Two-dimensional Hermite-Hadamard-Type integral Inequalities for coordinated ϕ_{h}-convex functions on time scales

B. O. Fagbemigun and A. A. Mogbademu
Department of Mathematics, University of Lagos, Akoka.
E-mail: opeyemifagbemigun@gmail.com, amogbademu@unilag.edu.ng

Key words: Time scales, ϕ_{h}-convex function, diamond- ϕ_{h}, Hermite-Hadamard inequality.

2000 Mathematics Subject Classification: 35A23, 52A41, 34N05.

Abstract

In this paper, double integral calculus via the diamond- ϕ_{h} dynamic integral for two-variable functions on time scales is introduced to prove Hermite-Hadamard type integral inequalities for the generalized class of ϕ_{h}-convex functions. Also, a two-dimensional Hermite-Hadamard-type integral inequality for this class of convex functions on time scales is established. Our work generalizes and refines proofs of corresponding results for some known classes of functions.

1 Introduction

The inequality

$$
\begin{equation*}
(b-a) f\left(\frac{a+b}{2}\right) \leq \int_{a}^{b} f(x) d x \leq(b-a) \frac{f(a)+f(b)}{2}, \quad a, b \in \mathbb{R}, a<b \tag{1.1}
\end{equation*}
$$

holds for any convex function f defined on \mathbb{R}. It was first suggested by Hermite in 1881. But this result was nowhere mentioned in literature and was not widely known as Hermite's result. A leading expert on the history and theory of convex functions, Beckenbach [1], wrote that the inequality (1.1) was proven by Hadamard in 1893. In general, (1.1) is now known as the Hermite-Hadamard inequality. It has several extensions and generalizations for univariate, bivariate and multivariate convex functions and its classes on classical intervals(see Dragomir [5]) with recent extensions to time scales(see [4, 10, 13]).

The concept of the theory of time scales was initiated by Stefen Hilger [9] in order to unify and extend the theory of difference and differential calculus consistently. In this theory, the delta and nabla calculus for single and two-variable functions are introduced (see $[2,3,8]$). A linear combination of these delta and nabla dynamics, the diamond- α calculus on time scales was developed by Sheng et al. [12]. Since the advent of this notion, several authors have extended many
classical mathematical inequalities to time scales via the diamond-alpha dynamic calculus for univariate, bivariate and multivariate functions (see [4, 10, 11, 13]).
Nwaeze [10], employed Theorem 3.9 of Dinu [4] for a univariate function on time scales to prove the following Hadamard's type result, via the combined diamondα dynamics, extending (1.1), for functions defined on a rectangle, that are convex on the coordinates.

Theorem 1.1.[10] Let $a, b, x \in \mathbb{T}_{1}, c, d, y \in \mathbb{T}_{2}$, with $a<b, c<d$ and $f:[a, b] \times$ $[c, d] \rightarrow \mathbb{R}$ be such that the partial mappings $f_{y}:[a, b] \rightarrow \mathbb{R}, f_{y}(u):=f(u, y)$ and $f_{x}:[c, d] \rightarrow \mathbb{R} f_{x}(v):=f(x, v)$ defined for all $y \in[c, d]$ and $x \in[a, b]$, are continuous and convex. Then the following inequalities hold

$$
\begin{align*}
& \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f\left(x, s_{\alpha}\right) \diamond_{\alpha} x+\frac{1}{d-c} \int_{c}^{d} f\left(t_{\alpha}, y\right) \diamond_{\alpha} y\right] \\
& \quad \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) \diamond_{\alpha} x \diamond_{\alpha} y \\
& \quad \leq \frac{1}{2(b-a)(d-c)} \int_{a}^{b}\left[\left(d-s_{\alpha}\right) f(x, c)+\left(s_{\alpha}-c\right) f(x, d)\right] \diamond_{\alpha} x \\
& \quad+\frac{1}{2(b-a)(d-c)} \int_{c}^{d}\left[\left(b-t_{\alpha}\right) f(a, y)+\left(t_{\alpha}-a\right) f(b, y)\right] \diamond_{\alpha} y \tag{1.2}
\end{align*}
$$

where $t_{\alpha}=\frac{1}{b-a} \int_{a}^{b} t \diamond_{\alpha} t$, and $s_{\alpha}=\frac{1}{d-c} \int_{c}^{d} s \diamond_{\alpha} s$.
Recently, the authors [6] introduced the time-scaled version of some classes of convex functions, including a more generalized class of ϕ_{h}-convex function on time scales thus;
Definition 1.1. [6] Let $h: \mathbb{J}_{\mathbb{T}} \subset \mathbb{T} \rightarrow \mathbb{R}$ be a nonzero non negative function with the property that $h(t)>0$ for all $t \geq 0$. A mapping $f: I_{\mathbb{T}} \rightarrow \mathbb{R}$ is said to be ϕ_{h}-convex on time scales if

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq\left(\frac{\lambda}{h(\lambda)}\right)^{s} f(x)+\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} f(y) \tag{1.3}
\end{equation*}
$$

for $s \in[0,1], 0 \leq \lambda \leq 1$ and $x, y \in I_{\mathbb{T}}$.

Remark 1.1.

(i) If $s=1$ and $h(\lambda)=1$, then $f \in S X\left(I_{\mathbb{T}}\right)$, i.e, f is convex on time scales (see [5, 12]).
(ii) If $s=1, h(\lambda)=1$, where $\lambda=\frac{1}{2}$, then $f \in J\left(I_{\mathbb{T}}\right)$ is mid-point convex on time scales (see [6]).
(iii) If $s=0$, then $f \in P\left(I_{\mathbb{T}}\right)$ is P-convex on time scales (see [6]).
(iv) If $h(\lambda)=\lambda^{\frac{s}{s+1}}$ for $\lambda>0$, then $f \in S X\left(h, I_{\mathbb{T}}\right)$ is h-convex on time scales (see [6]).
(v) If $s=1$ and $h(\lambda)=2 \sqrt{\lambda(1-\lambda)}$ for $\lambda \geq 0$, then $f \in M T\left(I_{\mathbb{T}}\right)$ is $M T$ convex on time scales (see [6]).
More recently, Fagbemigun et al.[7] proved the following Hadamard's type result for the new class of ϕ_{h}-convex functions earlier introduced by the authors [6], for a univariate function to obtain several generalizations of the Hermite-Hadamard inequality (1.1) on time scales.
Theorem 1.2. [7] Let $f: I_{\mathbb{T}} \rightarrow \mathbb{R}$ be a continuous, nondecreasing ϕ_{h}-convex function on $I_{\mathbb{T}}, a, b, t \in I_{\mathbb{T}}$, with $a<b$. Then

$$
\begin{equation*}
f\left(x_{\phi_{h}}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t) \diamond_{\phi_{h}} t \leq \frac{b-x_{\phi_{h}}}{b-a} f(a)+\frac{x_{\phi_{h}}-a}{b-a} f(b) \tag{1.4}
\end{equation*}
$$

where $x_{\phi_{h}}=\frac{1}{b-a} \int_{a}^{b} t \diamond_{\phi_{h}} t$.
Remark 1.2. (i) When $\phi_{h}=\alpha$ in (1.4), Theorem 3.9 of Dinu [4] is obtained.
(ii) Setting $\phi_{h}=\frac{1}{2}$ and using the relation (Q) of [7] in Theorem 1.2 gives inequality (5.1) of Dinu [4], which is the middle point Hermite-Hadamard inequality on time scales.
(iii) The nabla integral version of Theorem 1.2 is obtained if we choose $\phi_{h}=0$.

It is the purpose of this paper to extend inequality (1.1) to time scales via the combined diamond- ϕ_{h} dynamics, for a function of two variables.

2 Preliminaries

In the sequel, we shall need the following new definitions recently introduced in [8].
Let \mathbb{T}_{1} and \mathbb{T}_{2} be two time scales with $\mathbb{T}_{1} \times \mathbb{T}_{2}=\left\{(x, y): x \in \mathbb{T}_{1}, y \in \mathbb{T}_{2}\right\}$ which is a complete metric space with the metric d defined by

$$
d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\left(\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right)^{\frac{1}{2}}, \quad \forall \quad(x, y),\left(x^{\prime}, y^{\prime}\right) \in \mathbb{T}_{1} \times \mathbb{T}_{2}
$$

Let $\sigma_{i}, \rho_{i},(i=1,2)$ denote respectively the forward jump operator, backward jump operator, and the diamond- ϕ_{h} dynamic differentiation operator on \mathbb{T}_{i}.

Definition 2.1. Let f be a real-valued function on $\mathbb{T}_{1} \times \mathbb{T}_{2}, h: \mathbb{J}_{\mathbb{T}} \subset \mathbb{T} \rightarrow \mathbb{R}$ a nonzero non negative function with the property that $h(t)>0$ for all $t \geq 0 . f$ is said to have a partial $\diamond_{\left(\phi_{h}\right)_{1}}$ derivative $\frac{\partial f\left(t_{1}, t_{2}\right)}{\delta_{\left(\phi_{h}\right)_{1}} t_{1}}\left(\right.$ wrt $\left.t_{1}\right)$, at $\left(t_{1}, t_{2}\right) \in \mathbb{T}_{1} \times \mathbb{T}_{2}$, if for each $\epsilon>0$, there exists a neighbourhood $U t_{1}$ of t_{1} such that

$$
\begin{aligned}
& \left\lvert\,\left(\frac{\lambda}{h(\lambda)}\right)_{1}^{s}\left[f\left(\sigma_{1}\left(t_{1}\right), t_{2}\right)-f\left(m, t_{2},\right)\right] \mu t_{1} m\right. \\
& \left.\quad+\left(\frac{1-\lambda}{h(1-\lambda)}\right)_{1}^{s}\left[f\left(\rho_{1}\left(t_{1}\right), t_{2}\right)-f\left(m, t_{2}\right)\right] \nu t_{1} m-f^{\diamond\left(\phi_{h}\right)_{1}}\left(t_{1}, t_{2}\right) \mu t_{1} m \nu t_{1} m \right\rvert\,
\end{aligned}
$$

$$
\begin{equation*}
<\epsilon\left|\mu t_{1} m \nu t_{1} m\right| \tag{2.1}
\end{equation*}
$$

for $s \in[0,1], 0 \leq \lambda \leq 1$ and for all $m \in U t_{1}$, where $U t_{1} m=\sigma_{1}\left(t_{1}\right)-m$, $\nu t_{1} m=\rho_{1}\left(t_{1}\right)-m$.
Definition 2.2. Let f be a real-valued function on $\mathbb{T}_{1} \times \mathbb{T}_{2}$ and $h: \mathbb{J}_{\mathbb{T}} \subset \mathbb{T} \rightarrow \mathbb{R}$ an increasing function with the property that $h(t)>0$ for all $t \geq 0 . f$ is said to have a "partial $\diamond_{\left(\phi_{h}\right)_{2}}$ derivative" $\frac{\partial f\left(t_{1}, t_{2}\right)}{\diamond_{\left(\phi_{h}\right)_{2} t_{2}}}\left(\right.$ wrt $\left.t_{2}\right)$, at $\left(t_{1}, t_{2}\right) \in \mathbb{T}_{1} \times \mathbb{T}_{2}$, if for each $\epsilon>0$, there exists a neighbourhood $U t_{2}$ of t_{2} such that

$$
\begin{align*}
& \left\lvert\,\left(\frac{\lambda}{h(\lambda)}\right)_{2}^{s}\left[f\left(t_{1}, \sigma_{2}\left(t_{2}\right)-f\left(t_{1}, m\right)\right] \mu t_{2} m\right.\right. \\
& \quad+\left(\frac{1-\lambda}{h(1-\lambda)}\right)_{2}^{s}\left[f\left(t_{1}, \rho_{2}\left(t_{2}\right)-f\left(t_{1}, m\right)\right] \nu t_{2} m-f^{\diamond\left(\phi_{h}\right)_{2}}\left(t_{1}, t_{2}\right) \mu t_{2} m \nu t_{2} m \mid\right. \\
& \quad<\epsilon\left|\mu t_{2} m \nu t_{2} m\right|, \tag{2.2}\\
& \text { for } s \in[0,1], 0 \leq \lambda \leq 1 \text { and for all } n \in U t_{2}, \text { where } U t_{2} m=\sigma_{2}\left(t_{2}\right)-m \text {, } \\
& \nu t_{2} m=\rho_{2}\left(t_{2}\right)-m \text {. }
\end{align*}
$$

These derivatives are also denoted by $f^{\diamond\left(\phi_{h}\right)_{1}}\left(t_{1}, t_{2}\right)$ and $f^{\diamond\left(\phi_{h}\right)_{2}}\left(t_{1}, t_{2}\right)$ respectively.
Before we define the double diamond- ϕ_{h} dynamic integral, we shall employ the following remark of [2].
Remark 2.1. $[2]$ Let f be a real-valued function on $\mathbb{T}_{1} \times \mathbb{T}_{2}$. If the delta (Δ) and nabla (∇) integrals of f exist on $\mathbb{T}_{1} \times \mathbb{T}_{2}$, then the following types of integrals can be defined:
(i) $\Delta \Delta$-integral over $R^{0}=[a, b) \times[c, d)$, which is introduced by using partitions consisting of subrectangles of the form $[\alpha, \beta) \times[\gamma, \partial)$;
(ii) $\nabla \nabla$-integral over $R^{1}=(a, b] \times(c, d]$, which is introduced by using partitions consisting of subrectangles of the form $(\alpha, \beta] \times(\gamma, \partial]$;
(iii) $\Delta \nabla$-integral over $R^{2}=[a, b) \times(c, d]$, which is introduced by using partitions consisting of subrectangles of the form $[\alpha, \beta) \times(\gamma, \partial]$;
(iv) $\nabla \Delta$-integral over $R^{3}=(a, b] \times[c, d)$, which is introduced by using partitions consisting of subrectangles of the form $(\alpha, \beta] \times[\gamma, \partial)$.
Now let $\bar{U}(f)$ and $\bar{L}(f)$ denote the upper and lower Darboux Δ-integral of f from a to $b ; \underline{\mathrm{U}}(f)$ and $\underline{\mathrm{L}}(f)$ denote the upper and lower Darboux ∇-integral of f from a to b respectively. Given the construction of $U(f)$ and $L(f)$, which follows from the properties of supremum and infimum, we give the following definition.
Definition 2.3. Let f be a real-valued function on $\mathbb{T}_{1} \times \mathbb{T}_{2}, h: \mathbb{J}_{\mathbb{T}} \subset \mathbb{T} \rightarrow \mathbb{R}$ a nonzero non negative function with the property that $h(t)>0$ for all $t \geq 0$. If f is Δ-integrable on $R^{0}=[a, b) \times[c, d)$ and ∇-integrable on $R^{1}=(a, b] \times(c, d]$,
then it is $\diamond_{\phi_{h}}$-integrable on $R=[a, b] \times[c, d]$ and

$$
\begin{align*}
\int_{R} f(t, k) \diamond_{\left(\phi_{h}\right)_{1}} t \diamond_{\left(\phi_{h}\right)_{2}} k & =\left(\frac{\lambda}{h(\lambda)}\right)^{s} \iint_{R^{0}} f(t, k) \Delta_{1} t \Delta_{2} k \\
& +\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} \iint_{R^{1}} f(t, k) \nabla_{1} t \nabla_{2} k \tag{2.3}
\end{align*}
$$

for all $s \in[0,1], 0 \leq \lambda \leq 1$ and $t, k \in J_{\mathbb{T}}$.
Since $\bar{U}(f) \geq \bar{L}(f)$ and $\underline{\mathrm{U}}(f) \geq \underline{\mathrm{L}}(f)$, we obtain the following result.
Theorem 2.1. Let f be a real-valued function on $\mathbb{T}_{1} \times \mathbb{T}_{2}, h: \mathbb{J}_{\mathbb{T}} \subset \mathbb{T} \rightarrow \mathbb{R}$ a nonzero non negative function with the property that $h(t)>0$ for all $t \geq 0$. If f be $\diamond_{\phi_{h}}$-integrable on $R=[a, b] \times[c, d]$, provided its delta (Δ) and nabla (∇) integrals exist, then
(i) If $\phi_{h}=1, f$ is $\Delta \Delta$-integrable on $R^{0}=[a, b) \times[c, d)$;
(ii) If $\phi_{h}=0, f$ is $\nabla \nabla$-integrable on $R^{1}=(a, b] \times(c, d]$;
(iii) If $\phi_{h}=\frac{1}{2}, f$ is $\Delta \Delta$-integrable and $\nabla \nabla$-integrable on R^{0} and R^{1}
(iv) If $\phi_{h}=\alpha, f$ is double \diamond_{α}-integrable on $R=[a, b] \times[c, d]$.

3 Two-dimensional Hermite-Hadamard type inequalities for ϕ_{h}-convex functions on the coordinates

Consider the bi-dimensional time scale interval $I_{\mathbb{T}}^{2}:[a, b]_{I_{\mathbb{T}}} \times[c, d]_{I_{\mathbb{T}}}$ in \mathbb{T}^{2} with $a<b, c<d$.
Definition 3.1. Let $h: \mathbb{J}_{\mathbb{T}} \subset \mathbb{T} \rightarrow \mathbb{R}$ be a non zero non negative function with the property that $h(t)>0$ for all $t \geq 0$. A monotonically increasing function $f: I_{\mathbb{T}}^{2} \rightarrow \mathbb{R}$ on $I_{\mathbb{T}}^{2}$ is ϕ_{h}-convex on time scale co-ordinates if the partial mappings

$$
f_{y}:[a, b]_{I_{\mathbb{T}}} \rightarrow \mathbb{R}, \quad f_{y}(u):=f(u, y), \quad \forall y \in[c, d]_{I_{\mathbb{T}}}
$$

and

$$
f_{x}:[c, d]_{I_{\mathbb{T}}} \rightarrow \mathbb{R}, \quad f_{x}(v):=f(x, v), \quad \forall x \in[a, b]_{I_{\mathbb{T}}}
$$

are continuous and ϕ_{h}-convex.
Definition 3.2. Let $h: \mathbb{J}_{\mathbb{T}} \subset \mathbb{T} \rightarrow \mathbb{R}$ be a non zero non negative function with the property that $h(t)>0$ for all $t \geq 0$. A monotonically increasing function $f: I_{\mathbb{T}}^{2} \rightarrow \mathbb{R}$ is ϕ_{h}-convex on time scale co-ordinates if the inequality
$f(\lambda x+(1-\lambda) y, t u+(1-t) v)$

$$
\leq\left(\frac{t}{h(t)}\right)^{s}\left(\frac{\lambda}{h(\lambda)}\right)^{s} f(x, u)+\left(\frac{\lambda}{h(\lambda)}\right)^{s}\left(\frac{1-t}{h(1-t)}\right)^{s} f(x, v)
$$

$$
+\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s}\left(\frac{t}{h(t)}\right)^{s} f(y, u)+\left(\frac{1-t}{h(1-t)}\right)^{s}\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} f(y, v)
$$

holds for $s \in[0,1], 0 \leq \lambda, t \leq 1$ and $x, y \in I_{\mathbb{T}}$ and $(x, u),(x, v),(y, u),(y, v) \in$ $I_{\mathbb{T}}^{2}$.
Thus the mapping $f: I_{\mathbb{T}}^{2} \rightarrow \mathbb{R}$ is ϕ_{h}-convex in $I_{\mathbb{T}}^{2}$ if the following inequality:

$$
\begin{equation*}
f(\lambda x+(1-\lambda) u, \lambda y+(1-\lambda) v) \leq\left(\frac{\lambda}{h(\lambda)}\right)^{s} f(x, y)+\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} f(u, v) \tag{3.1}
\end{equation*}
$$

holds for all $(x, y),(u, v) \in I_{\mathbb{T}}^{2}, s \in[0,1]$ and $0 \leq \lambda \leq 1$.
We state and prove the following Lemma
Lemma 3.1. Every ϕ_{h}-convex mapping $f: I_{\mathbb{T}}^{2} \rightarrow \mathbb{R}$ on $I_{\mathbb{T}}^{2}$ is ϕ_{h}-convex on the co-ordinates.
Proof. Suppose that the mapping $f: I_{\mathbb{T}}^{2} \rightarrow \mathbb{R}$ is ϕ_{h}-convex in $I_{\mathbb{T}}^{2}$ by (4.4).
Consider the partial mapping
$f_{x}:[c, d]_{I_{\mathbb{T}}} \rightarrow \mathbb{R}, \quad f_{x}(v):=f(x, v)$.
Then for all $s \in[0,1], 0 \leq \lambda \leq 1$ and $f(u, v)$ monotonically increasing functions on $I_{\mathbb{T}}$, we have

$$
\begin{aligned}
& f_{x}(\lambda u+(1-\lambda) v)=f\left(x,\left(\frac{\lambda}{h(\lambda)}\right)^{s} u+\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} v\right) \\
= & f\left(\left(\frac{\lambda}{h(\lambda)}\right)^{s} x+\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} x,\left(\frac{\lambda}{h(\lambda)}\right)^{s} u+\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} v\right) \\
\leq & \left(\frac{\lambda}{h(\lambda)}\right)^{s} f(x, u)+\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} f(x, v) \\
= & \left(\frac{\lambda}{h(\lambda)}\right)^{s} f_{x} u+\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} f_{x} v,
\end{aligned}
$$

which shows ϕ_{h}-convexity of f_{x}.
By a similar argument, the partial mappings
$f_{y}:[a, b]_{I_{\mathbb{T}}} \rightarrow \mathbb{R}, \quad f_{y}(u):=f(u, y)$, is also ϕ_{h}-convex for all
$s \in[0,1], 0 \leq \lambda \leq 1$ and $f(v, r)$ monotonically increasing functions on $I_{\mathbb{T}}$ goes likewise and the proof is omitted.

Note that in some special cases, some co-ordinated ϕ_{h}-convex functions may not necessarily be ϕ_{h}-convex on time scales.

With the aid of Lemma 3.1, we first discuss and establish a double integral inequality of Hermite-Hadamard type for a ϕ_{h}-convex function on time scale co-ordinates.
Theorem 3.1. Let $h: \mathbb{J}_{\mathbb{T}} \subset \mathbb{T} \rightarrow \mathbb{R}$ be a non zero non negative function with the property that $h(t)>0$ for all $t \geq 0$. Let $f: I_{\mathbb{T}}^{2} \rightarrow \mathbb{R}$ be a continuous and an integrable ϕ_{h}-convex function with respect to the function ϕ_{h} on the
co-ordinates on $I_{\mathbb{T}}^{2}$. Then for any $a, b, c, d \geq 0$, with $b>a, d>c$ and $s \in[0,1]$,

$$
\begin{align*}
& f\left(M_{\phi_{h}}, N_{\phi_{h}}\right) \leq \frac{I_{\lambda, t}(a, b ; c, d)}{(b-a)(d-c)} \\
\leq & \left(\frac{t}{h(t)}\right)^{s} \frac{I_{M, y}(a, b ; c, d)}{(b-a)(d-c)}+\left(\frac{1-t}{h(1-t)}\right)^{s} \frac{I_{M, N}(a, b ; c, d)}{(b-a)(d-c)} \\
\leq & \frac{4 I_{x, y}(a, b ; c, d)}{(b-a)(d-c)} \tag{3.2}
\end{align*}
$$

where $M_{\phi_{h}}=\int_{a}^{b} u \diamond_{\phi_{h}} u$ and $N_{\phi_{h}}=\int_{a}^{b} v \diamond_{\phi_{h}} v$,
$I_{\lambda, t}(a, b ; c, d)$

$$
=\int_{a}^{b} \int_{c}^{d} f\left(\lambda x+(1-\lambda) M_{\phi_{h}}, t y+(1-t) N_{\phi_{h}}\right) \diamond_{\phi_{h}} y \diamond_{\phi_{h}} x,
$$

$$
I_{M, y}(a, b ; c, d)
$$

$$
=\int_{a}^{b} \int_{c}^{d} f\left(\left(\frac{\lambda}{h(\lambda)}\right)^{s} x+\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} M_{\phi_{h}}, y\right) \diamond_{\phi_{h}} x \diamond_{\phi_{h}} y
$$

$I_{M, N}(a, b ; c, d)$

$$
\left.=\int_{a}^{b} \int_{c}^{d} f\left(\left(\frac{\lambda}{h(\lambda)}\right)^{s} x+\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} M_{\phi_{h}}, N_{\phi_{h}}\right)\right) \diamond_{\phi_{h}} x \diamond_{\phi_{h}} y
$$

and

$$
I_{x, y}(a, b ; c, d)=\int_{a}^{b} \int_{c}^{d} f(\phi(x), y) \diamond_{\phi_{h}} x \diamond_{\phi_{h}} y .
$$

Proof. (A) To show the first inequality in (3.2).
We have that,

$$
\begin{aligned}
& \left.\left.\left.f\left(M_{\phi_{h}}\right), N_{\phi_{h}}\right)\right) \leq f\left(\frac{1}{b-a} \int_{a}^{b}\left[\lambda x+(1-\lambda) M_{\phi_{h}}\right], N_{\phi_{h}}\right)\right) \diamond_{\phi_{h}} x \\
= & \left.\frac{1}{b-a} \int_{a}^{b} f\left(\lambda x+(1-\lambda) M_{\phi_{h}}, N_{\phi_{h}}\right)\right) \diamond_{\phi_{h}} x \\
\leq & \frac{1}{b-a} \int_{a}^{b} f\left(\lambda x+(1-\lambda) M_{\phi_{h}}, \frac{1}{d-c} \int_{c}^{d}\left[t y+(1-t) N_{\phi_{h}}\right] \diamond_{\phi_{h}} y\right) \diamond_{\phi_{h}} x \\
\leq & \frac{1}{b-a} \int_{a}^{b}\left[\frac{1}{d-c} \int_{c}^{d} f\left(\lambda x+(1-\lambda) M_{\phi_{h}}, t y+(1-t) N_{\phi_{h}}\right) \diamond_{\phi_{h}} y\right] \diamond_{\phi_{h}} x .
\end{aligned}
$$

This proves the first inequality in (3.2).
Then by Definition 3.2, we have that

$$
\frac{1}{b-a} \int_{a}^{b}\left[\frac{1}{d-c} \int_{c}^{d} f\left(\lambda x+(1-\lambda) M_{\phi_{h}}, t y+(1-t) N_{\phi_{h}}\right) \diamond_{\phi_{h}} y\right] \diamond_{\phi_{h}} x
$$

$$
\begin{aligned}
& \leq\left(\frac{t}{h(t)}\right)^{s} \frac{1}{b-a} \int_{a}^{b}\left(\frac{1}{d-c} \int_{c}^{d} f\left(\left(\frac{\lambda}{h(\lambda)}\right)^{s} x+\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} M_{\phi_{h}}, y\right) \diamond_{\phi_{h}} y\right) \\
& +\left(\frac{1-t}{h(1-t)}\right)^{s} \\
& \left.\times \frac{1}{d-c} \int_{c}^{d} f\left(\left(\frac{\lambda}{h(\lambda)}\right)^{s} x+\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} M_{\phi_{h}}, M_{\phi_{h}}\right)\right) \diamond_{\phi_{h}} y \diamond_{\phi_{h}} x, \quad(*)
\end{aligned}
$$

satisfying the second inequality in (3.2).
Thus from the right hand side of $\left({ }^{*}\right)$, we have

$$
\begin{align*}
& \left(\frac{t}{h(t)}\right)^{s} \frac{1}{b-a} \int_{a}^{b}\left(\frac{1}{d-c} \int_{c}^{d} f\left(\left(\frac{\lambda}{h(\lambda)}\right)^{s} x+\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} M_{\phi_{h}}, y\right) \diamond_{\phi_{h}} y\right) \\
+ & \left(\frac{1-t}{h(1-t)}\right)^{s} \\
\times & \left.\frac{1}{d-c} \int_{c}^{d} f\left(\left(\frac{\lambda}{h(\lambda)}\right)^{s} x+\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} M_{\phi_{h}}, M_{\phi_{h}}\right)\right) \diamond_{\phi_{h}} y \diamond_{\phi_{h}} x \\
\leq & \left(\frac{t}{h(t)}\right)^{s} \times \frac{1}{d-c} \int_{c}^{d}\left[\left(\frac{\lambda}{h(\lambda)}\right)^{s} \frac{1}{b-a} \int_{a}^{b} f(x, y) \diamond_{\phi_{h}} y \diamond_{\phi_{h}} x\right. \\
+ & \left.\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} \frac{1}{b-a} \int_{a}^{b} f\left(M_{\phi_{h}}, y\right) \diamond_{\phi_{h}} x\right] \diamond_{\phi_{h}} y \\
+ & \left(\frac{1-t}{h(1-t)}\right)^{s} \times \frac{1}{d-c} \int_{c}^{d}\left[\left(\frac{\lambda}{h(\lambda)}\right)^{s} \cdot \frac{1}{b-a} \int_{a}^{b} f\left(\phi(x), N_{\phi_{h}}\right) \diamond_{\phi_{h}} x\right. \\
+ & \left.\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} f\left(M_{\phi_{h}}, N_{\phi_{h}}\right)\right] \diamond_{\phi_{h}} y \\
\leq & \left(\frac{t}{h(t)}\right)^{s}\left(\frac{\lambda}{h(\lambda)}\right)^{s} \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) \diamond_{\phi_{h}} x \diamond_{\phi_{h}} y \\
+ & \left(\frac{t}{h(t)}\right)^{s}\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} \frac{1}{d-c} \int_{c}^{d} f\left(M_{\phi_{h}}, y\right) \diamond_{\phi_{h}} y \\
+ & \left(\frac{1-t}{h(1-t)}\right)^{s}\left(\frac{\lambda}{h(\lambda)}\right)^{s} \frac{1}{b-a} \int_{a}^{b} f\left(x, N_{\phi_{h}}\right) \diamond_{\phi_{h}} x \\
+ & \left.\left(\frac{1-t}{h(1-t)}\right)^{s}\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} f\left(M_{\phi_{h}}\right), N_{\phi_{h}}\right) . \tag{3.3}
\end{align*}
$$

Also, from the first inequality in Theorem $1.3, \phi_{h}$-convexity of y on the coordinates and using Lemma 3.1, we have

$$
\begin{equation*}
f\left(M_{\phi_{h}}, y\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x, y) \diamond_{\phi_{h}} x \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.f\left(x, N_{\phi_{h}}\right)\right) \leq \frac{1}{d-c} \int_{c}^{d} f(x, y) \diamond_{\phi_{h}} y . \tag{3.5}
\end{equation*}
$$

Integrating (3.4) and (3.5), we have

$$
\begin{equation*}
\frac{1}{d-c} \int_{c}^{d} f\left(M_{\phi_{h}}, y\right) \diamond_{\phi_{h}} y \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) \diamond_{\phi_{h}} x \tag{3.6}
\end{equation*}
$$

And,

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f\left(x, N_{\phi_{h}}\right) \diamond_{\phi_{h}} x \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) \diamond_{\phi_{h}} y \tag{3.7}
\end{equation*}
$$

Using (3.4), (3.5),(3.6) and (3.7), we deduce that (3.3) becomes

$$
\begin{aligned}
& \left(\frac{t}{h(t)}\right)^{s}\left(\frac{\lambda}{h(\lambda)}\right)^{s} \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) \diamond_{\phi_{h}} x \diamond_{\phi_{h}} y \\
+ & \left(\frac{t}{h(t)}\right)^{s}\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} \frac{1}{d-c} \int_{c}^{d} f\left(M_{\phi_{h}}, y\right) \diamond_{\phi_{h}} y \\
+ & \left(\frac{1-t}{h(1-t)}\right)^{s}\left(\frac{\lambda}{h(\lambda)}\right)^{s} \frac{1}{b-a} \int_{a}^{b} f\left(x, N_{\phi_{h}}\right) \diamond_{\phi_{h}} x \\
+ & \left(\frac{1-t}{h(1-t)}\right)^{s}\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s} f\left(M_{\phi_{h}}, N_{\phi_{h}}\right) \\
\leq & {\left[\left(\frac{t}{h(t)}\right)^{s}\left(\frac{\lambda}{h(\lambda)}\right)^{s}+\left(\frac{t}{h(t)}\right)^{s}\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s}\right.} \\
+ & \left.\left(\frac{1-t}{h(1-t)}\right)^{s}\left(\frac{\lambda}{h(\lambda)}\right)^{s}+\left(\frac{1-t}{h(1-t)}\right)^{s}\left(\frac{1-\lambda}{h(1-\lambda)}\right)^{s}\right] \\
\times & \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) \diamond_{\phi_{h}} x \diamond_{\phi_{h}} y \\
\leq & \frac{4}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) \diamond_{\phi_{h}} x \diamond_{\phi_{h}} y .
\end{aligned}
$$

This proves the third inequality in (3.2).
Theorem 3.2. Let $h: \mathbb{J}_{\mathbb{T}} \subset \mathbb{T} \rightarrow \mathbb{R}$ be a non zero non negative function with the property that $h(t)>0$ for all $t \geq 0$. Let $f: I_{\mathbb{T}}^{2}=[a, b]_{I_{\mathbb{T}}} \times[c, d]_{I_{\mathbb{T}}} \rightarrow \mathbb{R}$ be continuous, integrable and co-ordinated ϕ_{h}-convex on $I_{\mathbb{T}}^{2}$. Then for any $a, b, c, d \geq 0$, with $b>a, d>c$, the following inequalities hold

$$
\begin{aligned}
& \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f\left(x, M_{\phi_{h}}\right) \diamond_{\phi_{h}} x+\frac{1}{d-c} \int_{c}^{d} f\left(N_{\phi_{h}}, y\right) \diamond_{\phi_{h}} y\right] \\
\leq & \frac{I_{x, y}(a, b ; c, d)}{(b-a)(d-c)} \\
\leq & \frac{1}{2(b-a)(d-c)} \int_{a}^{b}\left[\left(d-M_{\phi_{h}}\right) f(x, c)+\left(M_{\phi_{h}}-c\right) f\left(x, t_{4}\right)\right] \diamond_{\phi_{h}} x \\
+ & \frac{1}{2(b-a)(d-c)}
\end{aligned}
$$

$$
\times \int_{c}^{d}\left[\left(y-N_{\phi_{h}}\right) f(x, y)+\left(N_{\phi_{h}}-x\right) f(x, y)\right] \diamond_{\phi_{h}} y,(3.8)
$$

where

$$
M_{\phi_{h}}=\int_{a}^{b} u \diamond_{\phi_{h}} u, N_{\phi_{h}}=\int_{a}^{b} v \diamond_{\phi_{h}} v
$$

and

$$
I_{x, y}(a, b ; c, d)=\int_{a}^{b} \int_{c}^{d} f(x, y) \diamond_{\phi_{h}} x \diamond_{\phi_{h}} y
$$

Proof. By Definition 3.1, we have

$$
f_{x}\left(M_{\phi_{h}}\right) \leq \frac{1}{d-c} \int_{c}^{d} f_{x}(y) \diamond_{\phi_{h}} y \leq \frac{d-M_{\phi_{h}}}{d-c} f_{x} c+\frac{M_{\phi_{h}-c}}{d-c} f_{x} d
$$

That is,

$$
\begin{align*}
& f\left(x, M_{\phi_{h}}\right) \leq \frac{1}{d-c} \int_{c}^{d} f(x, y) \diamond_{\phi_{h}} y \\
& \quad \leq \frac{d-M_{\phi_{h}}}{d-c} f(x, c)+\frac{M_{\phi_{h}}-c}{d-c} f(x, d) \tag{3.9}
\end{align*}
$$

Integrating both sides of (3.9) over $\diamond_{\phi_{h}} x$ on $[a, b]_{I_{\mathbb{T}}}$, we obtain

$$
\begin{gather*}
\frac{1}{b-a} \int_{a}^{b} f\left(x, M_{\phi_{h}}\right) \diamond_{\phi_{h}} x \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) \diamond_{\phi_{h}} x \diamond_{\phi_{h}} y \\
\quad \leq \frac{d-M_{\phi_{h}}}{(b-a)(d-c)} \int_{a}^{b} f(x, c) \diamond_{\phi_{h}} x \\
+\frac{M_{\phi_{h}}-c}{(b-a)(d-c)} \int_{a}^{b} f(x, d) \diamond_{\phi_{h}} x . \tag{3.10}
\end{gather*}
$$

By a similar argument, for the partial mapping $f_{y}:[a, b] \rightarrow \mathbb{R}, \quad f_{y}(u):=f(u, y)$, we obtain

$$
\begin{align*}
f\left(N_{\phi_{h}}, y\right) \leq & \frac{1}{b-a} \int_{a}^{b} f(x, y) \diamond_{\phi_{h}} x \\
& \leq \frac{y-N_{\phi_{h}}}{b-a} f(x, y)+\frac{N_{\phi_{h}-x}}{b-a} f(x, y) . \tag{3.11}
\end{align*}
$$

Integrating both sides of (3.11) over $\diamond_{\phi_{h}} y$ on $[a, b]_{I_{\mathrm{T}}}$, we get

$$
\begin{align*}
& \frac{1}{d-c} \int_{c}^{d} f\left(N_{\phi_{h}}, y\right) \diamond_{\phi_{h}} y \\
\leq & \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) \diamond_{\phi_{h}} x \diamond_{\phi_{h}} y \\
\leq & \frac{y-N_{\phi_{h}}}{(b-a)(d-c)} \int_{c}^{d} f(x, y) \diamond_{\phi_{h}} y \\
+ & \frac{N_{\phi_{h}-x}}{(b-a)(d-c)} \int_{c}^{d} f(x, y) \diamond_{\phi_{h}} y . \tag{3.12}
\end{align*}
$$

Adding (3.10) and (3.12), we get the desired result (3.8).
Remark 3.1. If $\phi_{h}=\alpha$ Theorem 3.1 of Nwaeze [10] is recovered.
Remark 3.2. The case $\phi_{h}=0$ gives corollary 3.2 of Nwaeze [10].
Remark 3.3. If we choose $\phi_{h}=\frac{1}{2}$ and substitute the relation Q of Fagbemigun et al. [7] in Theorem 3.2, we obtain corollary 3.3 of Nwaeze [10].
Remark 3.4. Corollary 3.4 of [10] is obtained if $\phi_{h}=1$ in Theorem 3.2.
Remark 3.5. If we take $I_{\mathbb{T}_{1}}=I_{\mathbb{T}_{2}}=\mathbb{R}$ in Theorem 3.2, we get the second and third inequalities of Theorem 1.1 due to Dragomir [5].

References

[1] Beckenbach, E. F. (1937). Generalized convex functions Bull. Amer. Math. Soc., 43, 363-371.
[2] Bohner, M. and Guseinov, G. S. (2005). Multiple integration on time scales, Dyn. Syst. Appl. 14(4), 579-606.
[3] Bohner, M. and Peterson, A. (2001). Dynamic equations on time scales: an introduction with applications. Boston: Birkhauser.
[4] Dinu, C. (2008).Hermite-Hadamard inequality on time scales. Journal of Inequalities and Applications. vol. 2008, Article ID 287947, 1-24.
[5] Dragomir, S.S. (2001). On Hadamard's inequality for Convex functions on the coordinates in a rectangle from the plane, Taiwanese J. Math., 4, 775-788.
[6] Fagbemigun, B. O. and Mogbademu, A. A. (2018). Some classes of convex functions on time scales. Facta Universitatis (NIS̆) Ser. Math. Inform. (To appear).
[7] Fagbemigun, B. O., Mogbademu, A. A. and Olaleru J. O. (2019). Integral Inequalities of Hermite-Hadamard type for a certain class of convex functions on time scales. Publications de l'institute Matematique (In Press).
[8] Guseinov, G. Sh. (2003). Integration on time scales, J. Math. Anal. Appl., 285(2003), 107-127.
[9] Hilger, S. (1990). Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math., 18, 18-56.
[10] Nwaeze, E. R. (2017). Time scaled version of the Hermite-Hadamard In equality for functions convex on the coordinates. Adv. Dynam. Syst. Appl., 1-13.
[11] Özkan, U.M. and Kaymakçalan, B. (2009). Basics of Diamond-alpha par tial dynamic calculus on time scales. Math. Comput. Model. 50, 1253-1261.
[12] Sheng, Q. M., Fadag, M. J., Henderson J. and Davis, J. M. (2006). An exploration of combined dynamic derivatives on time scales and their appli cations. Nonlinear Analysis: Real World Applications, 7 no 3, 395-413.
[13] Tiang, J.F., Zhu, Y. R. and Cheung, W. S. (2018). N-tuple diamondalpha integral and inequalities on time scales. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 1-13.

