MIDPOINT AND TRAPEZOID INEQUALITIES FOR
DIFFERENTIABLE FUNCTIONS OF SELFADJOINT
OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some midpoint and trapezoid norm
inequalities for Gateaux and Fréchet differentiable functions of selfadjoint op-
erators in Hilbert spaces. Some examples for the class of functions

DM (0, 00) := {F I IDFAI = || f (A)| for all positive operators A},

where D f(A) is the Fréchet derivative in A and f’ (A) is the operator function
generated by f’ and positive operator A, are also given. The case when f’ is
nonnegative and operator convex is also analyzed.

1. INTRODUCTION

A real valued continuous function f on an interval I is said to be operator convex
(operator concave) on I if

(1.1) FAA=XNA+AB) < (2)(1 =) f(A) +Af(B)

in the operator order, for all A € [0,1] and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I. Notice that a function f is
operator concave if —f is operator convex.

A real valued continuous function f on an interval I is said to be operator
monotone if it is monotone with respect to the operator order, i.e., A < B with
Sp(A),Sp (B) € I imply f(4) < f(B).

For some fundamental results on operator convex (operator concave) and oper-
ator monotone functions, see [7] and the references therein.

As examples of such functions, we note that f (¢) =t" is operator monotone on
[0,00) if and only if 0 < < 1. The function f (t) = t" is operator convex on (0, c0)
if either 1 <r <2 or —1 < r < 0 and is operator concave on (0,00) if 0 <7 < 1.
The logarithmic function f(¢) = Int is operator monotone and operator concave
on (0,00). The entropy function f (t) = —tInt is operator concave on (0,00). The
exponential function f (t) = e’ is neither operator convex nor operator monotone.

In [4] we obtained among others the following Hermite-Hadamard type inequal-
ities for operator convex functions f: I — R

(1.2) f(A;B)g/O f((l—s)A+sB)dsgw7

where A, B are selfadjoint operators with spectra included in I.
For recent inequalities for operator convex functions see [1]-[6] and [8]-[17].

1991 Mathematics Subject Classification. 47TA63; 47A99.
Key words and phrases. Operator convex functions, Integral inequalities, Hermite-Hadamard
inequality, Midpoint and Trapezoid inequalities.
1

RGMIA Res. Rep. Coll. 22 (2019), Art. 103, 17 pp. Received 17/10/19


e5011831
Typewritten Text
RGMIA Res. Rep. Coll. 22 (2019), Art. 103, 17 pp. Received 17/10/19
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Let SA; (H) be the class of all selfadjoint operators with spectra in I. If A,
B € SA;(H) and t € [0,1] the convex combination (1 —¢) A+ ¢B is a selfadjoint
operator with the spectrum in I showing that SA; (H) is convex in the Banach
algebra B (H) of all bounded linear operators on H. If f is continuous function on
1. By the continuous functional calculus of selfadjoint operator we conclude that
f((1—1t)A+tB) is a selfadjoint operator with spectrum in I.

A continuous function f : SA; (H) — B(H) is said to be Gdteaux differentiable
in A € SA; (H) along the direction B € B (H) if the following limit exists in the
strong topology of B (H)

(1.3) Vfa(B) = lim LA+ B = F(4)

s—0 S

€B(H).

If the limit (1.3) exists for all B € B (H), then we say that f is Géateaur differentiable
in A and we can write f € G(A). If this is true for any A in an open set S from
SA; (H) we write that f € G(S).

If f is a continuous function on I, by utilising the continuous functional calculus
the corresponding function of operators will be denoted in the same way.

For two distinct operators A, B € SA; (H) we consider the segment of selfadjoint
operators

[A,B] :={(1-t)A+tB|te]0,1]}.
We observe that A, B € [A,B] and [A,B] C SA; (H).

In the recent paper [6] we obtained the following reverses of operator Hemite-
Hadamard inequalities:

Theorem 1. Let f be an operator convex function on I and A, B € SA; (H) , with
A# B.If feG([A, B]), then

! A+ B
(1.4) Og/of((lt)A+tB)dtf< : >
< L [VI5 (B~ A) = Via (B~ A)
and
(1.5) OgW—/lf((l—t)A+tB)dt
< S5 (B~ A) = Via(B-A).

Corollary 1. With the assumption of Theorem 1 we have the norm inequalities

(1.6) /Olf((l—t)A—HfB)dt—f(A;B)H
< S I9f5 (B - 4) - Via (B A)

and

(17) HW—/Olf((l—t)A—i—tB)dtH

< S IVfa (B~ 4) = Via (B - 2.
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Motivated by the above results, we establish in this paper some midpoint and
trapezoid norm inequalities for Gateaux and Fréchet differentiable functions of self-
adjoint operators. Some examples for the class of functions

DW (0,00) :={f | IDF(A)|| = |If (A)|| for all positive operators A},
where D f(A) is the Fréchet derivative in A and f’(A) is the operator function
generated by f’ and positive operator A, are also given. Finally, the case when f’
is nonnegative and operator convex is also analyzed.

2. MIDPOINT INEQUALITIES

We need the following preliminary results:

Lemma 1. Let f be a continuous function on I and A, B € SA; (H), with A # B.
If f € G([A, B]), then the auxiliary function ¢4 gy is differentiable on (0,1) and

(2.1) Pap) ) =Vianaps (B—A).
Also we have for the lateral derivative that

(2.2) QOI(AYB) (0+)=Vfa(B—-A)
and

(2.3) gp’(A’B) (I-)=Vfp(B-A).

Proof. Let t € (0,1) and h # 0 small enough such that ¢t + h € (0,1). Then
oap) (t+h) = p )

(2.4) .
(A —t=h)A+(t+h)B)— f((1—t) A+tB)
h
f((1—t)A+tB+h(B—A)— f((1—t) A+1B)
- - .

Since f € G ([A, B]), hence by taking the limit over A — 0 in (2.4) we get
1y PAB) (t+h)—pa,n ()

Pap ) = }LLO h
~ oy S A+ B+ h(B—A))— f((L—t)A+tB)
= 2% h

= vQ(l—t)A—i—tB (B—4),

which proves (2.1).
Also, we have

¢a,p) (h) — o p)(0)

¢lap (0+) = lim

h—0+ h
o SR A RB) - £(4)
h—0+ h
o JA+RB-A)-f(4) _
- i, ; = Va5 -

since f is assumed to be Gateaux differentiable in A. This proves (2.2).
The equality (2.3) follows in a similar way. O

We have the following midpoint norm inequality:
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Theorem 2. Let f be a continuous function on I and A, B € SA;(H), with
A#B.If f € G([A, B]), then

/Olf((l—t)A+tB)dt—f(A;B)H

(2.5)

1
< [ 0= 0IT0cnasan (8- )]
1/2

1/2

+/ tIVfa—tyases (B —A)| dt
0

=: M (f;A,B).

Proof. Using integration by parts formula for the Bochner integral, we have

20 [t Ot =ge0m (3) - [ an @

/
_ 1 <A+B> Y T
2 2 ;
and
1 1 1 1
(2.7) /1/2 (t—1) ¢(a,p () dt = 5P(4,B) <2> y f((L=t)A+tB)dt

_ 1 <A+B> [ - A+ B
2 2 "

If we add these two equalities and use Lemma 1 we get the following identity of
interest

(2.8) /Of((l—t)A+tB)dt—f<

A+ B
2

1 1/2
= // (1=t)Vfa_nays (B—A)dt — / tVfa—tyaqp (B — A)dt.
1/2 0

Taking the norm and using the properties of the integral, we obtain

/Olf(a_t)AHB)dt—f(A+B)H

(2.9)

2
1
< / (1=t)Via—aqs (B—A)dt
1/2
1/2
+ /0 tV fa—vapes (B —A)dt

1
< // (1=8)|Vfa-tyares (B — A)|| dt
1/2

1/2
+ / t va(lft)AthB (B - A)H dt,
0

which proves (2.5). O
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Remark 1. It is well known that if f is a C'-function defined on an open in-
terval, then the operator function f(X) is Fréchet differentiable and the derivative
Df(A)(B) equals the Gdteauz derivative V fa (B). So for functions f that are of
class C' on I we have the inequalities

/Olf((lt)AthB)dtf(A;B)H

< / (L= IDF((1 — 1) A+1B) (B — A)| dt
1/2

(2.10)

1/2
+/ tIDF((1— 1) A+tB) (B — A)||dt
0
1
< IIBfAH/ (1— 1) |DF((1—t) A+ tB)] dt
1/2

1/2
HlB-al [ s - A+ ) a
0
for A, Be SA;(H).
Corollary 2. With the assumptions of Theorem 2 and if

sSup val t)A+tB (B—A) ”
tel0,1]

then

(2.11)

/Olf((l—t)A—HB)dt—f(A—;B>H

1
< 3 < sup ||Vfa—pares (B—A)|+ sup va(1 Hatres (B — A) H)
te[0,1/2] te[1/2,1

1
< 1, sup HVf(1 —tya+tB (B — A)H

Proof. We have

M(fAB) < swp || Via_nars (B A||/ (1-t)d
te[0,1/2] 1/2

1/2

+ sup ||VSa—tyatren (B — A)H/
te[1/2,1]

1
< sup ||[Vfa_nares (B—A) + sup ||V fa-nars (B—A)
8 tef0,1/2] 8 te[1/2,1]

IN

1
1 sup ||Vf(1 t)A+tB (B — A)H
t€[0,1]

which proves the desired result. [l
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Remark 2. For functions f that are of class C' on I we have the inequalities

A+B> ‘

2
(sup [Df((1—1t)A+tB)[|+ sup IIDf((l—t)A+tB)II>
t€]0,1/2] tef1/2,1]

(2.12) ‘

/Olf((l—t)A+tB)dt—f<

1
SIB- 4|

IN

X

IN

1
7 1B —All sup [IDf((1-1)A+tB)|
t€(0,1]

for A, Be SA;(H).

Corollary 3. With the assumptions of Theorem 2 and if

1
/ |V fa—yases (B —A)|| dt < oo,
0

then

(2.13) H/Olf((l—t)A—ktB)dt—f(A;B)H

1 1
< 5/ va(1—t)A+tB (B - A)H dt.
0

Proof. We have

1
M(f; A, B) < 1—t \J B— A)||dt
A < (=0 [ [900oasen (8- )

1/2

w9 0 s (B ) a
1/t 1 2

=5 /1/2 HVf(1—t)A+tB (B — A)H dt + 5/0 ||vf(1—t)A+tB (B - A)H dt

1t
= 5/ |V fa—nasis (B —A)| dt,
0
which proves (2.13). O

Remark 3. For functions f that are of class C' on I we have the inequalities

/Olf((lt)AthB)dtf(A;B)H

(2.14) ‘

1 1
< 1B =4l [ 1051 -0 4+ eB)l
for A, Be SA; (H).

Corollary 4. With the assumptions of Theorem 2 and if

1
/ IV fa—pyasis (B—A)| dt < oo, p>1,
0
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then for ¢ > 1 with zl) + % =1 we have

(2.15) At )

2

1/ 1\
=32 (2 @+ 1>>
1 1/p 1/2
X (/ IV fa—tyaten (B — A)Hp dt) + (/ |V fa—tyaren (B — A)det>
1/2 0

1 1 1/q 1 1/p
< 5 (q+1> (/0 ||Vf(17t)A+tB (B - A)Hp dt)

Proof. Let p, ¢ > 1 with % + % =1, then by Holder’s inequality we have

1f((l—t)A+tB)dt—f<
0

1/p

1/p

1/q 1
1Nﬁ> (LJWM%MHMBMWﬁ>

M (f; A, B)
1/2 1/p

1/2
( tth> (/ IV fa-nars (B—A)|° dt)
0

l g+1y\ Y4 1 Y
( . ) (/ ||Vf(17t)A+tB (B - A)Hp dt)
1/2

1

T2

l
2

a+1 1/2 1/p
) ( /O IV fa—tyarin (B - A)H”dt)
1/q 1 )
Q@+n> (@me¢MH“B—“Hﬁ)

1 1 1/q 1/2 p e
+2<z<q+1>> / IV fa-tasen (B = A)["dt )

which proves the first inequality in (2.15).
Using the power mean inequality for p > 1

b\” PP
<a+ ) Sa—’_ 7a7b>0a

1/p

2 2

namely

a+b< 2% (aerbp)l/P7
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we get

1 1/1’ 1 2 1/p
(// IV fa—tyares (B — A)Hp dt) + (/ |V fa—nyares (B—A) det>

1/2 0

o[ 1/2 1/p
<27 /1/2 ||vf(1—t)A+tB (B — A)det +/O HVf(l_t)AHB (B — A)||pdt]

1/p

p=1 ! P e ! p
=27 (/ |V fa—tyares (B —A) dt> —9l/4 </ |V fa—pyatis (B —A)| dt) ,
0 0
which proves the last part of (2.15). O

Remark 4. For functions f that are of class C' on I we have the inequalities

! A+ B
/Of((lt)A+tB)dtf< 5 >H
1 1 1/a
<3 (srm) 1o
1 1/p 1/2 1/p
x[(/ |Df((1t)A+tB)||pdt> +</ ||Df((1t)A+tB)||pdt> ]
1/2 0

1 1 1/a ! P v
<5(o31) - ([ Ipra-oarmpa)
for A, Be SA(H).

(2.16)

3. TRAPEZOID INEQUALITIES
We have the following trapezoid norm inequality:

Theorem 3. Let f be a continuous function on I and A, B € SA;(H), with
A# B.If f € G([A, B]), then

Hf )+ f(B

(3.1) / I 1—t)A+tB)dtH

<

i 2' IV fa-nyares (B = A)||dt =T (f; A, B).
Proof. Using integration by parts formula for the Bochner integral, we have

/01 <t— ;) LPQA,B) (t)dt = <t— 1) DA, B)( ) 1 _/01@(1473) (t)dt

1 1
=3 [@(A,B) (1) + ¢a,m (1)] - /o Pa,p) (t)dt,

which gives the following equality of interest

TAHTB) /f (1—) A+ tB) dt

! 1
:/0 (t—>vf1 tA+tB(B A)d

0

(3.2)
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By taking the norm in (3 2) we get
‘f + /(B

|
),

which proves the desired inequality (3.1). d

/ ( lt)AthB)dtH

1
<t - 2) Via-tawis (B — A)H dt

t— % |V fa—vyares (B—A)| dt,

Remark 5. For functz’ons f that are of class C* on I we have the inequalities

(3.3) JA)+ F(B) / F(1—t)A+tB)dt

<

t— 2‘ IDF((1—1t)A+1tB) (B — A)|dt

1
- ;‘ IDF((1— ) A+ tB)|| dt

for A, Be SA(H).
Corollary 5. With the assumptions of Theorem & and if

sup ||V fa—nases (B—A)|| < oo,
te0,1]

then

(3.4) HW—/Olf((l—t)A—i—tB)dtH

< ( sup  ||Vfa—nares (B—A)||+ sup ||VFa—yapes (BA)H)

t€[0,1/2] te[1/2,1]

ool —

<= sup HVf(1 Haves (B — A)H

€[0,1]
Proof. We have

= =
o~

! 1
T(f;A,B)= [ |t— 2‘ |V fa-tares (B—A)| dt

1/2 1
N / (2 N t> IV fa-tasin (B = A)| dt
0

! 1
+/ <t - ) |V fa—tyaren (B — A)|| dt
1/2 2

1/2 74
< sup va(l—t)A+tB (B - A)H / (2 - t) dt
0

te[0,1/2]

1
+ sup ||Vf(17t)A+tB (B—A)H/ <t— ;)

te[1/2,1] 1/2

1
=3 ( sup val naves (B —A) H + sup val nares (B —A) H)
te[0,1/2] te[1/2,1]
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which proves (3.4).

Remark 6. For functions f that are of class C' on I we have the inequalities

Hf )+ f(B

(3.5) / F(1—t)A+tB) dtH

<-|B-A
< IB -4l

X

(sup [IDf((L—=t)A+tB)[[+ sup ||Df<<1—t>A+tB)II>
te[0,1/2] te[1/2,1]

< *IIB Al sup [[Df((1—t) A+tB)
te[0,1]

for A, Be SA;(H).
Corollary 6. With the assumptions of Theorem 8 and if
1
/ |V fau—yases (B —A)| dt < oo,
0
then

56 |feso

1
—/ f —t)A—i—tB)dtH
0
1t
< 5/ va(l—t)AHB (B - A)H dt.
0
Proof. 1f follows by the fact that

1 1
T(f;AB)= t— 2‘ |V fa—tyases (B— A)| dt

1 1
< 5/ IV fa—tyate (B — A)|| dt.
0

Remark 7. For functions f that are of class C' on I we have the inequalities

Hf )+ f(B

(3.7) / £ 1—t)A+tB)dtH

< 5/0 IDS((L—t) A +tB) (B — A)| dt

IN

1 1
31841 [ 1D -0 A+iB)]at

Corollary 7. With the assumptions of Theorem 3 and if

1
/ IV fa—pyasis (B—A)| dt < oo, p>1,
0
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then for ¢ > 1 with zl) + % =1 we have

(3.9) Hf(A);f(B) —/Olf((l—t)A—I—tB)dtH

1/ 1\
=3 (2 @+ 1>>
1 1/p 1/2 1/p
X {(/ va(lft)Aﬁ‘/B (B — A)Hp dt) + (/ va(kt)AthB (B — A)det> ]
1/2 0

1 1 1/q 1 1/p
3 <q+1> (/O |V fa—eyases (B — A dt)

Proof. Let p, ¢ > 1 with % + % =1, then by Holder’s inequality we have

IA

1/2
T8 = [ (5 0) [Vfumiarn (8- 2)|

1 1
e[ (= 1) 19 maein (B
1/2 2

1 1\ ¢ 1 L v
< (/ (t - 2) dt) (/ ||Vf(1_t)A+tB (B - A)Hp dt)
1/2 1/2
1/2 /4 g \Y9/ 172 e
+ (/ (2 - t) dt) (/ HVf(l—t)A+tB (B — A)det>
0 0

(%)Q+1 1/q 1 ) 1/p
/1 ||vf(1—t)A+tB (B - A)H dt

/2

1\q+1 /g 1/2 v
n ((2) ) (/ ||Vf(17t)A+tB (B - A)Hp dt)
0
1
2

1 1/q 1 1/p
2(q+1)> (/1/2 va(lft)AthB (B — A)Hp dt)

1/p

(

which proves the first inequality in (3.8). The second part is obvious by Corollary
4. |
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Remark 8. For functions f that are of class C' on I we have the inequalities

(3.9) Hf(A);f(B) - /01 F(1—t)A+tB) dtH

1 1 1/
<z(——) |B-4
<3(zgrp) 12-4

1 1/p 1/2
X (/)|Df«1ﬂA+thpﬁ> +</ |MU«1UAHtBWpﬁ>
1 0

/2
1/q 1
<3(77) 1E-al( [ Ipra-oarmre)

1/p
1/p
for A, Be SA;(H).

4. EXAMPLES FOR SOME GENERAL CLASSES OF FUNCTIONS

Let f be a real function that is n-time differentiable on (0, 00), and let f(™ be
its n-th derivative. Let f also denote the map induced by f on positive operators.
Let D™f(A) be the n-th order Fréchet derivative of this map at the point A. For
each A, the derivative D™ f(A) is a n-linear operator on the space of all Hermitian
operators. The norm of this operator is defined as

D" f(A)| :=sup {D" f(A) (By,...; Bn) | | Bl = ... = [|Bull = 1}.

We consider the following class of functions defined on (0, 00) for a natural n > 1,
D™ (0,00) := {f | |D™f(A)|l = Hf(") (A)H for all positive operators A} .

It is known (see for instance [8]) that every operator monotone function is in
D (0,00) for all n = 1, 2,.... Also the functions f(t) = t", n = 2, 3, ..., and
f(t) = expt are in DM (0,00). None of these are operator monotone. Moreover,
the power function f(t) = t? is in D™ (0, 00) if p is in (—o0, 1] or in [2, 00), but not
if pis in (1, V/2) . Also that the functions f(t) = expt and f(t) = t?, —oo < p < 1,
are in the class D™ (0,00) for all n = 1, 2,..., and that for p > 1 the function
f(t) = t? is in the class D™ (0,00) for all n > [p + 1], where [-] is the integer part
(see for instance [8] and the references therein).

Proposition 1. If f € DM (0,00) and A, B > 0, then we have midpoint inequality

A+B)H

(4.1) ‘/Olf((l—t)A—&-tB)dt—f( !

< ”B_A|/1/2 (L—t) | f(1— 1) A+ tB)| dt

1/2
B 7A||/ EIF((1— ) A+ tB))| dr,
0
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and the trapezoid inequality

(4.2) Hf /f 1—t)A+tB)dtH

‘Hf (1-t)A+tB)| dt.

The proof follows by Remarks 1 and 5.
It is known that if A and B are commuting, i.e. AB = BA, then the exponential
function satisfies the property

exp (A) exp (B) = exp (B)exp (4) = exp (A + B).

Also, if A is invertible and a, b € R with a < b then
b
/ exp (tA)dt = A [exp (bA) — exp (aA)].
Moreover, if A and B are commuting and B — A is invertible, then
1 1
/ exp((l—s)A+sB)ds = / exp (s (B — A))exp (A4) ds
0 0

= (/ exp (s (B — A)) dS) exp (A)

0
B—A)"Jexp (B — A) — I]exp (A)
B~ A)" ! exp (B) — exp (4)].

If we write the inequalities (4.1) and (4.2) for the exponential function, then we
get the midpoint inequality

w ;

/Olexp((l—t)A+tB)dt—exp<

A+B>H

1
<|B-A| / (1—t) lexp((1 — £) A + tB)| dt
1/2
1/2
+ ||BfA||/ t]exp((1 —t) A+ tB)| dt,
0

and the trapezoid inequality

exp (A) + exp (B)

(4.4) .

—/Olexp((l—t)A—i-tB)dtH

1
t— 3 llexp((1 —¢t) A+tB)| dt

for all A, B > 0.
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If A and B are commuting and B — A is invertible, then

A+ B
2

(45) (5 2 foxp ()~ exp ()] - 0
<|B-A| / (1— ) lexp((1 — t) A + tB)| dt
1/2

1/2
+||B - A / t]exp((1 —t) A+ tB)| dt,
0

and

exp (A) + exp (B)
2

1
snB—An/
0

Since, using the power series representation,

(4.6)

- (B A e (B) - exp ()|

1
t— 3 llexp((1 —t) A+ tB)| dt.

lexp((1 =) A+tB)|| < exp([|(1—-¢)A+tB])
< exp((1=t)[|Al +¢][B])

for all selfadjoint operators A, B and t € [0, 1], we have for | B|| # || A that
1
/ (1= ) lexp((1 — £) A + £B)|| dt
1/2

1
< / (1 —t)exp ((1 =) [|[Al| + ¢||B|) dt
1/2

exp (|| B]) — exp (LALEL)  exep (L4121 )

(18] = l1Al)? ~2(IBI =114

1/2
/ tlexp((1 — t) A+ ¢B)| dt
0

1/2
s/ bexp (1 — 1) ||A]| + ¢ | B]) dt
0

exp (LALIEL) o (LALELELY e (] 4]

~ 2(IB] — [IAll) (I1B]l - l1A])*

These imply that

/1/2 (1) lexp((1 — £) A + £B)|| dt

1/2
+ / tllexp((1 — t) A + ¢B)|| dt
0

_ e (181D — 2exp (5L +exp (14])
: (1Bl - 14l
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and by (4.5) we get

(47 H(BA)l fexp (B) — exp (4)] — exp (A§B>H

exp (|1 Bll) — 2exp (LALLEL) + exp (]14])
(18I — [14])*
if A and B are selfadjoint, commuting and B — A is invertible with ||B| # || 4] .

Also, we have
1
llexp((1 —t) A+tB)| dt

1

t— —
L=

1
<),
0

 dexp (LAY 4 (5| — 1] - 2)exp (IB]) — (1B = 4] +2) exp (A1)

<|[|B - A

1
t—5|exp (L= o) |l + ¢ BI) dt

2(|BI - [|Al)*
_ e (IBl) — e (J14]) dexp (WM) — 2(exp ([[BI)) + exp ([|A]]))
2([|BIl = (141 2(||B|| — | Al
_exp(IBI) —exp (Al P (181 - 2exp (LELEL) + exp ()
o 2(BI- 14D (1Bl = 1Al

for || Bl # [|All -
Using (4.6) we get

exp (4) + exp (B)

(48) > ~(B= A exp (B) — exp (A)]”
 Texp (IBI) — exp (JA])
<|IB - A { 2 (1B — 4]
exp (1B — 2exp (LAELEL) - exp (]
(B — [4])°

if A and B are selfadjoint, commuting and B — A is invertible with ||B| # || 4] .
If f € DM (0,00) and A, B > 0, then we observe that all the inequalities from
Remarks 2-4 and Remarks 6-8 hold for f’ instead of Df. We do not state them
here.
However, if more assumptions are made, the inequalities (4.1) and (4.2) provide
some other inequalities as well.

Corollary 8. If f € DW (0,00) and f' is operator convexr and nonnegative on
(0,00) then for A, B > 0, we have the midpoint inequality

/Olf((1_t)A+tB)dt—f(A+B)H

(4.9) 5

< 1B = ALAF A+ 17 B)
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and the trapezoid inequality
1
(4.10) Hf(A);f(B)/ f({(1—-t)A+tB) dtH
0

< % 1B = AlL(LF" (A + L (B -

Proof. Since f' is operator convex and nonnegative on (0, 00) then for A, B > 0 we
have

0< fi(1—-t)A+tB) < (1—1) f'(A) +tf' (B)
for t € [0,1]. By taking the norm, we get

I£ (A=) A+tB)|| < [I(L =) f/(A) +tf (B < L =) [IF' (A + ] f (B)]

for t € [0,1].
Therefore,

1 1/2
/ (1ft)||f’((1ft)A+tB)Hdt+/ t||f’((1ft)A+tB)Hdt
1/2 0
< / (=8 [(1— &) £ (A + | (B de

1/2

1/2
+ / FI— D) I (A + 1 (B de

0
— (A 1—1)%d "(B 1—t)td

1 >||/1/2< B2de+ || ( >/1/2< b tdt

1/2 1/2

y (A)H/O L1 tyde+|f (B”'/o 2di

1 ’ 1 / 1 / 1 / _ / !
= S 1P+ 5 1 B+ 55 17 A + o7 1 (B = 5 (P (A + 117 (B

which, by (4.1), proves the inequality (4.9).
We also have

< [ |e-3|-onranar @i

=i [ -3 -oae @ [

which, by (4.1), proves the inequality (4.9). O

| =

- ;] 1F((L—t) A+ 1B)]| de

1 1 , ’
= 3|t = 5 Ar I+ 17 B,

Remark 9. The inequality (4.10) was obtained in [8].

Consider the function f(z) = z"on (0,00), where 0 <r <1 or 2 <r < 3. Then
from Corollary 8 we get the midpoint inequality

A+ B\"
2

(4.11) ‘

/01((1t)A+tB)’”dt<

< ghB= Al (A +11B )
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and the trapezoid inequality

A+B [ " - -
(4.12) H2 —/0 ((1-t)A+1tB) dtH < gHB — A (||A 1|| + ||B 1”)
for A, B > 0, see also [8].
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