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Abstract. In this paper, we introduce a method to construct a continued fraction approximation based
on a given asymptotic expansion. We establish some asymptotic expansions related to the constant e.
Based on these expansions, we derive the corresponding continued fraction approximations related to the
constant e.
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1 Introduction

The constant e can be defined by the limit

1 xT
e = lim <1 + > .
T—00 T

With the possible exception of 7, e is the most important constant in mathematics since it appears in
myriad mathematical contexts involving limits and derivatives. Joost Biirgi seems to have been the first
to formulate an approximation to e around 1620, obtaining three-decimal-place accuracy (see [12, p.
31], [19], and [26, pp. 26-27]).

There have been many results in generalizing Carleman-type inequality by estimating (1 + 1/n)"
(see, for example, [3-5,9, 11, 13,21-24,29,31,35-40]). For example, Xie and Zhong [35] proved that,

forx > 1,
7 1\” 6
- 14~ L 11
e( 14x+12><<+x> <e( 12x+11>’ (.1

and then applied it to obtain an improvement of Carleman-type inequality. For information about the
history of Carleman-type inequalities, see [17, 18,20, 32].
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Some asymptotic expansions for (1 + 1/x)w (as x — 00) can be found in [2,3,6,8, 16, 19,23, 30, 34,
38,39]. For example, Brothers and Knox [2] (see also [6, 19] and [15, p. 14]) derived, without a formula
for the general term, the following expansion:

LA S PR S ¢ T, omT 959 238043
v) 7 22 T 2427 T 1623 ' 576027 230425 | 580608z

1.2)

forx < —lorxz > 1.

Adding approximation (1.2) and the approximation obtained by replacing x by —z in (1.2), and mul-
tiplying the resulting identity by 1/2, Knox and Brothers [19] (see also [2]) obtained the following better
approximation to e than that given by (1.2):

(141 Z+ ) N\ g1 2447 238043 (13)
2 z z - ¢ 2422 T 5760z% | 58060815 ‘ :

1 xr o0 .
1+-) = =z < -1 >1, 1.4
( +x) ez x or x> (1.4)

J=0

With

Chen and Choi [6] gave an explicit formula for successively determining the coefficients w; in the form

(5" ()" ()"

. 2 3 J+1

wo=1, w;=(-1) > PRI B R (1.5)
k1+2ka++jk;=j J

summed over all nonnegative integers k; satisfying the equation £y + 2kg + --- + jk; = j. The above
result immediately shows that (—1)’w; > 0 so that (1.4) is an alternating series for positive z. The
following recurrence relation for §; = (—1)7w; can be found in [8]:

1<~ &
0p =1 and ejzf,Z—oj_k. for j > 1. (1.6)
jk:1k+1

The representation using a recursive algorithm for the coefficients (—1)76; = w; in (1.6) is more practical
for numerical evaluation than the expression in (1.5).
By using (1.4), we find, as x — oo,

1 1\* N SO+ )wy S wy

where the w; (for j € Ny) are given in (1.5).
The constant e is given in [2] (see also [15, p. 15]) by the unusual limit

lim ((n + )™ — n” ) =e. (1.8)

n—o0 nn (n—1)n-1t




By using (1.4), we find the following asymptotic expansion:

(n+ D)™ ”nn_l = (14n) (1+i)n+(1—n) (1_1>":e§f2<ww+w

nm (n—1) n n2i

§=0
(1.9)

as n — oo, where the w; (for j € Np) are given in (1.5).
Some continued fraction approximations related to the constant e were presented in [14, 24,25, 41].
For example, You et al. [41] proved, as z — oo,

1\ 1
<1+> ~el|ll+ 2 . (1.10)
X 1.4_2_*_ 144

. 357866 , *.
=+ 757575 T

1\* -3
(1+) ~exp | 1+ S (1.11)
ff r+ 2+ e
z+&+ 50
T+%+'
Lu et al. [24] presented, as n — oo,
1 1\" b
(1+) ~1+ — : (1.12)
e n n -+ 2—b3n
TL—‘—n+ byn
nt_—bom
nt_b6"
'n,+'
where
b __1 b _E b _i by — 457 5291 b 19753835
YT P12 BT 132 Y T11000 P 457000 ° T 55393884
Fang et al. [14] presented, as n — oo,
1 1\"
e (1 " > ~exp ala n ’ (1.13)
e n n -+ ﬁ
n+%
n+‘.'



where

:B, aﬁfﬁv

Very recently, Chen and Wang [10, Corollary 1.1] provided a method to construct a continued fraction
approximation based on a given asymptotic expansion. We state this method as follows. Let a; # 0 and

1 2 1 9 2 8
=3 =5 =55 05
3

f(x)wzﬁ, T — 00 (1.14)
j=1
be a given asymptotic expansion. Then the function f has the following continued fraction approximation
of the form
flz) = @ 5 , T — 00, (1.15)
T+ by + -
T+t ——m—

r+do+ -

where the constants in the right-hand side of (1.15) are given by the following recurrence relations:

_ _a _ 1 J
bo = 7??, bj ="u (aj+2 -+ Zk:l ak+1bj—k)

Co = —%7 Cj = —ﬁ (bj+2 + Zi:l bk+1cj—k)
(1.16)
do=-2, dj=—-1 <0j+2 + 2k Ck+1dj—k)
Clearly, a; = b; = ¢; = d; = .... Thus, the asymptotic expansion (1.14) = the continued

fraction approximation (1.15).

Based on Ramanujan’s asymptotic expansion for the nth harmonic number (see [1, p. 531] and [33, p.
276])

n

11 1 1 1 1
H, =S =~ =In2 _ _
kz::l R M)t o o0 T G30m? 1680 T 2310m8
191 29 2833 140051

_ - . . 1.17
360360m6 | 30030m7  1166880m® | 17459442m° » m—=roo (1L17)

and using (1.16), Chen and Wang [10, Theorem 2.1] derived the following continued fraction approxima-
tion for the nth harmonic number:

1
1 —_
H, ~ §ln(2m)+’y—|— - - , n — oo, (1.18)
m + 10 + 21(1016585
JLORRE-T ST 1)
e B

where m = n(n + 1)/2 is the nth triangular number and -y is the Euler-Mascheroni constant.



Remark 1.1. It is easy to see that

In{l+—-)—-1= —_ >1 —1. 1.1
zIn ( + z) jél G |z] >1 and x# (1.19)

Based on expansion (1.19) and using (1.16), we derive

1
xln(l—i—)—l% - , T — 00,
z r+i4—T5

which can be written as (1.11). Thus we give a different derivation of (1.11) from that in [25]. Based on
expansion (1.2) and using (1.16), we can easily derive the continued fraction approximation (1.10).

All results of the present paper are motivated by the paper [10]. We here present some asymptotic
expansions related to the constant e. Based on these expansions, we derive the corresponding continued
fraction approximations related to the constant e.

2 Lemmas

The following lemmas will be useful in pour present investigation.

Lemma 2.1 (see [7]). Let
Ax) ~ Z anx™", x — 00
n=1

be a given asymptotical expansion. Then the composition exp(A(x)) has asymptotic expansion of the
following form

exp(A(zx)) ~ Z bpz™ ", T — 00, (2.1)
n=0
where
1 n
b = =— _ . .
0=1, bu==> kagbpy, n>1 2.2)
k=1
Lemma 2.2 (see [7]). Letag = 1 and
g(z) ~ Z anx” ", T — 00
n=0

be a given asymptotic expansion. Then the composition In(g(x)) has asymptotic expansion of the follow-
ing form

In(g(x)) ~ Z bpx™", T — 00,
n=1



where
n—1

1
=a, — — _ . 2.
by, = an, - kzﬂ kbran_p, neN 2.3)

3 Main results

Using the Maple software, we find, as n — oo,

1 3 1 7 43 7961 182521
1+ — ~ell+ - 5+ - v
n 24m  5760m 580608m3  1393459200m 367873228800m°
_ 1115593093 n 2620419701
24103053950976000m¢ = 578473294823424000m7
B 333235214791 n 12937676612987993 _
726206474732175360000m8 = 271211974879377138647040000m°
3.D
and
1+ 1 e € 1+ 1 ! + ! L + L !
= ~ ex _ _ _
n P 24m  480m2 = 6720m3  80640m* = 887040m5  9225216mS
1 1 1
— — ... 3.2
+ 92252160m7  896163840m8 + 8513556480m° )’ (3-2)

which are analogues of (1.17).

Even though as many coefficients as we please in the right-hand sides of (3.1) and (3.2) can be obtained
by using the Maple software, here we aim at giving a formula for determining these coefficients. And
then, based on the obtained expansions (3.1) and (3.2) and using (1.16), we derive the corresponding
continued fraction approximations related to the constant e.

Theorem 3.1. Let m = in(n +1). As n — oo, we have

1 n+i o]

2 as

14 = ~ey 4 3.3
(152) e 63)

with the coefficients ay (¢ € Ng := NU{0},N:={1,2,...}) given by the recurrence relation

1 = 20 —j—1
ap =1, a(:? qw—jZ:;QJaj( 2 —2j ) s {>1, 34

where q¢ (¢ € Ng) can be calculated by

Il
=
[

|
|
-
—
I
—_
S~—
=
—
=~
I
—_
S~—
R
B3

~

V

—_

0 (3.5)



Proof. Denote

1
1 1\"*"2 > ay
Li==(1+= d J,=) —.
e(+n> an Ezome

In view of (3.1), we can let I,, ~ J,, (n — 00), where a, (¢ € Ny) are real numbers to be determined.
Direct computation yields

1 1 = (—1)kt = - 1
lnIn:(n+2)ln(1+n>—1=< ) i Z{ [
k=1 =1
We obtain by Lemma 2.1 that

I, = i g€, (3.6)

where

k=0 k=0 §=0
o0 o
2k ay, -1\ 1
=ty ()
n2k j nJ
k=0 §=0
oo k
(k-1 1
=33 P 0 (1) e
+
k=0 j=0 k (n+ 1)+
oo 5] )
. {—j5—1\1
— (1) il
=Y ) ( s )ng. 3.7)
¢=0 j=0
Equating coefficients of the term 7~ on the right-hand sides of (3.6) and (3.7) yields
L5] i1
221% ( Py ) =q, (>0. (3.8)
Replacement of ¢ by 2/ in (3.8) yields
¢ .
s (20—5—1
2a, = £>0. 3.9
;0 aj(%%.) Gar, > (3.9)



For £ = 0 in (3.9) we obtain ay = gy = 1, and for £ > 1 we have

223 () e =
20— 25 ’

which gives the desired formula (3.4). O
Remark 3.1. Replacement of £ by 2¢ + 1 in (3.8) yields

‘o 20— j
—Zz?aj <2€_2j+1> = g1, L >0. (3.10)
7=0
For { = 1in (3.10) this yields a; = —% = 24, and for £ > 2 we have

27 — 2%a, = (>2.
Z aj(% 2j+1> e = q2e+1, Z

We then obtain the alternative recurrence relation for the coefficients ay in (3.3) in terms of the odd
coefficients qp:

1 1 = 20— j
w=h MTop YT oy q2“1+jz::0 a’<2£2j+1> ’ - G1D
Theorem 3.2. Let m = in(n +1). As n — oo, we have
1
1\""z
(1 n ) ~ell+ a@ , (3.12)
n bl
m+ by + ]
m+ cg +
m+do+ -
where
R S . u2 . _ 1409
YTog YT 2407 TP T 12006000 0T 22420°
. _ 051087191 _ 11867426245291
L 6688144995847 T 189765872688860°

Proof. Denote



It follows from (3.3) that

o0

Fim) ~ 3

="
1 7 + 43 B 7961 N 182521
© 24m  5760m2  580608m3  1393459200m4  367873228800m5
B 1115593093 + 2620419701
24103053950976000mS = 578473294823424000m
333235214791 12937676612987993

— — 3.13
726206474732175360000m8 * 271211974879377138647040000m° (3.13)

as m — oo, where the coefficients ay (£ € N) are given in (3.4). Then, F} (m) has the continued fraction
approximation of the form
ai
Fi(m) =~ 5 , m — 00, (3.14)
m+ by + ! ~
m + Co -+

m—+do+

where the constants in the right-hand side of (3.14) can be determined using (1.16). Noting that

S A S 2 S
Y7o TP 57607 TP 5806087 YT 1393459200
. 182521 o 1115593003

> 7 3678732288007 °  24103053950976000° 7’

we obtain from the first recurrence relation in (1.16) that

T

ai 240’
bl _ _a3 + 0,21)0 _ _ 1121

a 1209600’
by — g + asby + asbg _ 1409
aq 24192000’
by = _as + agby 4+ azby + asbg _ 73430479
ay 16094453760000°

by — g + asbs 4+ aszbs 4+ a4b1 + asbg . 557732611

ay "~ 1394852659200000°

We obtain from the second recurrence relation in (1.16) that

by 1409
Co = *a = m7
o = _b3 + baco _ 651087191
b1 668814499584’
= — bs + baci + bscg _ 11867426245291
by 194932674048752640’



Continuing the above process, we find

cp _ 11867426245291
c1 189765872688860’

dy = —

Formula (3.14) can be written as (3.12). The proof is complete. O
Theorem 3.3. Let m = in(n+1). As n — oo, we have
1 n+é 00 ,
(1 + n) ~ exp ( Z e> (3.15)
(=

with the coefficients dy (¢ € N) given by the recurrence relation

N

1
dy = ap — Z Z kdkag_k, f e N. (3.16)
k=1

where the coefficients ay are given in (3.4).
Proof. By Lemma 2.2, we obtain from (3.3) that
1 1 — g de
<n+2>ln<1+n>—1~n<;me> ;W’ (3.17)

where

dg_ag—kadkag ks feN,

and ay are given in (3.4). Formula (3.17) can be written as (3.15). ]

Based on the asymptotic expansion (3.15) and using (1.16), we derive another continued fraction ap-

proximation for the sequence { (1 + %) 2 }n>1 asserted by Theorem 3.4. We here omit the calculations
of the constants «; and 3; in the right-hand side of (3.18).

Theorem 3.4. Let m = in(n+1). As n — oo, we have

1

1\""z
<1+ ) ~exp |1+ N : (3.18)
n m+ 61 + as
m+ o +
m+53+"
where
1 1 3 11 25 29
aq ﬁu ﬁl_%y a2__28007 52_@7 a3__249487 63_@7
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Remark 3.2. Write (1.9) as

oo

(n+1)n+t n" Z b;

nn (n—1)n—1 = pi
14 1 n 11 + 5525 " 1212281 n 772193
= e —_—
24p ~ 640p%  580608p3  199065600p* = 181665792p°

6880178449747 107876082081287 6225541612002320 (3.19)
2191186722816000p° ' 44497945755648000p7 ' 3227584332143001600p% )7

with the coefficients b; (for j € Ng) given by

bj = 2(waj + wajy1), (3.20)

where the w; (for j € Ng) are given in (1.5), and p = n? is the nth quadrangular number.

Based on the asymptotic expansion (3.19) and using (1.16), we derive the following continued fraction
approximation:

1 n+1 n A
(n+ n) - & ”l)nfl ~ell+ ! K (3.21)
” -
P+ —
P+ pg + ————
P+ s+ -
as n — oo, where
N 33 70429 4054307
L= 9 M7 7800 27 12006000 M T T 8451480°
159009926405791 8570632118726927402873

A = — = —
3 2639960024477184 1 17470299766660188768840°

Remark 3.3. Based on the asymptotic expansion (1.7) and using (1.16), we derive the following continued
fraction approximation:

1 1\" 1\ "
<<1+> +<1—) )ze 1+ n B (3.22)
2 n n P+

T3
ptrv+ —mm
p+uvs+
as n — oo, where
11 2447 5179661 902753063
M=z WNM=—g7 T2= ooy, V2= o,
24 2640 146361600 2279050840
61929377534266549 75130865553803396336002597

7T T1208088920616077664° | °  166802054415628635879142280°

and p = n? is the nth quadrangular number.

11



4 Comparison

Using the Maple software, we find from (1.10), (1.11), (3.21), (3.22), (3.12) and (3.18) that, as
n — oo,
—1

1\" -1 1
(1+> 1+ z =e+0<7>, 4.1)
n n+%+ _m4 n

81
34 — 10000
n+ 75+ ss7scs
nt 757575

1 n
(1+3) et <1> 4.2)

n?

1 n+1 n )\ 1
- ((” +n”) % _nl)n1> 14+ ! " =e+0 <n14) , (43)
p+pu+ PT——
p+u3+."
-1
1 1 n 1 -n 1
o= (14=) +(1-= 14 n —e+0( =), @4
B n n + T2 14
ptuvi+ ptve+—2 "
ptvat -
-1
1 n+3 L 1
zn::(l+) 1+ - 24,& :e+0<14), (4.5)
n m+ 55 + 2 o — "
M+ gt +——F0R e
22420 m+ 15576587568 5860
(11 1) 1
. ; —et0 (nM> . (4.6)
1
exp 24

m+%+4&%;% -5
m,+m+‘2—97mi4g
Clearly, the approximation formulas (4.3)-(4.6) are much stronger than (4.1) and (4.2). The following
numerical computations (see Table 1) would show that for n > 2, the formula (4.5) would be the best
one.
Table 1. Comparison among approximation formulas (4.3)-(4.6).

12



n Up — € Uy — € Yn — € Ty — €
2 1.85697 x 10~%  3.59161 x 1077  4.80604 x 10~1%  3.98141 x 1014
10 1.17920 x 10~ '®  2.50982 x 10~1° 7.83678 x 10723  6.50190 x 1023
100 1.13822 x 10732  2.43084 x 10733  1.43490 x 1073¢  1.19059 x 10736
1000 1.13782 x 10746 2.43007 x 10747  1.52781 x 10759  1.26768 x 10~0

S Conjecture

In view (3.1) and (3.2), we propose the following conjecture.
Conjecture 5.1. (i) Let ap (¢ € N) be given in (3.4). Then we have

(-1)ta, >0, {eN (5.1
and

2 ay 1 nty at! ay
6<1+;W><(1+n> <e<1+zme>, (5.2)
where m = n(n+1)/2,n € Nand ¢ € No.
(ii) Let dy (¢ € N) be given in (3.16). Then we have
(-1)td, >0, {eN (5.3)

and
29 n+3 2q+1
dz 1 2 dZ
exp 1+Z€><(1+> <exp<1+z 12)’ 5.4
( —m n — m

where m = n(n+1)/2,n € Nand ¢ € No.
(iii) Let m = n(n + 1)/2. Then for all n € N and g € Ny,

2q dy 2q a 1 n+i
exp <1+me> <e<1+zme> < <1+n>
- ﬁq:-il 2q+1 d
<e<1+Z:é><eXp(l+eZn;>. (5.5)
=1

{=1

This means that double inequality (5.2) is sharper than (5.4).

6 New derivations of (1.12) and (1.13)

Using a lemma of Mortic [27,28], Lu et al. [24] proved (1.12), and Fang et al. [14] obtained (1.13).
However, these authors did not give a formula for determining the constants in the right-hand sides of
(1.12) and (1.13). By using system (6.6) below, we here give new derivations of (1.12) and (1.13). To this
end, we first establish the following lemma.

13



Lemma 6.1. Letf ay # 0 and

be a given asymptotic expansion. Define the function g by

A(z) =

ai
z+aB(x)

Then the function B(x) = zX(la:) — 1 has asymptotic expansion of the following form

b

> .
B(m)wzx—]j, T — 00,
j=1

where
as 1 J .
by = —a—l, bj = —a—l aj41 + ;akbj_k+1 , j>2. 6.1)
Proof. We can let
aq > bk
A(x)Nx—i_mZE’ T — 00, (6.2)

J=1 k=1
B e} GJ oo GJ o0 bi B e} j—1 ) i )
J= J= = i= =

k
Equating coefficients of equal powers of x in (6.3), we obtain

J—1
—a; = E:akl)j,]€7 j Z 2.
k=1

For j = 2 we obtain by = —as/aq, and for j > 3 we have
j—1
—aj =a1bj_1 + Zakbj—k, Jj =3,
k=2
which gives the desired formula (6.1). The proof is complete. O

Lemma 6.1 provides a method to construct a continued fraction approximation based on a given
asymptotic expansion. We state this method as a consequence of Lemma 6.1.

14



Corollary 6.1. Let a; # 0 and
A(z) ~ Z a—j, T — 00 (6.4)

be a given asymptotic expansion. Then the function A(x) has the following continued fraction approxi-
mation of the form:
A(z) = @ T — 00, (6.5)
b1.f(2
T+ Ty —
T+
T+

dlfﬂ
T+

where the constants in the right-hand side of (6.5) are given by the following recurrence relations:

bl =22 bj = _aill (aj+1 + Z£:2 akbj_k+1)

c1=—, =g (bj+1 + s bkcj—k+1)
(6.6)
dy=—2, dj=—; (Cj+1 +2hm2 C’fdj*kJrl)
Clearly, a; = b; = ¢; = d; = .... Thus, the asymptotic expansion (6.4) = the continued

fraction approximation (6.5).

Based on the asymptotic expansions (1.4) and (1.19), respectively, and using (6.6), we can easily
derive the continued fraction approximations (1.12) and (1.13). Here, we only give a derivation of (1.12).
The derivation of (1.11) is analogous, and we omit it.

A new derivations of (1.12). Denote

It follows from (1.4) that

> a; 1 11 7 2447 959 238043
A ~ —‘] [ — — .. 6'7
(2) J,Zzl xt 9 T 2422 162° | 576021 230425 | 58060820 ©.7

as x — oo, where the coefficients a; = w; are given in (1.5). Then, A(z) has the continued fraction
approximation of the form

A(z) ~ alblx .z — o0, (6.8)
T+ 1T
x +

dll‘
T+ €1z

T+
fiz

x4+

T+

15



where the constants in the right-hand side of (6.8) can be determined using (6.6).

calculate the constants in the right-hand side of (6.8). Noting that

1 11 7 2447
ag=—=, Ay=—, A3=—=—, (4= ——y ...
Ty oo T 16 Tt bTe0” ’
we obtain from the first recurrence relation in (6.6) that

as 11 as + asby 5 ayg + asby + aszby
R L e by = —

Using (6.6), we now

17

aq h E’ o a1 o _M’ o a1

We obtain from the second and third recurrence relations in (6.6) that

c 77b727i . 77()3"‘()261 _ 457
T 132 P b, 29040’
and
C2 457
dy= -2 ="
! ¢, 1100

Continuing the above process, we find

5291 19753835

1= 157000 7'~ 55303884

We see that formula (6.8) coincides with formula (1.12).
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