
REVERSE OPERATOR INEQUALITIES FOR CONVEX
FUNCTIONS IN HILBERT SPACES

S. S. DRAGOMIR1;2

Abstract. In this paper we obtain several operator inequalities providing
upper bounds for the di¤erence

C�f (A)C � f (C�AC)
for any convex function f : I ! R, any selfadjoint operator A in H with the
spectrum Sp (A) � I and any isometry C 2 B (H) : Some examples for convex
and operator convex functions are also provided.

1. Introduction

A real valued continuous function f on an interval I is said to be operator convex
(operator concave) on I if

(1.1) f ((1� �)A+ �B) � (�) (1� �) f (A) + �f (B)
in the operator order, for all � 2 [0; 1] and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I: Notice that a function f is
operator concave if �f is operator convex.
A real valued continuous function f on an interval I is said to be operator

monotone if it is monotone with respect to the operator order, i.e., A � B with
Sp (A) ;Sp (B) � I imply f (A) � f (B) :
For some fundamental results on operator convex (operator concave) and oper-

ator monotone functions, see [9] and the references therein.
As examples of such functions, we note that f (t) = tr is operator monotone on

[0;1) if and only if 0 � r � 1: The function f (t) = tr is operator convex on (0;1)
if either 1 � r � 2 or �1 � r � 0 and is operator concave on (0;1) if 0 � r � 1:
The logarithmic function f (t) = ln t is operator monotone and operator concave
on (0;1): The entropy function f (t) = �t ln t is operator concave on (0;1): The
exponential function f (t) = et is neither operator convex nor operator monotone.
For recent inequalities for operator convex functions see [1]-[8] and [10]-[19].
The following Jensen�s operator inequality is well know, see for instance [9, p.

10]:

Theorem 1. Let H be a Hilbert space and f be a real valued continuous function
on the interval I. Then f is operator convex on I if and only if

(1.2) f (C�AC) � C�f (A)C
for any selfadjoint operator A in H with the spectrum Sp (A) � I and any isometry
C 2 B (H) ; i.e. C satis�es the condition C�C = 1H :
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It is known that there are convex functions f for which the inequality (1.2) does
not hold, however one can obtain several operator inequalities providing upper
bounds for the di¤erence

C�f (A)C � f (C�AC)

for any convex function f : I ! R, any selfadjoint operator A in H with the
spectrum Sp (A) � I and any isometry C 2 B (H) : Some examples for convex and
operator convex functions are also provided.

2. Main Results

We use the following result that was obtained in [4]:

Lemma 1. If f : [a; b]! R is a convex function on [a; b] ; then

0 � (b� t) f (a) + (t� a) f (b)
b� a � f (t)(2.1)

� (b� t) (t� a)
f 0� (b)� f 0+ (a)

b� a � 1

4
(b� a)

�
f 0� (b)� f 0+ (a)

�
for any t 2 [a; b] :
If the lateral derivatives f 0� (b) and f

0
+ (a) are �nite, then the second inequality

and the constant 1=4 are sharp.

We have:

Theorem 2. Let f : [m;M ] ! R be a convex function on [m;M ] and A a self-
adjoint operator with the spectrum Sp (A) � [m;M ] : If C 2 B (H) is an isometry,
i.e. C�C = 1H ; then

C�f (A)C � f (C�AC)(2.2)

�
f 0� (M)� f 0+ (m)

M �m (M1H � C�AC) (C�AC �m1H)

� 1

4
(M �m)

�
f 0� (M)� f 0+ (m)

�
1H :

Proof. Utilising the continuous functional calculus for a selfadjoint operator T with
0 � T � 1H and the convexity of f on [m;M ] ; we have

(2.3) f (m (1H � T ) +MT ) � f (m) (1H � T ) + f (M)T

in the operator order.
If we take in (2.3)

0 � T = A�m1H
M �m � 1H ;

then we get

f

�
m

�
1H �

A�m1H
M �m

�
+M

A�m1H
M �m

�
(2.4)

� f (m)
�
1H �

A�m1H
M �m

�
+ f (M)

A�m1H
M �m :
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Observe that

m

�
1H �

A�m1H
M �m

�
+M

A�m1H
M �m

=
m (M1H �A) +M (A�m1H)

M �m = A

and

f (m)

�
1H �

A�m1H
M �m

�
+ f (M)

A�m1H
M �m

=
f (m) (M1H �A) + f (M) (A�m1H)

M �m

and by (2.4) we get the following inequality of interest

(2.5) f (A) � f (m) (M1H �A) + f (M) (A�m1H)
M �m :

If we multiply (2.5) to the left with C� and to the right with C we get

C�f (A)C � C�
�
f (m) (M1H �A) + f (M) (A�m1H)

M �m

�
C

=
f (m)C� (M1H �A)C + f (M)C� (A�m1H)C

M �m

=
f (m) (MC�C � C�AC) + f (M) (C�AC �mC�C)

M �m

=
f (m) (M1H � C�AC) + f (M) (C�AC �m1H)

M �m ;

which implies that

C�f (A)C � f (C�AC)(2.6)

� f (m) (M1H � C�AC) + f (M) (C�AC �m1H)
M �m � f (C�AC) :

Since m1H � C�AC � M1H ; then by using (2.1) for a = m; b = M and the
continuous functional calculus, we have

f (m) (M1H � C�AC) + f (M) (C�AC �m1H)
M �m � f (C�AC)(2.7)

�
f 0� (M)� f 0+ (m)

M �m (M1H � C�AC) (C�AC �m1H)

� 1

4
(M �m)

�
f 0� (M)� f 0+ (m)

�
1H :

By making use of (2.6) and (2.7) we get the desired result (2.2). �

Corollary 1. Let f : [m;M ] ! R be an operator convex function on [m;M ] and
A a selfadjoint operator with the spectrum Sp (A) � [m;M ] : If C 2 B (H) is an
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isometry, then

0 � C�f (A)C � f (C�AC)(2.8)

�
f 0� (M)� f 0+ (m)

M �m (M1H � C�AC) (C�AC �m1H)

� 1

4
(M �m)

�
f 0� (M)� f 0+ (m)

�
1H :

We also have the following scalar inequality of interest:

Lemma 2. Let f : [a; b]! R be a convex function on [a; b] and t 2 [0; 1] ; then

2min ft; 1� tg
�
f (a) + f (b)

2
� f

�
a+ b

2

��
(2.9)

� (1� t) f (a) + tf (b)� f ((1� t) a+ tb)

� 2max ft; 1� tg
�
f (a) + f (b)

2
� f

�
a+ b

2

��
:

The proof follows, for instance, by Corollary 1 from [5] for n = 2, p1 = 1 � t;
p2 = t, t 2 [0; 1] and x1 = a; x2 = b:

Theorem 3. Let f : [m;M ] ! R be a convex function on [m;M ] and A a self-
adjoint operator with the spectrum Sp (A) � [m;M ] : If C 2 B (H) is an isometry,
then

2

�
f (m) + f (M)

2
� f

�
m+M

2

��
(2.10)

�
�
1

2
(M �m) 1H �

����C�AC � 12 (m+M) 1H
�����

� f (m) (M1H � C�AC) + f (M) (C�AC �m1H)
M �m � f (C�AC)

� 2
�
f (m) + f (M)

2
� f

�
m+M

2

��
�
�
1

2
(M �m) 1H +

����C�AC � 12 (m+M) 1H
�����

and

2

�
f (m) + f (M)

2
� f

�
m+M

2

��
(2.11)

�
�
1

2
(M �m) 1H � C�

����A� 12 (m+M) 1H
����C�

� f (m) (M1H � C�AC) + f (M) (C�AC �m1H)
M �m � C�f (A)C

� 2
�
f (m) + f (M)

2
� f

�
m+M

2

��
�
�
1

2
(M �m) 1H + C�

����A� 12 (m+M) 1H
����C� :
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Proof. We have from (2.9) that

2

�
1

2
�
����t� 12

����� �f (m) + f (M)2
� f

�
m+M

2

��
(2.12)

� (1� t) f (m) + tf (M)� f ((1� t)m+ tM)

� 2
�
1

2
+

����t� 12
����� �f (m) + f (M)2

� f
�
m+M

2

��
;

for all t 2 [0; 1] :
Utilising the continuous functional calculus for a selfadjoint operator T with

0 � T � 1H we get from (2.12) that

2

�
f (m) + f (M)

2
� f

�
m+M

2

���
1

2
1H �

����T � 121H
�����(2.13)

� (1� T ) f (m) + Tf (M)� f ((1� T )m+ TM)

� 2
�
f (m) + f (M)

2
� f

�
m+M

2

���
1

2
1H +

����T � 121H
����� ;

in the operator order.
If we take in (2.13)

0 � T = A�m1H
M �m � 1H ;

then, like in the proof of Theorem 2, we get

2

�
f (m) + f (M)

2
� f

�
m+M

2

��
(2.14)

�
�
1

2
(M �m) 1H �

����A� 12 (m+M) 1H
�����

� f (m) (M1H �A) + f (M) (A�m1H)
M �m � f (A)

� 2
�
f (m) + f (M)

2
� f

�
m+M

2

��
�
�
1

2
(M �m) 1H +

����A� 12 (m+M) 1H
����� :

Since m1H � C�AC � M1H ; then by writing the inequality (2.14) for C�AC
instead of A we get (2.10).
If we multiply (2.14) to the left with C� and to the right with C we get

2

�
f (m) + f (M)

2
� f

�
m+M

2

��
� C�

�
1

2
(M �m) 1H �

����A� 12 (m+M) 1H
�����C

� C�
�
f (m) (M1H �A) + f (M) (A�m1H)

M �m

�
C � C�f (A)C

� 2
�
f (m) + f (M)

2
� f

�
m+M

2

��
� C�

�
1

2
(M �m) 1H +

����A� 12 (m+M) 1H
�����C;
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which is equivalent to (2.11). �

Corollary 2. Let f : [m;M ] ! R be an operator convex function on [m;M ] and
A a selfadjoint operator with the spectrum Sp (A) � [m;M ] : If C 2 B (H) is an
isometry, then

2

�
f (m) + f (M)

2
� f

�
m+M

2

��
(2.15)

�
�
1

2
(M �m) 1H � C�

����A� 12 (m+M) 1H
����C�

� f (m) (M1H � C�AC) + f (M) (C�AC �m1H)
M �m � C�f (A)C

� f (m) (M1H � C�AC) + f (M) (C�AC �m1H)
M �m � f (C�AC)

� 2
�
f (m) + f (M)

2
� f

�
m+M

2

��
�
�
1

2
(M �m) 1H +

����C�AC � 12 (m+M) 1H
����� :

We also have:

Corollary 3. Let f : [m;M ] ! R be a convex function on [m;M ] and A a self-
adjoint operator with the spectrum Sp (A) � [m;M ] : If C 2 B (H) is an isometry,
then

C�f (A)C � f (C�AC)(2.16)

� 2
�
f (m) + f (M)

2
� f

�
m+M

2

��
�
�
1

2
(M �m) 1H +

����C�AC � 12 (m+M) 1H
�����

� 2 (M �m)
�
f (m) + f (M)

2
� f

�
m+M

2

��
1H :

Proof. From (2.6) we have

C�f (A)C � f (C�AC)

� f (m) (M1H � C�AC) + f (M) (C�AC �m1H)
M �m � f (C�AC)

and from (2.11) we have

f (m) (M1H � C�AC) + f (M) (C�AC �m1H)
M �m � f (C�AC)

� 2
�
f (m) + f (M)

2
� f

�
m+M

2

��
�
�
1

2
(M �m) 1H +

����C�AC � 12 (m+M) 1H
����� ;

which produce the desired result (2.16). �
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Remark 1. If f : [m;M ] ! R is an operator convex function on [m;M ], A
a selfadjoint operator with the spectrum Sp (A) � [m;M ] and C 2 B (H) is an
isometry, then

0 � C�f (A)C � f (C�AC)(2.17)

� 2
�
f (m) + f (M)

2
� f

�
m+M

2

��
�
�
1

2
(M �m) 1H +

����C�AC � 12 (m+M) 1H
�����

� 2 (M �m)
�
f (m) + f (M)

2
� f

�
m+M

2

��
1H :

We also have [4]:

Lemma 3. Assume that f : [a; b] ! R is absolutely continuous on [a; b]. If f 0 is
K-Lipschitzian on [a; b], then

j(1� t) f (a) + tf (b)� f ((1� t) a+ tb)j(2.18)

� 1

2
K (b� t) (t� a) � 1

8
K (b� a)2

for all t 2 [0; 1] :
The constants 1=2 and 1=8 are the best possible in (2.18).

Remark 2. If f : [a; b]! R is twice di¤erentiable and f 00 2 L1 [a; b] ; then
j(1� t) f (a) + tf (b)� f ((1� t) a+ tb)j(2.19)

� 1

2
kf 00k[a;b];1 (b� t) (t� a) �

1

8
kf 00k[a;b];1 (b� a)

2
;

where kf 00k[a;b];1 := essupt2[a;b] jf 00 (t)j < 1: The constants 1=2 and 1=8 are the
best possible in (2.19).

We have:

Theorem 4. Let f : [m;M ] ! R be a twice di¤erentiable convex function on
[m;M ] with kf 00k[m;M ];1 := essupt2[m;M ] f

00 (t) < 1 and A a selfadjoint operator
with the spectrum Sp (A) � [m;M ] : If C 2 B (H) is an isometry, then

C�f (A)C � f (C�AC)(2.20)

� 1

2
kf 00k[m;M ];1 (M1H � C

�AC) (C�AC �m1H)

� 1

8
kf 00k[m;M ];1 (M �m)2 1H :

Proof. From (2.19) and the continuous functional calculus, we get

0 � f (m) (M1H �B) + f (M) (B �m1H)
M �m � f (B)(2.21)

� 1

2
kf 00k[m;M ];1 (M1H �B) (B �m1H)

� 1

8
kf 00k[m;M ];1 (M �m)2 1H

where B is a selfadjoint operator with the spectrum Sp (B) � [m;M ] :
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If we take m � B = C�AC �M in (2.21) we get

0 � f (m) (M1H � C�AC) + f (M) (C�AC �m1H)
M �m � f (C�AC)(2.22)

� 1

2
kf 00k[m;M ];1 (M1H � C

�AC) (C�AC �m1H)

� 1

8
kf 00k[m;M ];1 (M �m)2 1H :

Since

C�f (A)C � f (C�AC)

� f (m) (M1H � C�AC) + f (M) (C�AC �m1H)
M �m � f (C�AC) ;

hence by (2.22) we get (2.20). �

Corollary 4. Let f : [m;M ] ! R be an operator convex function on [m;M ] and
A a selfadjoint operator with the spectrum Sp (A) � [m;M ] : If C 2 B (H) is an
isometry, then

0 � C�f (A)C � f (C�AC)(2.23)

� 1

2
kf 00k[m;M ];1 (M1H � C

�AC) (C�AC �m1H)

� 1

8
kf 00k[m;M ];1 (M �m)2 1H :

3. Some Examples

We consider the exponential function f (x) = exp (�x) with � 2 R n f0g : This
function is convex but not operator convex on R. If A is selfadjoint with Sp (A) �
[m;M ] for some m < M and C 2 B (H) is an isometry, then by (2.2), (2.16) and
(2.20) we have

C� exp (�A)C � exp (�C�AC)(3.1)

� �exp (�M)� exp (�m)
M �m (M1H � C�AC) (C�AC �m1H)

� 1

4
� (M �m) [exp (�M)� exp (�m)] 1H ;

C� exp (�A)C � exp (�C�AC)(3.2)

� 2
�
exp (�m) + f (�M)

2
� exp

�
�
m+M

2

��
�
�
1

2
(M �m) 1H +

����C�AC � 12 (m+M) 1H
�����

� 2 (M �m)
�
exp (�m) + f (�M)

2
� exp

�
�
m+M

2

��
1H
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and

C�f (A)C � f (C�AC)(3.3)

� 1

2
�2

8<: exp (�M) if � > 0

exp (�m) if � < 0
� (M1H � C�AC) (C�AC �m1H)

� 1

8
�2 (M �m)2

8<: exp (�M) if � > 0

exp (�m) if � < 0
� 1H :

The function f (x) = � lnx; x > 0 is operator convex on (0;1) : If A is selfadjoint
with Sp (A) � [m;M ] for some 0 < m < M and C 2 B (H) is an isometry, then by
(2.8), (2.17) and (2.23) we have

0 � ln (C�AC)� C� ln (A)C(3.4)

� 1

mM
(M1H � C�AC) (C�AC �m1H) �

1

4mM
(M �m)2 1H ;

0 � ln (C�AC)� C� ln (A)C(3.5)

� 2 ln
�
m+M

2
p
mM

��
1

2
(M �m) 1H +

����C�AC � 12 (m+M) 1H
�����

� 2 (M �m) ln
�
m+M

2
p
mM

�
1H

and

0 � ln (C�AC)� C� ln (A)C(3.6)

� 1

2m2
(M1H � C�AC) (C�AC �m1H) �

1

8m2
(M �m)2 1H :

We observe that if M > 2m then the bound in (3.4) is better than the one from
(3.6). If M < 2m; then the conclusion is the other way around.
The function f (x) = x lnx; x > 0 is operator convex on (0;1) : If A is selfadjoint

with Sp (A) � [m;M ] for some 0 < m < M and C 2 B (H) is an isometry, then by
(2.8), (2.17) and (2.23) we have

0 � C�A ln (A)C � C�AC ln (C�AC)(3.7)

� ln (M)� ln (m)
M �m (M1H � C�AC) (C�AC �m1H)

� 1

4
(M �m) [ln (M)� ln (m)] 1H ;

0 � C�A ln (A)C � C�AC ln (C�AC)(3.8)

� 2
�
m ln (m) +M ln (M)

2
�
�
m+M

2

�
ln

�
m+M

2

��
�
�
1

2
(M �m) 1H +

����C�AC � 12 (m+M) 1H
�����

� 2 (M �m)
�
m ln (m) +M ln (M)

2
�
�
m+M

2

�
ln

�
m+M

2

��
1H
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and

0 � C�A ln (A)C � C�AC ln (C�AC)(3.9)

� 1

2m
(M1H � C�AC) (C�AC �m1H) �

1

8m
(M �m)2 1H :

Consider the power function f (x) = xr; x 2 (0;1) and r a real number. If
r 2 (�1; 0][ [1;1); then f is convex and for r 2 [�1; 0][ [1; 2] is operator convex.
If we use the inequalities (2.2), (2.16) and (2.20) we have for r 2 (�1; 0] [ [1;1)
that

C�ArC � (C�AC)r(3.10)

� rM
r�1 �mr�1

M �m (M1H � C�AC) (C�AC �m1H)

� 1

4
r (M �m)

�
Mr�1 �mr�1� 1H ;

C�ArC � (C�AC)r(3.11)

� 2
�
mr +Mr

2
�
�
m+M

2

�r�
�
�
1

2
(M �m) 1H +

����C�AC � 12 (m+M) 1H
�����

� 2 (M �m)
�
mr +Mr

2
�
�
m+M

2

�r�
1H

and

C�ArC � (C�AC)r(3.12)

� 1

2
r (r � 1)

8<: Mr�2 for r � 2

mr�2 for r 2 (�1; 0] [ [1; 2)
� (M1H � C�AC) (C�AC �m1H)

� 1

8
r (r � 1) (M �m)2

8<: Mr�2 for r � 2

mr�2 for r 2 (�1; 0] [ [1; 2)
� 1H ;

where A is selfadjoint with Sp (A) � [m;M ] for some 0 < m < M and C 2 B (H)
is an isometry.
If r 2 [�1; 0][ [1; 2] ; then we also have 0 � C�ArC�(C�AC)r in the inequalities

(3.10)-(3.12).
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