REVERSE OPERATOR INEQUALITIES FOR CONVEX
FUNCTIONS IN HILBERT SPACES

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we obtain several operator inequalities providing
upper bounds for the difference

C*f(A)C —f(C*AC)
for any convex function f : I — R, any selfadjoint operator A in H with the

spectrum Sp (A) C I and any isometry C € B(H). Some examples for convex
and operator convex functions are also provided.

1. INTRODUCTION

A real valued continuous function f on an interval [ is said to be operator convex
(operator concave) on I if

(L.1) F(A=XNA+AB) < (2)(1-A)f(A)+Af(B)

in the operator order, for all A € [0,1] and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I. Notice that a function f is
operator concave if — f is operator convex.

A real valued continuous function f on an interval I is said to be operator
monotone if it is monotone with respect to the operator order, i.e., A < B with
Sp(4),Sp (B) C I imply f (4) < f (B).

For some fundamental results on operator convex (operator concave) and oper-
ator monotone functions, see [9] and the references therein.

As examples of such functions, we note that f (¢) =¢" is operator monotone on
[0,00) if and only if 0 < r < 1. The function f (¢t) = ¢" is operator convex on (0, c0)
if either 1 <r <2 or —1 < r < 0 and is operator concave on (0,00) if 0 < r < 1.
The logarithmic function f (¢) = Int is operator monotone and operator concave
on (0,00). The entropy function f (¢t) = —tInt is operator concave on (0, 00). The
exponential function f (t) = e’ is neither operator convex nor operator monotone.

For recent inequalities for operator convex functions see [1]-[8] and [10]-[19].

The following Jensen’s operator inequality is well know, see for instance [9, p.
10]:

Theorem 1. Let H be a Hilbert space and [ be a real valued continuous function
on the interval I. Then f is operator conver on I if and only if
(1.2) f(C*AC) < C*f(A)C

for any selfadjoint operator A in H with the spectrum Sp (A) C I and any isometry
C € B(H), i.e. C satisfies the condition C*C = 1g.
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It is known that there are convex functions f for which the inequality (1.2) does
not hold, however one can obtain several operator inequalities providing upper
bounds for the difference

C*f(A)C — f(C*AC)

for any convex function f : I — R, any selfadjoint operator A in H with the
spectrum Sp (A) C I and any isometry C' € B (H). Some examples for convex and
operator convex functions are also provided.

2. MAIN RESULTS

We use the following result that was obtained in [4]:

Lemma 1. If f : [a,b] — R is a convex function on [a,b], then

LoDl E=0I®)

fL(6) = £ (a)
b

21)  0<

1
<(b—t)(t—a) < 70— [f2(0) = fi ()]
for any t € [a,b].
If the lateral derivatives f' (b) and f! (a) are finite, then the second inequality
and the constant 1/4 are sharp.

‘We have:

Theorem 2. Let f : [m,M] — R be a convex function on [m,M] and A a self-
adjoint operator with the spectrum Sp (A) C [m, M]. If C € B(H) is an isometry,
i.e. C*C =1y, then

(2.2) C*f (A)C — f(C*AC)
<L (]\ﬁ - ﬁ () (M1 — C*AC) (C* AC — ml )
< 5 (O —m) [£2. (1) = 71 )] L

Proof. Utilising the continuous functional calculus for a selfadjoint operator T" with
0 < T < 1p and the convexity of f on [m, M], we have

(2.3) fm Ay =T)+MT) < f(m) (g =T)+ f(M)T

in the operator order.
If we take in (2.3)

A—mlH
0<T= <1
< M —m H)
then we get
A—mlH A—mlH
24 1y — M
(24) f(m<H M—m>+ M—m)
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Observe that

m<m_Amm)+MAmm

M—-—m M —-—m
_m(MlH—A)+M(A—m1H)_A
= U —m =

and

o) (10— S ) g A
£ m) (M1 — A) + £ () (A mly)
M—m

and by (2.4) we get the following inequality of interest

f (m) (M1 — A) + £ (M) (A= mlp)
(2.5) f4) < ohed |

If we multiply (2.5) to the left with C* and to the right with C we get

f(m) (Mg —A) + f (M) (A—mlu)

cfAHc<cr U —m C
_f(m)C*(M1lg —A)C+ f(M)C* (A—mly)C
N M—-m
_f (m) (MC*C — C*AC) + f (M) (C*AC — mC*C)
B M—-—m
B f(m)(Mlyg — C*AC)+ f (M) (C*AC —mly)
o M—-—m ’
which implies that
(2.6) C*'f(A)C - f(CAC)
< f(m)(MlH—C*A?\’;t{n(M)(C*AC’—mIH) _F(CHAC).

Since mly < C*AC < M1y, then by using (2.1) for a = m, b = M and the
continuous functional calculus, we have

f(m) (M1y — C*AC) + f (M) (C*AC — mly)

(2.7) A — f(C*AC)
" (M) — !
< 2L M) — () M1y — C* AC) (C*AC — m1y)
< 3 (M —m) [ (M) = 1 (m)] s
By making use of (2.6) and (2.7) we get the desired result (2.2). O

Corollary 1. Let f : [m, M] — R be an operator convex function on [m, M| and
A a selfadjoint operator with the spectrum Sp (A) C [m,M]. If C € B(H) is an
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isometry, then

(2.8) 0<C*f(A)C — f(C*AC)

< O 1y - enacy (@0 a0 - miy)

1
< 3 (M —m) [f2. () = £, (m)] 11
We also have the following scalar inequality of interest:

Lemma 2. Let f: [a,b] — R be a convex function on [a,b] and t € [0,1], then

(2.9) 2 min {£,1 — £} [f(a);rf(b) _f (a;b)]
<S@=0)f(a)+tf () = f((1-1)a+1d)

< 2max {t,1 — t} {f(a);f(b) —f (a;rbﬂ .

The proof follows, for instance, by Corollary 1 from [5] for n = 2, p; = 1 — ¢,
pe=t,t€[0,1 and 1 = a, x5 = .

Theorem 3. Let f : [m,M] — R be a convezx function on [m,M] and A a self-

adjoint operator with the spectrum Sp (A) C [m,M]. If C € B(H) is an isometry,
then

(2.10) Q{f(m)—;f(M)f<m-|2-M>}

X (;(M—m)lg— C’*AC—;(WH—M)lHD

_ [ (m) (M1y = C*AC) + f (M) (C*AC — m1y)

a M—m — f(CTAC)
SQ[f(m);f(M>_f<m;M)]
X (;(M—m)lfw C*AC—;(erM)lHD

and

@211) 2 {f(m);f(M) _¢ <mJ;M>}

X (;(M—m)lH—C* A—;(m—&—M)lH‘C)

_ J(m) (M1 — C*AC) + f (M) (C*AC — m1y)

Limfan) (e R
<o [F IO ()]

1

A—;(m—s—M)lH’C).
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Proof. We have from (2.9) that
(i) (L2100 (2
S@=t)f(m)+tf(M)—f(A—1t)m+tM)

e 5]

for all t € [0,1].
Utilising the continuous functional calculus for a selfadjoint operator 1" with
0 <T <1y we get from (2.12) that

)
SA-=-T)fm)+Tf(M)-f(QA-T)m+TM)

0 (20 ()

in the operator order.
If we take in (2.13)

o< Amla
-m
then, like in the proof of Theorem 2, we get
M M
- oL sy (meary]

< (;(M—m)lH—'A—;(m—kM)lHD

o fm) (Mg —A) + [ (M) (A—mlu)
- M—-—m

f(m) + f (M) m+ M
sl F I ()

- f(4)

x <;(M—m)1H+

A—;(m—kM)lHD.

Since mly < C*AC < M1y, then by writing the inequality (2.14) for C*AC
instead of A we get (2.10).
If we multiply (2.14) to the left with C* and to the right with C' we get
f(m)+ f (M) m+ M
2 2 AN

x O (;(M—m)lH—'A—;(m—kM)lHDC

<o [Lm Ot =+ T OO U] gy
ST

« C* <;(M—m)1H+'A—;(m—i—M)lHDC,
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which is equivalent to (2.11). O
Corollary 2. Let f : [m, M] — R be an operator convex function on [m, M) and
A a selfadjoint operator with the spectrum Sp (A) C [m,M]. If C € B(H) is an

isometry, then

215 2 {f(m);f(M) iy (m;Mﬂ

_ F(m)(M1y — C*AC) + f (M) (C*AC = m1n)

A;(m+M)1H‘C’>

< T —C*f(A)C

< f(m)(MlHfC*Ai\’;J:{n(M)(C*ACfmlH) _ F(CAC)
f(m)+ f (M) m+ M

<2 [l HE0 s (5]

C*AC — % (m+ M) 1H‘> .

We also have:

Corollary 3. Let f : [m,M] — R be a convex function on [m,M] and A a self-
adjoint operator with the spectrum Sp (A) C [m, M|]. If C € B(H) is an isometry,
then

(2.16) “f(A )c f (C*AC’)

f (M) m + M
[ (7))
Proof. From (2.6) we have

2 (M — )[f(m)Jrf( )_f<m+M):|1H~
C*f(A)C — f(C*AC)

2 2
_ [ (m) (M1y = C*AC) + f (M) (C*AC — m1y)

I /\

l\DM—l

< U —m — f(C*AC)
and from (2.11) we have
f(m)(MlH—C*A?\’}—E{H(M)(C*AC—WLIH) _ f(CAC)
f(m) + f (M) m+ M
o oy

X (;(M_m)lH‘i‘

C*AC—;(m—i-M)lHD :

which produce the desired result (2.16). O
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Remark 1. If f : [m,M] — R is an operator convexr function on [m,M], A
a selfadjoint operator with the spectrum Sp (A) C [m,M] and C € B(H) is an
isometry, then

(2.17) 0<C*f(A)C — f(C*AC)
<L I (e ar)]

1 1
X (2(M—m)1H+‘C*AC’—2(m+M)1HD

<2 (M —m) {f(m);f(M) _f(mJ;MﬂlH.

We also have [4]:

Lemma 3. Assume that f : [a,b] — R is absolutely continuous on [a,b]. If f' is
K -Lipschitzian on [a,b], then

(2.18) |(1=1) f(a) +tf (b) = f((1 —¢)a+1b)
< %K(b—t)(t—a) < éK(b—a)2
for all t € [0,1].
The constants 1/2 and 1/8 are the best possible in (2.18).
Remark 2. If f : [a,b] — R is twice differentiable and f" € Ly [a,b], then
(2.19) (1 =1) f(a) +tf (b) — f (1 —t) a+ D)
1 1
<3 1" ap),00 0 —1) (t —a) < 3 [

where || f"||4 4,00 = €SSUPse[qp |7 (t)| < 00. The constants 1/2 and 1/8 are the
best possible in (2.19).

‘We have:

(b—a)’,

la,b],00

Theorem 4. Let f : [m,M] — R be a twice differentiable convex function on
[m, M| with || f"|| (41,00 7= €SUPsem,n) [ (8) < 00 and A a selfadjoint operator
with the spectrum Sp (A) C [m, M]. If C € B(H) is an isometry, then

(2.20) C*f(A)C — f(C*AC)

1
< 5 1 lpn gy o0 (M1 = CTAC) (CTAC = m1p)

1 2
< 1 g o0 (M =) 11

Proof. From (2.19) and the continuous functional calculus, we get

f(m)(Mly —B)+ f(M)(B—mly)
M—-m

1
< 5 HfHH[m,z\/[LOo (M1 — B) (B —mlpg)

(2.21) 0<

- f(B)

1 2

where B is a selfadjoint operator with the spectrum Sp (B) C [m, M].
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If we take m < B=C*AC < M in (2.21) we get

f(m) (M1y — C*AC) + f (M) (C*AC — mly)

(2.22) 0< U —m — f(C*AC)
1
< S 1 lm a0 (M1 = C*AC) (CTAC = mip)
1
< 18 g0 (M = ) L.
Since
C*f(A)C - f(CrAC)
< f(m) (M1 —C*AC) + f (M) (C*AC —mly) £(CHAC).
M—-m
hence by (2.22) we get (2.20). O

Corollary 4. Let f : [m, M] — R be an operator convez function on [m,M] and
A a selfadjoint operator with the spectrum Sp (A) C [m,M]. If C € B(H) is an
isometry, then

(2.23) 0< C*f(A)C — f(CTAC)

IN

1
5 1N,y 00 (M1 = CTAC) (CTAC —m1p)

IN

1
g ||f"||[m,M},oo (M — m)2 la.

3. SOME EXAMPLES

We consider the exponential function f (z) = exp (ax) with a € R\ {0}. This
function is convex but not operator convex on R. If A is selfadjoint with Sp (A) C
[m, M] for some m < M and C € B(H) is an isometry, then by (2.2), (2.16) and
(2.20) we have

(3.1) C" exp (aA) C — exp (aC* AC)
< 2P (O‘]\]@ = f:;p () M1y — C*AC) (CFAC — miy)
< ia (M —m) [exp (aM) — exp (am)] 15,
(3.2) C* exp (@A) C — exp (aC*AC)
exp (am) + f (aM) m+ M
o i)

X (; (M —m)lg+ ‘C’*AC—;(m—I—M) IHD

< o(ar -y [FREMEL ) (mad)),
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and

(3.3)  C"f(A)C — f(C*AC)

1 exp (M) if >0
< §a2 x (M1g — C*AC) (C*AC — mly)
exp (am) if a <0
1 exp (M) if >0
< g (M - m)2 X 1.
exp (am) if a <0
The function f () = —Inx, > 0 is operator convex on (0, 00) . If A is selfadjoint

with Sp (A) C [m, M] for some 0 < m < M and C € B(H) is an isometry, then by
(2.8), (2.17) and (2.23) we have

(34)  0<In(C*AC)—C*In(4)C

1 . . 1 2
< — — — < - _
T (M1 —C*AC) (C*AC —mly) < Y (M —m)” 1p,

(3.5) 0 <In(C*AC) — C*In(A)C

<21n<m+M> ( (M — m)lH—i—‘C*AC’—;(m—i—M)lHD

2vVmM
2(M —m)In (?%) 1y
and
(3.6) 0 < In(C*AC) — C*In (4) C

53 (M1 — C*AC) (CTAC —mly) < o—5 (M — m)? 1y.

We observe that if M > 2m then the bound in (3.4) is better than the one from
(3.6). If M < 2m, then the conclusion is the other way around.

The function f (x) = xInz, x > 0 is operator convex on (0, 00) . If A is selfadjoint
with Sp (A) C [m, M] for some 0 < m < M and C € B(H) is an isometry, then by
(2.8), (2.17) and (2.23) we have
(3.7) 0<C*Aln(A)C - C*ACIn (C*AC)

In (M) —1In(m)
M—m

(M —m)[ln(M)—1In(m)] 1y,

IN

(M1y — C*AC) (C*AC — mlp)

q;\»—

(3.8) 0<C*Aln(A)C — C*ACIn (C*AC)

S2{mln(m)+2Mln( (m+M> <m+M)]

XG(M )1H+C*AC—%( +M)1 D

SQ(M_m)[mln( )—;Mln (m+M>ln(m;Mﬂ1H
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and
(3.9) 0<C*Aln(A)C — C*ACIn (C*AC)

1 * * 1 2
< — — _ < .

Consider the power function f(z) = 2", € (0,00) and r a real number. If
r € (—00,0]U[1, 00), then f is convex and for r € [—1,0]U[1,2] is operator convex.
If we use the inequalities (2.2), (2.16) and (2.20) we have for r € (—o00,0] U [1,00)
that

(3.10) C*AC — (C*AC)"
Mrfl _ r—1
< rMi_:Z (M1ly — C*AC) (C*AC — mly)
1 . T_
< ET(M—m) [M I'm 1] 1y,
(3.11) C*ATC — (C*AC)"
<9 {m”JrMT B <m+M> }
= 2 2

1 1
X (2 (M —m)1g + ’C*AC’—2(m+M)1HD

coin [ (250,

and
(3.12) C*A"C — (C*AC)"
1 M2 for r > 2
< 5" (r—1)
m" =2 for r € (—o00,0] U [1,2)
X (M1ly — C*AC) (C*AC —mly)
M™2forr>2
r(r—1) (M —m)’ X 1p,
m" =2 for r € (—o00,0] U [L,2)
where A is selfadjoint with Sp (A) C [m, M] for some 0 < m < M and C € B(H)
is an isometry.
If r € [-1,0]U[1,2], then we also have 0 < C*A"C — (C*AC)" in the inequalities
(3.10)-(3.12).

1
< Z
-8
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