# MIDPOINT AND TRAPEZOID INEQUALITIES FOR DIFFERENTIABLE FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT SPACES

#### SILVESTRU SEVER DRAGOMIR<sup>1,2</sup>

ABSTRACT. In this paper we establish some midpoint and trapezoid norm inequalities for Gâteaux and Fréchet differentiable functions of selfadjoint operators in Hilbert spaces. Some examples for the class of functions

$$\mathcal{D}^{(1)}(0,\infty) := \left\{ f \mid \|Df(A)\| = \|f'(A)\| \text{ for all positive operators } A \right\},\,$$

where Df(A) is the Fréchet derivative in A and f'(A) is the operator function generated by f' and positive operator A, are also given. The case when f' is nonnegative and operator convex is also analyzed.

#### 1. Introduction

A real valued continuous function f on an interval I is said to be operator convex (operator concave) on I if

$$(1.1) f((1-\lambda)A + \lambda B) \le (\ge)(1-\lambda)f(A) + \lambda f(B)$$

in the operator order, for all  $\lambda \in [0,1]$  and for every selfadjoint operator A and B on a Hilbert space H whose spectra are contained in I. Notice that a function f is operator concave if -f is operator convex.

A real valued continuous function f on an interval I is said to be operator monotone if it is monotone with respect to the operator order, i.e.,  $A \leq B$  with  $\operatorname{Sp}(A), \operatorname{Sp}(B) \subset I$  imply  $f(A) \leq f(B)$ .

For some fundamental results on operator convex (operator concave) and operator monotone functions, see [7] and the references therein.

As examples of such functions, we note that  $f(t) = t^r$  is operator monotone on  $[0,\infty)$  if and only if  $0 \le r \le 1$ . The function  $f(t) = t^r$  is operator convex on  $(0,\infty)$  if either  $1 \le r \le 2$  or  $-1 \le r \le 0$  and is operator concave on  $(0,\infty)$  if  $0 \le r \le 1$ . The logarithmic function  $f(t) = \ln t$  is operator monotone and operator concave on  $(0,\infty)$ . The entropy function  $f(t) = -t \ln t$  is operator concave on  $(0,\infty)$ . The exponential function  $f(t) = e^t$  is neither operator convex nor operator monotone.

In [4] we obtained among others the following Hermite-Hadamard type inequalities for operator convex functions  $f:I\to\mathbb{R}$ 

$$(1.2) f\left(\frac{A+B}{2}\right) \le \int_0^1 f\left(\left(1-s\right)A + sB\right)ds \le \frac{f\left(A\right) + f\left(B\right)}{2},$$

where A, B are selfadjoint operators with spectra included in I.

For recent inequalities for operator convex functions see [1]-[6] and [8]-[17].

<sup>1991</sup> Mathematics Subject Classification. 47A63; 47A99.

Key words and phrases. Operator convex functions, Integral inequalities, Hermite-Hadamard inequality, Midpoint and Trapezoid inequalities.

Let  $\mathcal{SA}_I(H)$  be the class of all selfadjoint operators with spectra in I. If A,  $B \in \mathcal{SA}_I(H)$  and  $t \in [0,1]$  the convex combination (1-t)A+tB is a selfadjoint operator with the spectrum in I showing that  $\mathcal{SA}_I(H)$  is convex in the Banach algebra  $\mathcal{B}(H)$  of all bounded linear operators on H. If f is continuous function on I. By the continuous functional calculus of selfadjoint operator we conclude that f((1-t)A+tB) is a selfadjoint operator with spectrum in I.

A continuous function  $f: \mathcal{SA}_I(H) \to \mathcal{B}(H)$  is said to be Gâteaux differentiable in  $A \in \mathcal{SA}_I(H)$  along the direction  $B \in \mathcal{B}(H)$  if the following limit exists in the strong topology of  $\mathcal{B}(H)$ 

(1.3) 
$$\nabla f_A(B) := \lim_{s \to 0} \frac{f(A+sB) - f(A)}{s} \in \mathcal{B}(H).$$

If the limit (1.3) exists for all  $B \in \mathcal{B}(H)$ , then we say that f is Gateaux differentiable in A and we can write  $f \in \mathcal{G}(A)$ . If this is true for any A in an open set  $\mathcal{S}$  from  $\mathcal{S}\mathcal{A}_I(H)$  we write that  $f \in \mathcal{G}(\mathcal{S})$ .

If f is a continuous function on I, by utilising the continuous functional calculus the corresponding function of operators will be denoted in the same way.

For two distinct operators  $A, B \in \mathcal{SA}_I(H)$  we consider the segment of selfadjoint operators

$$[A, B] := \{(1 - t) A + tB \mid t \in [0, 1]\}.$$

We observe that  $A, B \in [A, B]$  and  $[A, B] \subset \mathcal{SA}_I(H)$ .

In the recent paper [6] we obtained the following reverses of operator Hemite-Hadamard inequalities:

**Theorem 1.** Let f be an operator convex function on I and A,  $B \in \mathcal{SA}_I(H)$ , with  $A \neq B$ . If  $f \in \mathcal{G}([A, B])$ , then

(1.4) 
$$0 \le \int_0^1 f((1-t)A + tB) dt - f\left(\frac{A+B}{2}\right)$$
$$\le \frac{1}{8} \left[\nabla f_B(B-A) - \nabla f_A(B-A)\right]$$

and

(1.5) 
$$0 \le \frac{f(A) + f(B)}{2} - \int_{0}^{1} f((1-t)A + tB) dt$$
$$\le \frac{1}{8} \left[ \nabla f_{B}(B-A) - \nabla f_{A}(B-A) \right].$$

Corollary 1. With the assumption of Theorem 1 we have the norm inequalities

(1.6) 
$$\left\| \int_{0}^{1} f\left( (1-t) A + tB \right) dt - f\left( \frac{A+B}{2} \right) \right\|$$

$$\leq \frac{1}{8} \left\| \nabla f_{B} \left( B - A \right) - \nabla f_{A} \left( B - A \right) \right\|$$

and

(1.7) 
$$\left\| \frac{f(A) + f(B)}{2} - \int_{0}^{1} f((1-t)A + tB) dt \right\| \\ \leq \frac{1}{8} \left\| \nabla f_{B}(B-A) - \nabla f_{A}(B-A) \right\|.$$

Motivated by the above results, we establish in this paper some midpoint and trapezoid norm inequalities for Gâteaux and Fréchet differentiable functions of self-adjoint operators. Some examples for the class of functions

$$\mathcal{D}^{(1)}\left(0,\infty\right) := \left\{f \mid \|Df(A)\| = \|f'(A)\| \text{ for all positive operators } A\right\},\,$$

where Df(A) is the Fréchet derivative in A and f'(A) is the operator function generated by f' and positive operator A, are also given. Finally, the case when f' is nonnegative and operator convex is also analyzed.

## 2. MIDPOINT INEQUALITIES

We need the following preliminary results:

**Lemma 1.** Let f be a continuous function on I and A,  $B \in \mathcal{SA}_I(H)$ , with  $A \neq B$ . If  $f \in \mathcal{G}([A, B])$ , then the auxiliary function  $\varphi_{(A,B)}$  is differentiable on (0,1) and

(2.1) 
$$\varphi'_{(A,B)}(t) = \nabla f_{(1-t)A+tB}(B-A).$$

Also we have for the lateral derivative that

(2.2) 
$$\varphi'_{(A,B)}(0+) = \nabla f_A(B-A)$$

and

(2.3) 
$$\varphi'_{(A,B)}(1-) = \nabla f_B(B-A).$$

*Proof.* Let  $t \in (0,1)$  and  $h \neq 0$  small enough such that  $t+h \in (0,1)$ . Then

(2.4) 
$$\frac{\varphi_{(A,B)}(t+h) - \varphi_{(A,B)}(t)}{h} = \frac{f((1-t-h)A + (t+h)B) - f((1-t)A + tB)}{h} = \frac{f((1-t)A + tB + h(B-A)) - f((1-t)A + tB)}{h}$$

Since  $f \in \mathcal{G}([A, B])$ , hence by taking the limit over  $h \to 0$  in (2.4) we get

$$\varphi'_{(A,B)}(t) = \lim_{h \to 0} \frac{\varphi_{(A,B)}(t+h) - \varphi_{(A,B)}(t)}{h} 
= \lim_{h \to 0} \frac{f((1-t)A + tB + h(B-A)) - f((1-t)A + tB)}{h} 
= \nabla g_{(1-t)A + tB}(B-A),$$

which proves (2.1).

Also, we have

$$\varphi'_{(A,B)}(0+) = \lim_{h \to 0+} \frac{\varphi_{(A,B)}(h) - \varphi_{(A,B)}(0)}{h}$$

$$= \lim_{h \to 0+} \frac{f((1-h)A + hB) - f(A)}{h}$$

$$= \lim_{h \to 0+} \frac{f(A+h(B-A)) - f(A)}{h} = \nabla f_A(B-A)$$

since f is assumed to be Gâteaux differentiable in A. This proves (2.2).

The equality (2.3) follows in a similar way.

We have the following midpoint norm inequality:

**Theorem 2.** Let f be a continuous function on I and A,  $B \in \mathcal{SA}_I(H)$ , with  $A \neq B$ . If  $f \in \mathcal{G}([A, B])$ , then

(2.5) 
$$\left\| \int_{0}^{1} f\left( (1-t) A + tB \right) dt - f\left( \frac{A+B}{2} \right) \right\|$$

$$\leq \int_{1/2}^{1} (1-t) \left\| \nabla f_{(1-t)A+tB} \left( B - A \right) \right\| dt$$

$$+ \int_{0}^{1/2} t \left\| \nabla f_{(1-t)A+tB} \left( B - A \right) \right\| dt$$

$$=: M \left( f; A, B \right).$$

*Proof.* Using integration by parts formula for the Bochner integral, we have

(2.6) 
$$\int_{0}^{1/2} t \varphi'_{(A,B)}(t) dt = \frac{1}{2} \varphi_{(A,B)} \left(\frac{1}{2}\right) - \int_{0}^{1/2} \varphi_{(A,B)}(t) dt$$
$$= \frac{1}{2} f\left(\frac{A+B}{2}\right) - \int_{0}^{1/2} f\left((1-t)A + tB\right) dt$$

and

(2.7) 
$$\int_{1/2}^{1} (t-1) \varphi'_{(A,B)}(t) dt = \frac{1}{2} \varphi_{(A,B)} \left(\frac{1}{2}\right) - \int_{1/2}^{1} f\left((1-t) A + tB\right) dt$$
$$= \frac{1}{2} f\left(\frac{A+B}{2}\right) - \int_{1/2}^{1} f\left((1-t) A + tB\right) dt.$$

If we add these two equalities and use Lemma 1 we get the following identity of interest

(2.8) 
$$\int_{0}^{1} f((1-t)A + tB) dt - f\left(\frac{A+B}{2}\right)$$
$$= \int_{1/2}^{1} (1-t) \nabla f_{(1-t)A+tB}(B-A) dt - \int_{0}^{1/2} t \nabla f_{(1-t)A+tB}(B-A) dt.$$

Taking the norm and using the properties of the integral, we obtain

(2.9) 
$$\left\| \int_{0}^{1} f\left((1-t)A + tB\right) dt - f\left(\frac{A+B}{2}\right) \right\|$$

$$\leq \left\| \int_{1/2}^{1} (1-t) \nabla f_{(1-t)A+tB} (B-A) dt \right\|$$

$$+ \left\| \int_{0}^{1/2} t \nabla f_{(1-t)A+tB} (B-A) dt \right\|$$

$$\leq \int_{1/2}^{1} (1-t) \left\| \nabla f_{(1-t)A+tB} (B-A) \right\| dt$$

$$+ \int_{0}^{1/2} t \left\| \nabla f_{(1-t)A+tB} (B-A) \right\| dt ,$$

which proves (2.5).

**Remark 1.** It is well known that if f is a  $C^1$ -function defined on an open interval, then the operator function f(X) is Fréchet differentiable and the derivative Df(A)(B) equals the Gâteaux derivative  $\nabla f_A(B)$ . So for functions f that are of class  $C^1$  on I we have the inequalities

$$\left\| \int_{0}^{1} f\left((1-t)A + tB\right) dt - f\left(\frac{A+B}{2}\right) \right\|$$

$$\leq \int_{1/2}^{1} (1-t) \|Df((1-t)A + tB) (B-A)\| dt$$

$$+ \int_{0}^{1/2} t \|Df((1-t)A + tB) (B-A)\| dt$$

$$\leq \|B-A\| \int_{1/2}^{1} (1-t) \|Df((1-t)A + tB)\| dt$$

$$+ \|B-A\| \int_{0}^{1/2} t \|Df((1-t)A + tB)\| dt,$$

for  $A, B \in \mathcal{SA}_I(H)$ .

Corollary 2. With the assumptions of Theorem 2 and if

$$\sup_{t \in [0,1]} \left\| \nabla f_{(1-t)A+tB} \left( B - A \right) \right\| < \infty,$$

then

$$(2.11) \left\| \int_{0}^{1} f\left( (1-t) A + tB \right) dt - f\left( \frac{A+B}{2} \right) \right\|$$

$$\leq \frac{1}{8} \left( \sup_{t \in [0,1/2]} \left\| \nabla f_{(1-t)A+tB} \left( B - A \right) \right\| + \sup_{t \in [1/2,1]} \left\| \nabla f_{(1-t)A+tB} \left( B - A \right) \right\| \right)$$

$$\leq \frac{1}{4} \sup_{t \in [0,1]} \left\| \nabla f_{(1-t)A+tB} \left( B - A \right) \right\|.$$

*Proof.* We have

$$M(f; A, B) \leq \sup_{t \in [0, 1/2]} \|\nabla f_{(1-t)A+tB}(B - A)\| \int_{1/2}^{1} (1 - t) dt$$

$$+ \sup_{t \in [1/2, 1]} \|\nabla f_{(1-t)A+tB}(B - A)\| \int_{0}^{1/2} t dt$$

$$= \frac{1}{8} \sup_{t \in [0, 1/2]} \|\nabla f_{(1-t)A+tB}(B - A)\| + \frac{1}{8} \sup_{t \in [1/2, 1]} \|\nabla f_{(1-t)A+tB}(B - A)\|$$

$$\leq \frac{1}{4} \sup_{t \in [0, 1]} \|\nabla f_{(1-t)A+tB}(B - A)\|,$$

which proves the desired result.

**Remark 2.** For functions f that are of class  $C^1$  on I we have the inequalities

$$(2.12) \qquad \left\| \int_{0}^{1} f\left((1-t)A + tB\right) dt - f\left(\frac{A+B}{2}\right) \right\|$$

$$\leq \frac{1}{8} \|B - A\|$$

$$\times \left( \sup_{t \in [0,1/2]} \|Df((1-t)A + tB)\| + \sup_{t \in [1/2,1]} \|Df((1-t)A + tB)\| \right)$$

$$\leq \frac{1}{4} \|B - A\| \sup_{t \in [0,1]} \|Df((1-t)A + tB)\|$$

for  $A, B \in \mathcal{SA}_I(H)$ .

Corollary 3. With the assumptions of Theorem 2 and if

$$\int_0^1 \left\| \nabla f_{(1-t)A+tB} \left( B - A \right) \right\| dt < \infty,$$

then

(2.13) 
$$\left\| \int_{0}^{1} f((1-t)A + tB) dt - f\left(\frac{A+B}{2}\right) \right\|$$

$$\leq \frac{1}{2} \int_{0}^{1} \left\| \nabla f_{(1-t)A+tB} (B-A) \right\| dt.$$

*Proof.* We have

$$M(f; A, B) \leq \max_{t \in [0, 1/2]} (1 - t) \int_{1/2}^{1} \|\nabla f_{(1-t)A+tB}(B - A)\| dt$$

$$+ \max_{t \in [1/2, 1]} t \int_{0}^{1/2} \|\nabla f_{(1-t)A+tB}(B - A)\| dt$$

$$= \frac{1}{2} \int_{1/2}^{1} \|\nabla f_{(1-t)A+tB}(B - A)\| dt + \frac{1}{2} \int_{0}^{1/2} \|\nabla f_{(1-t)A+tB}(B - A)\| dt$$

$$= \frac{1}{2} \int_{0}^{1} \|\nabla f_{(1-t)A+tB}(B - A)\| dt,$$

which proves (2.13).

**Remark 3.** For functions f that are of class  $C^1$  on I we have the inequalities

(2.14) 
$$\left\| \int_{0}^{1} f((1-t)A + tB) dt - f\left(\frac{A+B}{2}\right) \right\|$$

$$\leq \frac{1}{2} \|B - A\| \int_{0}^{1} \|Df((1-t)A + tB)\| dt$$

for  $A, B \in \mathcal{SA}_I(H)$ .

Corollary 4. With the assumptions of Theorem 2 and if

$$\int_0^1 \|\nabla f_{(1-t)A+tB} (B-A)\|^p dt < \infty, \ p > 1,$$

then for q > 1 with  $\frac{1}{p} + \frac{1}{q} = 1$  we have

$$(2.15) \quad \left\| \int_{0}^{1} f\left( (1-t) A + tB \right) dt - f\left( \frac{A+B}{2} \right) \right\|$$

$$\leq \frac{1}{2} \left( \frac{1}{2(q+1)} \right)^{1/q}$$

$$\times \left[ \left( \int_{1/2}^{1} \left\| \nabla f_{(1-t)A+tB} \left( B - A \right) \right\|^{p} dt \right)^{1/p} + \left( \int_{0}^{1/2} \left\| \nabla f_{(1-t)A+tB} \left( B - A \right) \right\|^{p} dt \right)^{1/p} \right]$$

$$\leq \frac{1}{2} \left( \frac{1}{q+1} \right)^{1/q} \left( \int_{0}^{1} \left\| \nabla f_{(1-t)A+tB} \left( B - A \right) \right\|^{p} dt \right)^{1/p} .$$

*Proof.* Let p, q > 1 with  $\frac{1}{p} + \frac{1}{q} = 1$ , then by Hölder's inequality we have

$$M(f;A,B) \leq \left(\int_{1/2}^{1} (1-t)^{q} dt\right)^{1/q} \left(\int_{1/2}^{1} \left\|\nabla f_{(1-t)A+tB}(B-A)\right\|^{p} dt\right)^{1/p} + \left(\int_{0}^{1/2} t^{q} dt\right)^{1/q} \left(\int_{0}^{1/2} \left\|\nabla f_{(1-t)A+tB}(B-A)\right\|^{p} dt\right)^{1/p} = \left(\frac{\left(\frac{1}{2}\right)^{q+1}}{q+1}\right)^{1/q} \left(\int_{1/2}^{1} \left\|\nabla f_{(1-t)A+tB}(B-A)\right\|^{p} dt\right)^{1/p} + \left(\frac{\left(\frac{1}{2}\right)^{q+1}}{q+1}\right)^{1/q} \left(\int_{0}^{1/2} \left\|\nabla f_{(1-t)A+tB}(B-A)\right\|^{p} dt\right)^{1/p} = \frac{1}{2} \left(\frac{1}{2(q+1)}\right)^{1/q} \left(\int_{1/2}^{1} \left\|\nabla f_{(1-t)A+tB}(B-A)\right\|^{p} dt\right)^{1/p} + \frac{1}{2} \left(\frac{1}{2(q+1)}\right)^{1/q} \left(\int_{0}^{1/2} \left\|\nabla f_{(1-t)A+tB}(B-A)\right\|^{p} dt\right)^{1/p},$$

which proves the first inequality in (2.15).

Using the power mean inequality for p > 1

$$\left(\frac{a+b}{2}\right)^p \le \frac{a^p + b^p}{2}, \ a, \ b > 0,$$

namely

$$a+b \le 2^{\frac{p-1}{p}} (a^p + b^p)^{1/p}$$

we get

$$\left(\int_{1/2}^{1} \left\|\nabla f_{(1-t)A+tB}\left(B-A\right)\right\|^{p} dt\right)^{1/p} + \left(\int_{0}^{1/2} \left\|\nabla f_{(1-t)A+tB}\left(B-A\right)\right\|^{p} dt\right)^{1/p} \\
\leq 2^{\frac{p-1}{p}} \left[\int_{1/2}^{1} \left\|\nabla f_{(1-t)A+tB}\left(B-A\right)\right\|^{p} dt + \int_{0}^{1/2} \left\|\nabla f_{(1-t)A+tB}\left(B-A\right)\right\|^{p} dt\right]^{1/p} \\
= 2^{\frac{p-1}{p}} \left(\int_{0}^{1} \left\|\nabla f_{(1-t)A+tB}\left(B-A\right)\right\|^{p} dt\right)^{1/p} = 2^{1/q} \left(\int_{0}^{1} \left\|\nabla f_{(1-t)A+tB}\left(B-A\right)\right\|^{p} dt\right)^{1/p},$$
which proves the last part of (2.15).

**Remark 4.** For functions f that are of class  $C^1$  on I we have the inequalities

$$(2.16) \quad \left\| \int_{0}^{1} f\left( (1-t) A + tB \right) dt - f\left( \frac{A+B}{2} \right) \right\|$$

$$\leq \frac{1}{2} \left( \frac{1}{2(q+1)} \right)^{1/q} \|B - A\|$$

$$\times \left[ \left( \int_{1/2}^{1} \|Df((1-t) A + tB)\|^{p} dt \right)^{1/p} + \left( \int_{0}^{1/2} \|Df((1-t) A + tB)\|^{p} dt \right)^{1/p} \right]$$

$$\leq \frac{1}{2} \left( \frac{1}{q+1} \right)^{1/q} \|B - A\| \left( \int_{0}^{1} \|Df((1-t) A + tB)\|^{p} dt \right)^{1/p}$$

for  $A, B \in \mathcal{SA}_I(H)$ .

## 3. Trapezoid Inequalities

We have the following trapezoid norm inequality:

**Theorem 3.** Let f be a continuous function on I and A,  $B \in \mathcal{SA}_I(H)$ , with  $A \neq B$ . If  $f \in \mathcal{G}([A, B])$ , then

(3.1) 
$$\left\| \frac{f(A) + f(B)}{2} - \int_{0}^{1} f((1-t)A + tB) dt \right\|$$

$$\leq \int_{0}^{1} \left| t - \frac{1}{2} \right| \left\| \nabla f_{(1-t)A + tB} (B - A) \right\| dt =: T(f; A, B).$$

*Proof.* Using integration by parts formula for the Bochner integral, we have

$$\int_{0}^{1} \left( t - \frac{1}{2} \right) \varphi'_{(A,B)}(t) dt = \left( t - \frac{1}{2} \right) \varphi_{(A,B)}(t) \Big|_{0}^{1} - \int_{0}^{1} \varphi_{(A,B)}(t) dt$$
$$= \frac{1}{2} \left[ \varphi_{(A,B)}(1) + \varphi_{(A,B)}(1) \right] - \int_{0}^{1} \varphi_{(A,B)}(t) dt,$$

which gives the following equality of interest

(3.2) 
$$\frac{f(A) + f(B)}{2} - \int_0^1 f((1-t)A + tB) dt$$

$$= \int_0^1 \left(t - \frac{1}{2}\right) \nabla f_{(1-t)A + tB} (B - A) dt.$$

By taking the norm in (3.2) we get

$$\left\| \frac{f(A) + f(B)}{2} - \int_{0}^{1} f((1 - t) A + tB) dt \right\|$$

$$\leq \int_{0}^{1} \left\| \left( t - \frac{1}{2} \right) \nabla f_{(1-t)A+tB} (B - A) \right\| dt$$

$$= \int_{0}^{1} \left| t - \frac{1}{2} \right| \left\| \nabla f_{(1-t)A+tB} (B - A) \right\| dt,$$

which proves the desired inequality (3.1).

**Remark 5.** For functions f that are of class  $C^1$  on I we have the inequalities

(3.3) 
$$\left\| \frac{f(A) + f(B)}{2} - \int_{0}^{1} f((1-t)A + tB) dt \right\|$$

$$\leq \int_{0}^{1} \left| t - \frac{1}{2} \right| \|Df((1-t)A + tB) (B - A)\| dt$$

$$\leq \|B - A\| \int_{0}^{1} \left| t - \frac{1}{2} \right| \|Df((1-t)A + tB)\| dt$$

for  $A, B \in \mathcal{SA}_I(H)$ .

Corollary 5. With the assumptions of Theorem 3 and if

$$\sup_{t \in [0,1]} \left\| \nabla f_{(1-t)A+tB} \left( B - A \right) \right\| < \infty,$$

then

$$(3.4) \quad \left\| \frac{f(A) + f(B)}{2} - \int_{0}^{1} f((1 - t) A + tB) dt \right\|$$

$$\leq \frac{1}{8} \left( \sup_{t \in [0, 1/2]} \left\| \nabla f_{(1-t)A+tB} (B - A) \right\| + \sup_{t \in [1/2, 1]} \left\| \nabla f_{(1-t)A+tB} (B - A) \right\| \right)$$

$$\leq \frac{1}{4} \sup_{t \in [0, 1]} \left\| \nabla f_{(1-t)A+tB} (B - A) \right\|.$$

*Proof.* We have

$$T(f; A, B) = \int_{0}^{1} \left| t - \frac{1}{2} \right| \left\| \nabla f_{(1-t)A+tB} (B - A) \right\| dt$$

$$= \int_{0}^{1/2} \left( \frac{1}{2} - t \right) \left\| \nabla f_{(1-t)A+tB} (B - A) \right\| dt$$

$$+ \int_{1/2}^{1} \left( t - \frac{1}{2} \right) \left\| \nabla f_{(1-t)A+tB} (B - A) \right\| dt$$

$$\leq \sup_{t \in [0, 1/2]} \left\| \nabla f_{(1-t)A+tB} (B - A) \right\| \int_{0}^{1/2} \left( \frac{1}{2} - t \right) dt$$

$$+ \sup_{t \in [1/2, 1]} \left\| \nabla f_{(1-t)A+tB} (B - A) \right\| \int_{1/2}^{1} \left( t - \frac{1}{2} \right)$$

$$= \frac{1}{8} \left( \sup_{t \in [0, 1/2]} \left\| \nabla f_{(1-t)A+tB} (B - A) \right\| + \sup_{t \in [1/2, 1]} \left\| \nabla f_{(1-t)A+tB} (B - A) \right\| \right),$$

which proves (3.4).

**Remark 6.** For functions f that are of class  $C^1$  on I we have the inequalities

(3.5) 
$$\left\| \frac{f(A) + f(B)}{2} - \int_{0}^{1} f((1-t)A + tB) dt \right\|$$

$$\leq \frac{1}{8} \|B - A\|$$

$$\times \left( \sup_{t \in [0,1/2]} \|Df((1-t)A + tB)\| + \sup_{t \in [1/2,1]} \|Df((1-t)A + tB)\| \right)$$

$$\leq \frac{1}{4} \|B - A\| \sup_{t \in [0,1]} \|Df((1-t)A + tB)\|$$

for  $A, B \in \mathcal{SA}_I(H)$ .

Corollary 6. With the assumptions of Theorem 3 and if

$$\int_0^1 \left\| \nabla f_{(1-t)A+tB} \left( B - A \right) \right\| dt < \infty,$$

then

(3.6) 
$$\left\| \frac{f(A) + f(B)}{2} - \int_{0}^{1} f((1-t)A + tB) dt \right\| \\ \leq \frac{1}{2} \int_{0}^{1} \left\| \nabla f_{(1-t)A + tB} (B - A) \right\| dt.$$

*Proof.* If follows by the fact that

$$T(f; A, B) = \int_0^1 \left| t - \frac{1}{2} \right| \left\| \nabla f_{(1-t)A+tB} (B - A) \right\| dt$$
  
$$\leq \frac{1}{2} \int_0^1 \left\| \nabla f_{(1-t)A+tB} (B - A) \right\| dt.$$

**Remark 7.** For functions f that are of class  $C^1$  on I we have the inequalities

(3.7) 
$$\left\| \frac{f(A) + f(B)}{2} - \int_{0}^{1} f((1-t)A + tB) dt \right\|$$

$$\leq \frac{1}{2} \int_{0}^{1} \|Df((1-t)A + tB) (B - A)\| dt$$

$$\leq \frac{1}{2} \|B - A\| \int_{0}^{1} \|Df((1-t)A + tB)\| dt.$$

Corollary 7. With the assumptions of Theorem 3 and if

$$\int_{0}^{1} \left\| \nabla f_{(1-t)A+tB} \left( B - A \right) \right\|^{p} dt < \infty, \ p > 1,$$

then for q > 1 with  $\frac{1}{p} + \frac{1}{q} = 1$  we have

$$(3.8) \quad \left\| \frac{f(A) + f(B)}{2} - \int_{0}^{1} f((1-t)A + tB) dt \right\|$$

$$\leq \frac{1}{2} \left( \frac{1}{2(q+1)} \right)^{1/q}$$

$$\times \left[ \left( \int_{1/2}^{1} \left\| \nabla f_{(1-t)A+tB} \left( B - A \right) \right\|^{p} dt \right)^{1/p} + \left( \int_{0}^{1/2} \left\| \nabla f_{(1-t)A+tB} \left( B - A \right) \right\|^{p} dt \right)^{1/p} \right]$$

$$\leq \frac{1}{2} \left( \frac{1}{q+1} \right)^{1/q} \left( \int_{0}^{1} \left\| \nabla f_{(1-t)A+tB} \left( B - A \right) \right\|^{p} dt \right)^{1/p} .$$

*Proof.* Let p, q > 1 with  $\frac{1}{p} + \frac{1}{q} = 1$ , then by Hölder's inequality we have

$$T(f;A,B) = \int_{0}^{1/2} \left(\frac{1}{2} - t\right) \|\nabla f_{(1-t)A+tB} (B - A)\| dt$$

$$+ \int_{1/2}^{1} \left(t - \frac{1}{2}\right) \|\nabla f_{(1-t)A+tB} (B - A)\| dt$$

$$\leq \left(\int_{1/2}^{1} \left(t - \frac{1}{2}\right)^{q} dt\right)^{1/q} \left(\int_{1/2}^{1} \|\nabla f_{(1-t)A+tB} (B - A)\|^{p} dt\right)^{1/p}$$

$$+ \left(\int_{0}^{1/2} \left(\frac{1}{2} - t\right)^{q} dt\right)^{1/q} \left(\int_{0}^{1/2} \|\nabla f_{(1-t)A+tB} (B - A)\|^{p} dt\right)^{1/p}$$

$$= \left(\frac{\left(\frac{1}{2}\right)^{q+1}}{q+1}\right)^{1/q} \left(\int_{1/2}^{1} \|\nabla f_{(1-t)A+tB} (B - A)\|^{p} dt\right)^{1/p}$$

$$+ \left(\frac{\left(\frac{1}{2}\right)^{q+1}}{q+1}\right)^{1/q} \left(\int_{0}^{1/2} \|\nabla f_{(1-t)A+tB} (B - A)\|^{p} dt\right)^{1/p}$$

$$= \frac{1}{2} \left(\frac{1}{2(q+1)}\right)^{1/q} \left(\int_{1/2}^{1} \|\nabla f_{(1-t)A+tB} (B - A)\|^{p} dt\right)^{1/p}$$

$$+ \frac{1}{2} \left(\frac{1}{2(q+1)}\right)^{1/q} \left(\int_{0}^{1/2} \|\nabla f_{(1-t)A+tB} (B - A)\|^{p} dt\right)^{1/p},$$

which proves the first inequality in (3.8). The second part is obvious by Corollary 4.

**Remark 8.** For functions f that are of class  $C^1$  on I we have the inequalities

$$(3.9) \quad \left\| \frac{f(A) + f(B)}{2} - \int_{0}^{1} f((1-t)A + tB) dt \right\|$$

$$\leq \frac{1}{2} \left( \frac{1}{2(q+1)} \right)^{1/q} \|B - A\|$$

$$\times \left[ \left( \int_{1/2}^{1} \|Df((1-t)A + tB)\|^{p} dt \right)^{1/p} + \left( \int_{0}^{1/2} \|Df((1-t)A + tB)\|^{p} dt \right)^{1/p} \right]$$

$$\leq \frac{1}{2} \left( \frac{1}{q+1} \right)^{1/q} \|B - A\| \left( \int_{0}^{1} \|Df((1-t)A + tB)\|^{p} dt \right)^{1/p}$$

for  $A, B \in \mathcal{SA}_I(H)$ .

## 4. Examples for Some General Classes of Functions

Let f be a real function that is n-time differentiable on  $(0, \infty)$ , and let  $f^{(n)}$  be its n-th derivative. Let f also denote the map induced by f on positive operators. Let  $D^n f(A)$  be the n-th order Fréchet derivative of this map at the point A. For each A, the derivative  $D^n f(A)$  is a n-linear operator on the space of all Hermitian operators. The norm of this operator is defined as

$$||D^n f(A)|| := \sup \{ D^n f(A) (B_1, ..., B_n) \mid ||B_1|| = ... = ||B_n|| = 1 \}.$$

We consider the following class of functions defined on  $(0, \infty)$  for a natural  $n \ge 1$ ,

$$\mathcal{D}^{(n)}\left(0,\infty\right):=\left\{ f\mid\,\left\|D^{n}f(A)\right\|=\left\|f^{(n)}\left(A\right)\right\|\text{ for all positive operators }A\right\}.$$

It is known (see for instance [8]) that every operator monotone function is in  $\mathcal{D}^{(n)}(0,\infty)$  for all  $n=1,\,2,\ldots$  Also the functions  $f(t)=t^n,\,n=2,\,3,\ldots$ , and  $f(t)=\exp t$  are in  $\mathcal{D}^{(1)}(0,\infty)$ . None of these are operator monotone. Moreover, the power function  $f(t)=t^p$  is in  $\mathcal{D}^{(1)}(0,\infty)$  if p is in  $(-\infty,1]$  or in  $[2,\infty)$ , but not if p is in  $(1,\sqrt{2})$ . Also that the functions  $f(t)=\exp t$  and  $f(t)=t^p,\,-\infty< p\leq 1$ , are in the class  $\mathcal{D}^{(n)}(0,\infty)$  for all  $n=1,\,2,\ldots$ , and that for p>1 the function  $f(t)=t^p$  is in the class  $\mathcal{D}^{(n)}(0,\infty)$  for all  $n\geq [p+1]$ , where  $[\cdot]$  is the integer part (see for instance [8] and the references therein).

**Proposition 1.** If  $f \in \mathcal{D}^{(1)}(0,\infty)$  and A, B > 0, then we have midpoint inequality

$$\left\| \int_{0}^{1} f((1-t)A + tB) dt - f\left(\frac{A+B}{2}\right) \right\|$$

$$\leq \|B - A\| \int_{1/2}^{1} (1-t) \|f'((1-t)A + tB)\| dt$$

$$+ \|B - A\| \int_{0}^{1/2} t \|f'((1-t)A + tB)\| dt,$$

and the trapezoid inequality

(4.2) 
$$\left\| \frac{f(A) + f(B)}{2} - \int_{0}^{1} f((1-t)A + tB) dt \right\|$$

$$\leq \|B - A\| \int_{0}^{1} \left| t - \frac{1}{2} \right| \|f'((1-t)A + tB)\| dt.$$

The proof follows by Remarks 1 and 5.

It is known that if A and B are commuting, i.e. AB = BA, then the exponential function satisfies the property

$$\exp(A)\exp(B) = \exp(B)\exp(A) = \exp(A+B).$$

Also, if A is invertible and  $a, b \in \mathbb{R}$  with a < b then

$$\int_{a}^{b} \exp(tA) dt = A^{-1} \left[ \exp(bA) - \exp(aA) \right].$$

Moreover, if A and B are commuting and B - A is invertible, then

$$\int_{0}^{1} \exp((1-s)A + sB) ds = \int_{0}^{1} \exp(s(B-A)) \exp(A) ds$$

$$= \left(\int_{0}^{1} \exp(s(B-A)) ds\right) \exp(A)$$

$$= (B-A)^{-1} [\exp(B-A) - I] \exp(A)$$

$$= (B-A)^{-1} [\exp(B) - \exp(A)].$$

If we write the inequalities (4.1) and (4.2) for the exponential function, then we get the midpoint inequality

(4.3) 
$$\left\| \int_{0}^{1} \exp\left( (1 - t) A + tB \right) dt - \exp\left( \frac{A + B}{2} \right) \right\|$$
$$\leq \|B - A\| \int_{1/2}^{1} (1 - t) \| \exp((1 - t) A + tB) \| dt$$
$$+ \|B - A\| \int_{0}^{1/2} t \| \exp((1 - t) A + tB) \| dt,$$

and the trapezoid inequality

(4.4) 
$$\left\| \frac{\exp(A) + \exp(B)}{2} - \int_0^1 \exp((1-t)A + tB) dt \right\|$$
$$\leq \|B - A\| \int_0^1 \left| t - \frac{1}{2} \right| \|\exp((1-t)A + tB)\| dt$$

for all A, B > 0.

If A and B are commuting and B - A is invertible, then

(4.5) 
$$\left\| (B-A)^{-1} \left[ \exp(B) - \exp(A) \right] - \exp\left(\frac{A+B}{2}\right) \right\|$$

$$\leq \|B-A\| \int_{1/2}^{1} (1-t) \| \exp((1-t)A + tB) \| dt$$

$$+ \|B-A\| \int_{0}^{1/2} t \| \exp((1-t)A + tB) \| dt,$$

and

(4.6) 
$$\left\| \frac{\exp(A) + \exp(B)}{2} - (B - A)^{-1} \left[ \exp(B) - \exp(A) \right] \right\|$$
$$\leq \|B - A\| \int_0^1 \left| t - \frac{1}{2} \right| \|\exp((1 - t) A + tB)\| dt.$$

Since, using the power series representation,

$$\|\exp((1-t)A + tB)\| \le \exp(\|(1-t)A + tB\|)$$
  
  $\le \exp((1-t)\|A\| + t\|B\|)$ 

for all selfadjoint operators A, B and  $t \in [0, 1]$ , we have for  $||B|| \neq ||A||$  that

$$\begin{split} & \int_{1/2}^{1} (1-t) \left\| \exp((1-t) A + tB) \right\| dt \\ & \leq \int_{1/2}^{1} (1-t) \exp((1-t) \|A\| + t \|B\|) dt \\ & = \frac{\exp(\|B\|) - \exp\left(\frac{\|A\| + \|B\|}{2}\right)}{\left(\|B\| - \|A\|\right)^2} - \frac{\exp\left(\frac{\|A\| + \|B\|}{2}\right)}{2\left(\|B\| - \|A\|\right)}, \end{split}$$

$$\begin{split} & \int_0^{1/2} t \left\| \exp((1-t) A + tB) \right\| dt \\ & \leq \int_0^{1/2} t \exp\left((1-t) \|A\| + t \|B\|\right) dt \\ & = \frac{\exp\left(\frac{\|A\| + \|B\|}{2}\right)}{2\left(\|B\| - \|A\|\right)} - \frac{\exp\left(\frac{\|A\| + \|B\|}{2}\right) - \exp\left(\|A\|\right)}{\left(\|B\| - \|A\|\right)^2}. \end{split}$$

These imply that

$$\int_{1/2}^{1} (1-t) \|\exp((1-t)A + tB)\| dt$$

$$+ \int_{0}^{1/2} t \|\exp((1-t)A + tB)\| dt$$

$$\leq \frac{\exp(\|B\|) - 2\exp\left(\frac{\|A\| + \|B\|}{2}\right) + \exp(\|A\|)}{(\|B\| - \|A\|)^{2}}$$

and by (4.5) we get

(4.7) 
$$\left\| (B-A)^{-1} \left[ \exp(B) - \exp(A) \right] - \exp\left(\frac{A+B}{2}\right) \right\|$$

$$\leq \|B-A\| \frac{\exp(\|B\|) - 2\exp\left(\frac{\|A\| + \|B\|}{2}\right) + \exp(\|A\|)}{(\|B\| - \|A\|)^2}$$

if A and B are selfadjoint, commuting and B-A is invertible with  $||B|| \neq ||A||$ . Also, we have

$$\begin{split} & \int_{0}^{1} \left| t - \frac{1}{2} \right| \left\| \exp((1 - t) A + tB) \right\| dt \\ & \leq \int_{0}^{1} \left| t - \frac{1}{2} \right| \exp((1 - t) \|A\| + t \|B\|) dt \\ & = \frac{4 \exp\left(\frac{\|A\| + \|B\|}{2}\right) + (\|B\| - \|A\| - 2) \exp\left(\|B\|\right) - (\|B\| - \|A\| + 2) \exp\left(\|A\|\right)}{2 (\|B\| - \|A\|)^{2}} \\ & = \frac{\exp\left(\|B\|\right) - \exp\left(\|A\|\right)}{2 (\|B\| - \|A\|)} + \frac{4 \exp\left(\frac{\|A\| + \|B\|}{2}\right) - 2 \left(\exp\left(\|B\|\right) + \exp\left(\|A\|\right)\right)}{2 (\|B\| - \|A\|)^{2}} \\ & = \frac{\exp\left(\|B\|\right) - \exp\left(\|A\|\right)}{2 (\|B\| - \|A\|)} - \frac{\exp\left(\|B\|\right) - 2 \exp\left(\frac{\|A\| + \|B\|}{2}\right) + \exp\left(\|A\|\right)}{(\|B\| - \|A\|)^{2}} \end{split}$$

for  $||B|| \neq ||A||$ .

Using (4.6) we get

$$(4.8) \qquad \left\| \frac{\exp(A) + \exp(B)}{2} - (B - A)^{-1} \left[ \exp(B) - \exp(A) \right] \right\|$$

$$\leq \|B - A\| \left[ \frac{\exp(\|B\|) - \exp(\|A\|)}{2 (\|B\| - \|A\|)} - \frac{\exp(\|B\|) - 2\exp\left(\frac{\|A\| + \|B\|}{2}\right) + \exp(\|A\|)}{(\|B\| - \|A\|)^2} \right]$$

if A and B are selfadjoint, commuting and B-A is invertible with  $||B|| \neq ||A||$ .

If  $f \in \mathcal{D}^{(1)}(0,\infty)$  and A, B > 0, then we observe that all the inequalities from Remarks 2-4 and Remarks 6-8 hold for f' instead of Df. We do not state them here.

However, if more assumptions are made, the inequalities (4.1) and (4.2) provide some other inequalities as well.

**Corollary 8.** If  $f \in \mathcal{D}^{(1)}(0,\infty)$  and f' is operator convex and nonnegative on  $(0,\infty)$  then for A, B > 0, we have the midpoint inequality

(4.9) 
$$\left\| \int_{0}^{1} f((1-t)A + tB) dt - f\left(\frac{A+B}{2}\right) \right\|$$

$$\leq \frac{1}{8} \|B - A\| (\|f'(A)\| + \|f'(B)\|)$$

and the trapezoid inequality

(4.10) 
$$\left\| \frac{f(A) + f(B)}{2} - \int_{0}^{1} f((1-t)A + tB) dt \right\|$$

$$\leq \frac{1}{8} \|B - A\| \left( \|f'(A)\| + \|f'(B)\| \right).$$

*Proof.* Since f' is operator convex and nonnegative on  $(0, \infty)$  then for A, B > 0 we have

$$0 \le f'((1-t)A + tB) \le (1-t)f'(A) + tf'(B)$$

for  $t \in [0,1]$ . By taking the norm, we get

$$||f'((1-t)A+tB)|| \le ||(1-t)f'(A)+tf'(B)|| \le (1-t)||f'(A)||+t||f'(B)||$$

for  $t \in [0, 1]$ .

Therefore,

$$\begin{split} &\int_{1/2}^{1} (1-t) \|f'((1-t)A+tB)\| dt + \int_{0}^{1/2} t \|f'((1-t)A+tB)\| dt \\ &\leq \int_{1/2}^{1} (1-t) [(1-t) \|f'(A)\| + t \|f'(B)\|] dt \\ &+ \int_{0}^{1/2} t [(1-t) \|f'(A)\| + t \|f'(B)\|] dt \\ &= \|f'(A)\| \int_{1/2}^{1} (1-t)^{2} dt + \|f'(B)\| \int_{1/2}^{1} (1-t) t dt \\ &+ \|f'(A)\| \int_{0}^{1/2} t (1-t) dt + \|f'(B)\| \int_{0}^{1/2} t^{2} dt \\ &= \frac{1}{24} \|f'(A)\| + \frac{1}{12} \|f'(B)\| + \frac{1}{12} \|f'(A)\| + \frac{1}{24} \|f'(B)\| = \frac{1}{8} (\|f'(A)\| + \|f'(B)\|), \end{split}$$

which, by (4.1), proves the inequality (4.9).

We also have

$$\begin{split} &\int_{0}^{1} \left| t - \frac{1}{2} \right| \left\| f'((1-t)A + tB) \right\| dt \\ &\leq \int_{0}^{1} \left| t - \frac{1}{2} \right| \left[ (1-t) \left\| f'(A) \right\| + t \left\| f'(B) \right\| \right] dt \\ &= \left\| f'(A) \right\| \int_{0}^{1} \left| t - \frac{1}{2} \right| (1-t) dt + \left\| f'(B) \right\| \int_{0}^{1} \left| t - \frac{1}{2} \right| t dt = \frac{1}{8} \left( \left\| f'(A) \right\| + \left\| f'(B) \right\| \right), \\ \text{which, by (4.1), proves the inequality (4.9).} \end{split}$$

Remark 9. The inequality (4.10) was obtained in [8].

Consider the function  $f(x) = x^r$  on  $(0, \infty)$ , where  $0 \le r \le 1$  or  $2 \le r \le 3$ . Then from Corollary 8 we get the midpoint inequality

$$(4.11) \left\| \int_0^1 \left( (1-t) A + tB \right)^r dt - \left( \frac{A+B}{2} \right)^r \right\| \le \frac{r}{8} \|B - A\| \left( \|A^{r-1}\| + \|B^{r-1}\| \right)$$

and the trapezoid inequality

$$(4.12) \quad \left\| \frac{A^r + B^r}{2} - \int_0^1 \left( (1 - t) A + t B \right)^r dt \right\| \le \frac{r}{8} \|B - A\| \left( \|A^{r-1}\| + \|B^{r-1}\| \right)$$

for A, B > 0, see also [8].

#### References

- R. P. Agarwal and S. S. Dragomir, A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces. Comput. Math. Appl. 59 (2010), no. 12, 3785–3812.
- [2] V. Darvish, S. S. Dragomir, H. M. Nazari and A. Taghavi, Some inequalities associated with the Hermite-Hadamard inequalities for operator h-convex functions. Acta Comment. Univ. Tartu. Math. 21 (2017), no. 2, 287–297.
- [3] S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6.
- [4] S. S. Dragomir, Hermite-Hadamard's type inequalities for operator convex functions. Appl. Math. Comput. 218 (2011), no. 3, 766-772.
- [5] S. S. Dragomir, Some Hermite-Hadamard type inequalities for operator convex functions and positive maps. Spec. Matrices 7 (2019), 38-51. Preprint RGMIA Res. Rep. Coll. 19 (2016), Art. 80. [Online http://rgmia.org/papers/v19/v19a80.pdf].
- [6] S. S. Dragomir, Reverses of operator Hermite-Hadamard inequalities, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art. 87, 10 pp. [Online http://rgmia.org/papers/v22/v22a87.pdf].
- [7] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005
- [8] A. G. Ghazanfari, Hermite-Hadamard type inequalities for functions whose derivatives are operator convex. Complex Anal. Oper. Theory 10 (2016), no. 8, 1695–1703.
- [9] A. G. Ghazanfari, The Hermite-Hadamard type inequalities for operator s-convex functions.
   J. Adv. Res. Pure Math. 6 (2014), no. 3, 52-61.
- [10] J. Han and J. Shi, Refinements of Hermite-Hadamard inequality for operator convex function. J. Nonlinear Sci. Appl. 10 (2017), no. 11, 6035–6041.
- [11] B. Li, Refinements of Hermite-Hadamard's type inequalities for operator convex functions. Int. J. Contemp. Math. Sci. 8 (2013), no. 9-12, 463-467.
- [12] G. K. Pedersen, Operator differentiable functions. Publ. Res. Inst. Math. Sci. 36 (1) (2000), 139-157.
- [13] A. Taghavi, V. Darvish, H. M. Nazari and S. S. Dragomir, Hermite-Hadamard type inequalities for operator geometrically convex functions. *Monatsh. Math.* 181 (2016), no. 1, 187–203.
- [14] M. Vivas Cortez, H. Hernández and E. Jorge, Refinements for Hermite-Hadamard type inequalities for operator h-convex function. Appl. Math. Inf. Sci. 11 (2017), no. 5, 1299–1307.
- [15] M. Vivas Cortez, H. Hernández and E. Jorge, On some new generalized Hermite-Hadamard-Fejér inequalities for product of two operator h-convex functions. Appl. Math. Inf. Sci. 11 (2017), no. 4, 983–992.
- [16] S.-H. Wang, Hermite-Hadamard type inequalities for operator convex functions on the coordinates. J. Nonlinear Sci. Appl. 10 (2017), no. 3, 1116–1125
- [17] S.-H. Wang, New integral inequalities of Hermite-Hadamard type for operator m-convex and (α, m)-convex functions. J. Comput. Anal. Appl. 22 (2017), no. 4, 744–753.

<sup>1</sup>Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E ext{-}mail\ address: sever.dragomir@vu.edu.au}$ 

 $\mathit{URL}$ : http://rgmia.org/dragomir

 $^2$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, & Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa