− 959

2304x5
+

238043

580608x6
− · · · (6.7)

as x → ∞, where the coefficients aj ≡ ωj are given in (1.5). Then, A(x) has the continued fraction
approximation of the form

A(x) ≈ a1

x+
b1x

x+
c1x

x+
d1x

x+
e1x

x+
f1x

x+
. . .

, x→∞, (6.8)
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where the constants in the right-hand side of (6.8) can be determined using (6.6). Using (6.6), we now
calculate the constants in the right-hand side of (6.8). Noting that

a1 = −1

2
, a2 =

11

24
, a3 = − 7

16
, a4 =

2447

5760
, . . . ,

we obtain from the first recurrence relation in (6.6) that

b1 = −a2
a1

=
11

12
, b2 = −a3 + a2b1

a1
= − 5

144
, b3 = −a4 + a2b2 + a3b1

a1
=

17

1080
, . . . .

We obtain from the second and third recurrence relations in (6.6) that

c1 = −b2
b1

=
5

132
, c2 = −b3 + b2c1

b1
= − 457

29040
, . . .

and

d1 = −c2
c1

=
457

1100
, . . . .

Continuing the above process, we find

e1 =
5291

45700
, f1 =

19753835

55393884
, . . . .

We see that formula (6.8) coincides with formula (1.12).
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