AN IDENTITY OF FINK TYPE FOR THE INTEGRAL OF
ANALYTIC COMPLEX FUNCTIONS ON PATHS FROM
GENERAL DOMAINS

SILVESTRU SEVER DRAGOMIR1!:2

ABSTRACT. In this paper we establish an identity of Fink type for approximat-
ing the integral of analytic complex functions on paths from general domains.
Error bounds for these expansions in terms of p-norms are also provided. Ex-
amples for the complex logarithm and the complex exponential are given as
well.

1. INTRODUCTION

In 1992, [6] A. M. Fink obtained the following identity for a function f : [a,b] — R
whose (n — 1)-derivative f(*~1 with n > 1 is absolutely continuous on [a, b]

1

b
—b_a/a Ft)dt = R, (z),

(1.1) %

n—1
f@)+ ) F()
k=1

for z € [a,b], where

n— (k=1) (g) (2 — a)* + (=) Y (a — 2)* FE=D (¢
(12)  Fi)= k!’f[f @@=+ () = )'s <>]

)

for k=1,...,n — 1 where n > 2 and

(13) Ry (x):= m

X l/gc (z—)""" (t—a) f) (t)dt + /b (z— )" (t—b) F) (1) dt] .

If n =1 the sum 22;11 Fy, (z) is taken to be zero.
In the case f(™) € Ly [a,b], namely

Hf(n)

= essup ’f(") (t)‘ < 00,
[a,b],00 t€la,b]

then the following bound for the remainder obtained by Milovanovi¢ and Pecari¢
in 1976, [8] holds

(z—a)" "+ (b—az)"!
(1.4) R ()] < w0
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In the case of f(™ e L, [a,b], p> 1, namely

b
[ablp /a

then the following bounds for the remainder obtained by Fink in 1992, [6] hold

» 1/p
|5 ﬂm@ﬂdg .

(xia)nq+l+(b7x)nq+1 1/q
[ n!(b—a) ] B((’I’L— 1)Q+17q+1> Hf(n)H[a,b},p

for p, q>1with%+%:1,

(1.5) |R, (x)] <

ety max (@ — )" (b= )" [ £

n"nl(b—a)

For other results connected with Fink’s identity, see [1], [2], [3] and [7].

In order to extend these results for the complex integral, we need the following
preparations.

Suppose v is a smooth path parametrized by z (t), ¢t € [a,b] and f is a complex
function which is continuous on «. Put z (a) = u and z (b) = w with u, w € C. We
define the integral of f on v, , =7 as

b
/f(z)dz= f(z)dz ::/ F(z(t) 2 (t)dt.

We observe that that the actual choice of parametrization of v does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose
« is parametrized by z (¢), t € [a,b], which is differentiable on the intervals [a, ]
and [c, b], then assuming that f is continuous on v we define

(2)dz := f(z)dz+ f(z)dz
Vu,w Yu,v Yo, w

where v := z (c) . This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

b
£ (2)|dz] == / f (=017 (1) di

and the length of the curve v is then

£<v>=/%w|dz|=/:|z'<t>|dt.

Let f and g be holomorphic in G, an open domain and suppose v C G is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
by parts formula

(1.6) f(2)g (2)dz = f(w)g(w) — f(u)g(u) - / f'(2) g (2)dz.

Yu,w

Yu,w

We recall also the triangle inequality for the complex integral, namely

[r@a| < [1r @l <171, o 00)

where || f[l, oo == sup.e, [f (2)]-

(1.7)
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We also define the p-norm with p > 1 by

nﬂum:=(/;f@npud)”5

I£1,0 = [ 17 @)l

If p, ¢ > 1 with % + % =1, then by Hoélder’s inequality we have

1l < O, -

In the recent paper [4] we obtained the following identity:

For p = 1 we have

Theorem 1. Let f: D C C— C be an analytic function on the domain D and
x € D. Suppose v C D is a smooth path parametrized by z(t), t € [a,b] with
z(a) =wu, z(t) =z and z (b) = w where u, w € D. Then we have the equality

(1.8) L Z

i @) [ =0 1) -

+ Oy, (z,7),

where the remainder Oy, (x,7) is given by

(1.9) O, (z,7) = (_1')" [/ (z—w)" f™ (2)dz —|—/

and n 1s a natural number, n > 1.
The remainder O, (x,7) satisfies the following bounds

(1.10)
I {fw o=l a2l + [, |e—ul" |dz|} ,
1 (n qn qn 1/q
On el s 23 O (T =™ el [ 1z =l 1d2])
n! wherep,q>1 5-‘-%:1;
Hf(n)H’y | max {maxzevu’w |z — ul" maxse,, | |z — w|n} .

In this paper we establish an identity of Fink type for approximating the integral
of analytic complex functions on paths from general domains. Error bounds for
these expansions in terms of p-norms are also provided. Examples for the complex
logarithm and the complex exponential are given as well.

2. REPRESENTATION RESULTS

We start with the following preliminary result that is of interest in itself [4]. For
the sake of completeness, we give here a short proof as well.
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Lemma 1. Let f : D C C— C be an analytic function on the domain D and
x € D. Suppose v C D is a smooth path parametrized by z(z), t € [a,b] with
z(a) =u, z(t) =z and z (b) = w where u, w € D. Then we have the equality

@y fre ‘”‘n > gy [0 P @+ ) -0

—I-%/(w—z)"f(") (z)dz

forn > 1.

Proof. The proof is by mathematical induction over n > 1. For n = 1, we have to
prove that

@2 [J@d=@-n @) [ (@ f )

v

which is straightforward as may be seen by the integration by parts formula applied
for the integral

/7 (@ — 2) f' (2) dz.

Assume that (2.1) holds for “n” and let us prove it for “n 4+ 1”7. That is, we wish
to show that:

23 [red=3 m{(xw)’““f(’“)(U)+(*1)k(wf:c)"'“f"“)(w)}

(n+1) / (x—2)"" D (2) dz.

Using the integration by parts rule, we have
1 +1

24) — —2)" (n+1) d

T L AL

_ ﬁ / (@ — )" ( (=) dz
ey ] GRERAIC TRy KR AIOrY

(n+1)!

(n+ 1).
o= 0 @) = @™ )4 k) [ @2 )

= l/ (z—2)" f™ (2)dz

n!

G L @) ) ) )]
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which gives that

(2.5) %/ (z—2)" f™ (2)dz
sy
= Gy [ =" )+ (1) =) ) ()
! (n%w / (= 2)"" D (2) de.
“
From the induction hypothesis we have
(2.6) %/ (x—2)" f™ (2)dz
“ oy
n—1
= [ £~ X gy [l =0 O 0 (0 0 ).
Y k=
By making use of (2 1) and (2.12) we get
n—1
/ P~ Y ey [ =0 0 )+ (1) =) )
k=0
- <n+1 1! (&= w)™ £ (@) + (=) (w = 2)™ ) (w)]
T i D! / (= 2)" O (2) dz,
“
which is equivalent to (2.3). O

We have the following generalization of Fink identity for the complex integral.

Theorem 2. Let f: D C C— C be an analytic function on the domain D and
x € D. Suppose v C D is a smooth path parametrized by z(t), t € [a,b] with
z(a) =wu, z(t) =z and z (b) = w where u, w € D, u # w. Define

F5D @) (@ =)+ () w —a) fEY <w>]

w—u

b

2.7 Fy(z) = ”];k l

fork=1,...,n—1 wheren > 2.
Then we have the equality

(2.8) [ ) + Z Fy (z

where the remainder R, (a:,v) is given by

[ £G)dz =R (a.9).

w—u y

29) Bi@) = s
X [/ (z—2)"""(z—u) f™ (2)dz + / (z—2)""" (z—w) f (2) dz| .

For, n =1 the identity (2.8) reduces to

(2.10) fle) - z)dz = Ry (2,7),
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where

(w—u)

(2.11) Ry (z,7y):= ! l/ (z—u) f (2)dz + / (z —w) f' (2) dz] .

Yu,x Yz, w

Proof. We prove the identity by induction over n. For n = 1, we have to prove the
equality (2.10) with the remainder Ry (x,~) given by (2.11).
Integrating by parts, we have:

L -uf @dt [ G-wfE)d

u,x Yz ,w

— (e—u) f () — <z>dz+<z—w>f<z>|z—/ f(2)dz

Yu,z

—@-wf @)+ -0 f @)~ [ f()d
—w-wi@- [ e

which proves the statement.
Assume that the representation (2.8) holds for “n” and let us prove it for “n+1".
That is, we have to prove the equality

(212) -
" n — k=1) () (2 — w)* + (=D (w — 2)F fED (0
X[mHZ tl k[f OILED = i UEL ¥, ()H
k=1 ’
—wiu/f(z)dz
_ 1
(4 D) (w —u)
X [/ (x—2)" (z —u) f(FD (z)dz—l—/ (x—2)" (z —w) fY (z)dz}

Using the integration by parts, we have

(2.13) / (@ — 2)" (2 — ) FHD () dz

u,x

- / (0= 2)" (—u) (f) () d

u,x

= (z—2)" (z—u) f" (2)

)

= A {—n (x —2)
= n/7 ” (x — z)"—l (z —u) Ja) (2)dz — / (@ —2)" £ (2)dz

u,x

) et 0 e

U, T

n—l (z—u) + (z — z)”} ™ (2)dz
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and

If we add these two equalities, we get

(2.15) / (. —2)" (z —u) fOFHD) (2 )dz—l—/ (. —2)" (z —w) "V (2)dz
Vo w

—n [ / 0 (s + [ | (2= 2" (2 = w) £ (z)dz]

- - / (x—2)" ™ (2)dz

ol

By dividing with (n + 1)! (w — u) in (2.15) we get

1
e )= G =
X / (x—2)" w) fH (2 )dz—I—/ (z—2)" (z —w) OV (2) dz
T+ D) (w—u) _
X / (x —2)"" z—u)f(”)(z)dz—l—/ (z—2)"""(z—w) f™ (2)dz

1
_<n+1>!(w—u>/("”‘z) Y@

n
- Rn 5 - ")
n+1 (z,7) n+1 Zy )" f
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Using the representation (2.9) for R, (z,7), which is assumed to be true by the
induction hypothesis, we get

(2.16) Ryniq (2,7)
n- *=D) (1) (z — u) + (=1)" 1 (w — 2)F fED (w
f+ S k!k[f (w) (@ —w)* + ()" (w—a)" FED )H

_n 1
n+1ln

w—1Uu

k=1

n 1
n+1wu[{f(z)dz

_<n+1>'1(w—u>V (@) 0 )it (ﬂf—Z)"f(’”(z)dz]

Yo,w
1

n+1

X [f (z) + kz_:l k'(nw;—ku) {f(k—l) (u) (z — u)k + (_1)1971 (w — m)k f(kfl) (w)w

n 1

z z—; z— 2" ™ () dz
n—i—l’w—u/vf( )d (n+1)!(w—u)L( ) (2) da.

Observe that

=Y PR @) = 0 () = ) 5 )]
k=1
+ 2 +;! 2O @) @ =) ()" (= 2)" FO (w)]
n—1
=3 P B [0 @) - )+ () () £ ()]
k=1 '
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which implies that

k! (w —u) [f(k_l) () (z —u)* + (=) (w — )" fE (w)} .
k=1

Therefore, by (2.16) we get

1
2.17) R, ) =
( ) +1 (2,7) T

- -1 k k—1 k 1
X f(x)_i_zn—i-l—k:lf(k )(u)(x—u) + (-1 (w— ) f(k )(w)H

K w—u

k=1

) i P (wl— u) 770 @) (@ =)+ (=D (= ) 1D ()]
k=1 """

e Ot gy [ @

1
Con+1

" n — k=1) () (2 — w)* + (=D (w — 2)F fED (0
Jrweyntd k[f (e —u + 1w o)t/ ()H
k=1 '
- /f(z)dz

w—u

ST Y e T @ =+ D =)t O ()
k=1

N — z Z—; z—2)" f(2)dz
+(n+1)(w_u)/7f()d (n+1)!(w—u)/7( ) I (z) da

‘We must prove now that

N n -1|- 1 Z k! (wl_ u) |:f(k71) (u) (I — u)k + (_1)k—1 (w - LE)k f(k?*l) (w):|
k=1

1
m+nm—mﬂ“”“

<+1>1<w—>V oo e | (mZ)"f(”)(z)dZ](),

_|_

T, w
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This however follows by Lemma 1. O

We have following trapezoid type representation:

Corollary 1. With the assumptions of Theorem 2 we have

(2.18) lf(qu(w) + nz_: n]; ke () 4 (=) =D (w) 0 u)k_ll
k=1 ’

2 2

—wiufyf(z)dz

_ 1
20l (w—u) J,

forn > 2.
Forn =1, we have

(2.19) f(“);f(w)— ! /yf(z)dz: ! L<z—“;w)f'(z)dz.

Proof. We have

and

By, (w) = — )" ()

o
for k=1,....,n— 1 where n > 2.
From (2.8) we have

n—1
(220) |7+ Y Fi(w)| - wiu/f(z)dz

k=1 v

=R, (u,y) = o (wl_ ” / (u—2)""(z—w) f™ (2)dz
and
(221) [f<w>+imw> S RAGL

k=1 ol

=R, (w77) — p (wl_ u) / (w Z)”—l (Z _ U,) f(n) (Z) dz.
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If we add the equalities (2.20) and (2.21) and divide by 2, then we get

1| f(u)+ fw) = Fr(u)+ Fr (w) 1
nl 5 —|—; b 5 b _w—u[Yf(Z)dZ
1 . - )
:Mﬂu)/yu,w [(U—z) Yz—w)+ (w—2) 1(z_u)}f()(z)dz
! n—1 n—1 n
:%WU_W/vu,w [(u—z) (z—w)+ (w—2) (Z—U)}f()(z)dz

- m L {(_1)71 (z—uw)"""(w—2)+w-2)""(z— u)} £ (2)dz

- m [y (z —u) (w—2) [(w —2)" P ()" (2 - u)H] £ (2)dz,

u,w

which proves (2.18). O

Remark 1. If the function f is of real variable and defined on the interval [a, b]

then from (2.18) we obtain the following trapezoid identity obtained by Dragomir &
Sofo in [5]

a ol =1 (g R e B
(2.22) i[f();f(b)Jr; k!kf ()+(21) FED@®) 1
b
S = AL
b
- m [ t-a0-0[e-0"2+ (-1 @0 10 @ as
forn > 2.

If n =1, then we have

b b
(2.23) f(“);rf(b)—bia/ f(t)dt:bia/ (t—a;b)f’(t)dt.

It is natural to consider the case of linear path ~, namely the path parametrized
by z(s) == (1 —s)u + sw, s € [0,1] that join the distinct complex numbers u,
we D.If x = (1 —t)u+ tw for some ¢ € [0,1], then

(2.24) Fr (1 —s)u+tw)
_n—k lf”“‘” (W) t* (w—w)* + (=) (1 =) (w —w)® fED <w>1

K

= P BT ) 4 (D (1= ) D ()] - )

for k=1,...,n — 1 where n > 2,

1

w—1Uu

/Vf(z)dz/wf((ls)qusw)ds,
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1 n
(2.25) R, ((1—8)u+tw,y)= o (w—uw)
t
X {/ (t—)"" sf (1= s)u+ sw)ds
0
1
—/ t—s)"""1—5)f™(1—5)u+sw)ds
t
and the equality (2.8) becomes

1

(2.26) —f((1—t)u + tw)

n
15—k
n

k!

+

{f(kfl) (U) +k + (71)]6—1 (1 . t)k f(kfl) (w):| (w B u)k—l

k=1

—Afm—@u+wms

=—(w—u)" [/Ot (t—s)"""sf0 (1= s)u+ sw)ds

n!

—ldu—@”*u—@fW«l—@u+w»w]

3. ERROR BOUNDS
We have the following error bounds:
Theorem 3. Let f: D C C— C be an analytic function on the domain D and
x € D. Suppose v C D is a smooth path parametrized by z(t), t € [a,b] with

z(a) = u, z(t) = x and z(b) = w where u, w € D, u # w. Then we have the
representation (2.8) and the remainder Ry, (x,7) satisfies the bounds

1

n!w — ul

x[/’|w—4”1v—uWﬂm@wd4+/)|x—4”1z—wWﬂmwwd{
Yu,z Yz, w

3.1 [Rn (z,7)] <

L

o — 2" |z =l |dz] || £

u,x e
(n—1)q q 1/ (n)
v (e )
*n!|w—u| forp,q>lwith%+%:1
maxzcy, {|$ - Z|n_1 |z — U|} Hf(n) ||'yu1m,1
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,lo—e" =l @ £,
e 1/q
B S B A e e L ) I Al
n!fw — ul forp,q>1with%+%=1
maxeey, , {lo =" e —wl s
_
~ nl(jlw—u|)

—1 -1
L, e =" e =l ldzl + f, o= 2" |z = w] 2]

x [0

Yu,wr®

a n— 1/q
J, lr— AV )9 |de| + o — 2 ("D e |dz|}
f(n) e
x|/ H’vu,w,p Jorp, > 1 with 5 + - =1

max {maxzequz {\x — 2"z — u|} ,MaXzey {|m — 2"z - w|}}

Proof. By the equality (2.9) we have

1

n!w — ul

(3:2)  [Rn (z,7)| <

z—2)"" (2 =) f™ (2)dz z—2)"" z—w) f™ (2)dz
X[ﬁmf (=) £ (2)d +‘AM} e w) f <>d]
1
~ nl|w—uyl

d4+/“|za”4szﬂmu>w{
Yz, w
= A,

x[/ o= 2" |z —ul |1 ()
Yu,x

which proves the first inequality in (3.1).
Using Holder’s integral inequality we have

[ o= = a5 ) 10
ol

u,x

Ly =" e = ullde [l

n— 1/q
(S, Jo =200z = wfdzl)
for p, q>1with%+%:1

IA

max.c,, {|x " - u|} T
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and

[e=ar -l |10 o)
v

x,w

Jy, e =2" 7 = wl [z [ 1)

Yz ,wr

1/q
(f,, =207 2 = wfda]) |0
for p, q>1with%—|—%:1

IN

Ve oD

maxzey,  {le— 2" |z = wl} £

which proves the the second inequality in (3.1).
We also have

[ o=l e = e £
Yu,x

Vw1’

V1O

+/ o= 2" |z = wl dz| | £
’Yu,mloo 'Y:c.w

, wa }
oo Y, w> R

XV |:cfz|"_1|zfu|\dz|+/ |zz|”—1zw||dz|]
Y Ya,w

u,T

- V o — 2" |z |dz|+/ |x—z"_1|z—w||dz|] | £
Y Ya,w

u,x

1/q
(/‘|x—amlmz—uwd4> e
Yu,x
1/q
+</ |x—a“*“v—wwua> [ s
Yo, w

1/q
< V \x—z|<"*1>Q|z—u\Q|dz\+/ |x—z|(”1)qz—w|qdz|]
ol Yo w

R P e

Vi 0P

< max{”f(")

Yu,z>

)
Yu,wr®

Yu,z P

Ve woP

p

%

Ve, P

1/a
_ V o — 2|V 2 — )7 dz] + / o — 2|0z — ) |dz|] |7
Y Ve, w

u,x

Yu,wP

and

max {|m — 2" 2= u|} Hf(")

2€Yy,x

+ max {|x — 2" 2= w|} Hf(")

’Y‘U.TI71 2E€Y 5w

gmax{ max {|x7z|"71\zfu|}, max {|xz|n1|zw|}} Hf(”)

2€Y4 0 2€%%,w

Ve wol

bl
Vu,wrl

which proves the last part of 3.1). g
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We have the following error bounds:

Theorem 4. Let f: D C C— C be an analytic function on the domain D and
x € D. Suppose v C D is a smooth path parametrized by z(t), t € [a,b] with
z(a) = u, z(t) = x and z(b) = w where u, w € D, u # w. Then we have the
representation (2.18) and the remainder T, (7y) satisfies the bounds

1
T, < —
ITn ()] = 2n! |lw — ul

x / o=l — 2] (= )" 4 (1" (2 = )2 £ (2)| 2

u,w

Hf(")’ Y4 00 n—2 n n—2
_M/M'Z”'wz"mz) D" ) e
[FERI - B )
M/M'z‘“'w”'\w—z)” )" (2 - ) )

Hf(n)H'Y ,00 n—2 n—2
> g | e == [l o gz
2n! |w — ul s
provided that Hf(")H7 _ <o,

The proof follows by the identity (2.18) by taking the modulus and using the
integral properties.

4. EXAMPLES FOR LOGARITHM AND EXPONENTIAL

Consider the function f(z) = Log(z) where Log(z) = In|z| + ¢ Arg(z) and
Arg(z) is such that —7 < Arg(z) < w. Log is called the "principal branch" of
the complex logarithmic function. The function f is analytic on all of C, :=
C\{z+iy:2z <0, y=0} and

(=) (k —1)!

ok

f® (z) =

Suppose v C Cy is a smooth path parametrized by z (¢), t € [a,b] with 2z (a) = u
and z (b) = w where u, w € Cy, u # w. Then

/j(z)dm Mf(z)dz:/MLog(z)dz:

, k>1, ze€ Cy.

—sLog@Iy - [ (Log(2)) sz

Yu,w

= wLog (w) — uLog (u) —/ dz
Yu,w
= wLog (w) —uLog (u) — (w —u),
where u, w € Cy.
Define

(4.1) Fi (z) =

w—u

) (w—z)F
n—k (—1) (Zk—g’ - 7(1/671)
k(k—1) ’
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for k=1,....,n — 1 where n > 2.
Then we have the equality

_wlog(w) —ulog) ~(w=u) _p

w—u

(4.2) % [Log (@) + Y Fe (@)
k=1

where the remainder R, (z,7) is given by

(4.3) Ry (z,7):= (zul))n_u)

V <x—z>";<z—u>dz+/ (m_Z):(z_w)dZ}'

u, T @, w

If d, :=inf.c, |z| is positive and finite, then from (4.3) we get the inequality

(4.4) Ry (z,7)|

1 _ _
<1 / |x—z|"1|z—u||dz\+/ o — 2" |2 — w||d2]| -
nlw—uldy |/, Vo w

Consider the function f (z) = 1, z € C\ {0}. Then

k
f®) (2) = % for k >0, z € C\ {0}

and suppose v C Cy is a smooth path parametrized by z (), t € [a,b] with z (a) = u
and z (b) = w where u, w € Cy, u # w. Then

Af(Z)dz— Mf(z)dz—/mdj—Log<w>—Log<u>

for u, w € Cy.
Define for z €

w—u

(u17$)’C k—1 (:vfu)k
n—k | ———+ (-1 Tk
(4.5) Li(2) = = l w ) u ] ,

for k=1,....,n— 1 where n > 2.
Then we have the equality

(4.6) %

= Ln (mV’Y)v

bR ] et
k=1

where the remainder L, (z,7) is given by

(4.7) Ly (z,7) =




AN IDENTITY OF FINK TYPE 17

If d, defined above is positive and finite, then from (4.3) we get the inequality

(4.8)  [Ln (z,7)]
1 n—1 n—1
/ |z — z| |z — ul |dz|—|—/ |z — 2| |z — w] |dz|

Consider the function f (z) =exp(z), z € C. Then
f® (2) =exp(2) for k>0, zeC

and suppose v C C is a smooth path parametrized by z (), ¢ € [a,b] with z (a) = u
and z (b) = w where u, w € C, u # w. Then

/f )dz = f(z)dz:/ exp (2) dz = exp (w) — exp (u) .

’Yu,u) u,w
Define for z € ~

u, T T, w

(4.9) Ey (z) == n—k|(@- u)k expu + (_1)k_1 (w— :C)k expw ’

k! w—1u

for k=1,....,.n—1 where n > 2.
Then we have the equality

n—1

1 exp (w) — exp (u)
4.10 — By - =E, ; ’
410 L lew@ + 3 )-e (@)
where the remainder F,, (m, 7) is given by
1
411) B, (2,7) = ——
(4.11) (,7) = — w—u)
X / (z—2)""" (z — u) exp zdz + / (z—2)""" (2 — w) exp zdz

Since |exp z| = exp (Re z) and if assume that for v C C we have

M, = sup [exp (Re z)] < o0,
zey

then by (4.11) we get the inequality
(4.12)  [Ey (2,7)]

M. _ _
< =T / |z —2[" 1|Z—u||dz\+/ o = 2" |z — w||dz|
n!lw—ul |/, .

u,T @, w
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