REVERSE JENSEN INTEGRAL INEQUALITIES FOR OPERATOR CONVEX FUNCTIONS IN TERMS OF FRÉCHET DERIVATIVE

S. S. DRAGOMIR ${ }^{1,2}$

Abstract

Let $f: I \rightarrow \mathbb{R}$ be an operator convex function of class $C^{1}(I)$. If $\left(A_{t}\right)_{t \in T}$ is a bounded continuous field of selfadjoint operators in $\mathcal{B}(H)$ with spectra contained in I defined on a locally compact Hausdorff space T with a bounded Radon measure μ and such that $\int_{T} \mathbf{1} d \mu(t)=\mathbf{1}$, then we have obtained among others the following reverse of Jensen's inequality $$
\begin{aligned} 0 & \leq \int_{T} f\left(A_{t}\right) d \mu(t)-f\left(\int_{T} A_{s} d \mu(s)\right) \\ & \leq \int_{T} D f\left(A_{t}\right)\left(A_{t}\right) d \mu(t)-\int_{T} D f\left(A_{t}\right)\left(\int_{T} A_{s} d \mu(s)\right) d \mu(t) \end{aligned}
$$ in terms of the Fréchet derivative $D f(\cdot)(\cdot)$. Some applications for the HermiteHadamard inequalities are also given.

1. Introduction

A real valued continuous function f on an interval I is said to be operator convex (operator concave) on I if

$$
\begin{equation*}
f((1-\lambda) A+\lambda B) \leq(\geq)(1-\lambda) f(A)+\lambda f(B) \tag{1.1}
\end{equation*}
$$

in the operator order, for all $\lambda \in[0,1]$ and for every selfadjoint operator A and B on a Hilbert space H whose spectra are contained in I. Notice that a function f is operator concave if $-f$ is operator convex.

A real valued continuous function f on an interval I is said to be operator monotone if it is monotone with respect to the operator order, i.e., $A \leq B$ with $\operatorname{Sp}(A), \operatorname{Sp}(B) \subset I$ imply $f(A) \leq f(B)$.

For some fundamental results on operator convex (operator concave) and operator monotone functions, see [9] and the references therein.

As examples of such functions, we note that $f(t)=t^{r}$ is operator monotone on $[0, \infty)$ if and only if $0 \leq r \leq 1$. The function $f(t)=t^{r}$ is operator convex on $(0, \infty)$ if either $1 \leq r \leq 2$ or $-1 \leq r \leq 0$ and is operator concave on $(0, \infty)$ if $0 \leq r \leq 1$. The logarithmic function $f(t)=\ln t$ is operator monotone and operator concave on $(0, \infty)$. The entropy function $f(t)=-t \ln t$ is operator concave on $(0, \infty)$. The exponential function $f(t)=e^{t}$ is neither operator convex nor operator monotone.

For two distinct operators $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$ we consider the segment of selfadjoint operators

$$
[A, B]:=\{(1-t) A+t B \mid t \in[0,1]\} .
$$

[^0]RGMIA Res. Rep. Coll. 22 (2019), Art. 114, 18 pp. Received 26/11/19

We observe that $A, B \in[A, B]$ and $[A, B] \subset \mathcal{S} \mathcal{A}_{I}(H)$.
A continuous function $g: \mathcal{S} \mathcal{A}_{I}(H) \rightarrow \mathcal{B}(H)$ is said to be Gâteaux differentiable in $A \in \mathcal{S} \mathcal{A}_{I}(H)$ along the direction $B \in \mathcal{B}(H)$ if the following limit exists in the strong topology of $\mathcal{B}(H)$

$$
\begin{equation*}
\nabla g_{A}(B):=\lim _{s \rightarrow 0} \frac{g(A+s B)-g(A)}{s} \in \mathcal{B}(H) \tag{1.2}
\end{equation*}
$$

If the limit (1.2) exists for all $B \in \mathcal{B}(H)$, then we say that f is Gâteaux differentiable in A and we can write $g \in \mathcal{G}(A)$. If this is true for any A in a subset \mathcal{S} from $\mathcal{S} \mathcal{A}_{I}(H)$ we write that $g \in \mathcal{G}(\mathcal{S})$.

Let f be an operator convex function on I. For $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$, the class of all selfadjoint operators with spectra in I, we consider the auxiliary function $\varphi_{(A, B)}:[0,1] \rightarrow \mathcal{S} \mathcal{A}_{I}(H)$ defined by

$$
\begin{equation*}
\varphi_{(A, B)}(t):=f((1-t) A+t B) \tag{1.3}
\end{equation*}
$$

For $x \in H$ we can also consider the auxiliary function $\varphi_{(A, B) ; x}:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\varphi_{(A, B) ; x}(t):=\left\langle\varphi_{(A, B)}(t) x, x\right\rangle=\langle f((1-t) A+t B) x, x\rangle \tag{1.4}
\end{equation*}
$$

By employing the properties of convex functions of a real variable, we have the following basic facts, see for instance [8]:

Lemma 1. Let f be an operator convex function on I. For any $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$, $\varphi_{(A, B)}$ is well defined and convex in the operator order. For any $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H)$ and $x \in H$ the function $\varphi_{(A, B) ; x}$ is convex in the usual sense on $[0,1]$.
Lemma 2. Let f be an operator convex function on I and $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$, with $A \neq B$. If $f \in \mathcal{G}([A, B])$, then the auxiliary function $\varphi_{(A, B)}$ is differentiable on $(0,1)$ and

$$
\begin{equation*}
\varphi_{(A, B)}^{\prime}(t)=\nabla f_{(1-t) A+t B}(B-A) \tag{1.5}
\end{equation*}
$$

Also we have for the lateral derivative that

$$
\begin{equation*}
\varphi_{+(A, B)}^{\prime}(0)=\nabla f_{A}(B-A) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{-(A, B)}^{\prime}(1)=\nabla f_{B}(B-A) \tag{1.7}
\end{equation*}
$$

and
Lemma 3. Let f be an operator convex function on I and $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$, with $A \neq B$. If $f \in \mathcal{G}([A, B])$, then for $0<t_{1}<t_{2}<1$ we have

$$
\begin{equation*}
\nabla g_{\left(1-t_{1}\right) A+t_{1} B}(B-A) \leq \nabla g_{\left(1-t_{2}\right) A+t_{2} B}(B-A) \tag{1.8}
\end{equation*}
$$

in the operator order.
We also have

$$
\begin{equation*}
\nabla f_{A}(B-A) \leq \nabla g_{\left(1-t_{1}\right) A+t_{1} B}(B-A) \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla g_{\left(1-t_{2}\right) A+t_{2} B}(B-A) \leq \nabla f_{B}(B-A) \tag{1.10}
\end{equation*}
$$

Corollary 1. Let f be an operator convex function on I and $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$, with $A \neq B$. If $f \in \mathcal{G}([A, B])$, then for all $t \in(0,1)$ we have

$$
\begin{equation*}
\nabla f_{A}(B-A) \leq \nabla f_{(1-t) A+t B}(B-A) \leq \nabla f_{B}(B-A) \tag{1.11}
\end{equation*}
$$

By making use of the gradient inequality for the convex function of a real variable $\varphi_{(A, B) ; x}$ with $x \in H$,

$$
\varphi_{+(A, B) ; x}^{\prime}(0) \leq \varphi_{(A, B) ; x}(1)-\varphi_{(A, B) ; x}(0) \leq \varphi_{-(A, B)}^{\prime}(1)
$$

namely

$$
\left\langle\nabla f_{A}(B-A) x, x\right\rangle \leq\langle f(B) x, x\rangle-\langle f(A) x, x\rangle \leq\left\langle\nabla f_{B}(B-A) x, x\right\rangle
$$

for any $x \in H$. This is equivalent in the operatorial order with the operator gradient inequality

$$
\nabla f_{A}(B-A) \leq f(B)-f(A) \leq \nabla f_{B}(B-A)
$$

It is well known that, if f is a C^{1}-function defined on an open interval, then the operator function $f(X)$ is Fréchet differentiable and the derivative $D f(A)(B)$ equals the Gâteaux derivative $\nabla f_{A}(B)$. So for operator convex functions f that are of class C^{1} on I we have the Fréchet gradient operator inequality

$$
\begin{equation*}
D f(A)(B-A) \leq f(B)-f(A) \leq D f(B)(B-A) \tag{Gr}
\end{equation*}
$$

for any $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$.
For a C^{1}-function f defined on I we also have by Lemma 2 that

$$
\begin{equation*}
\varphi_{(A, B)}^{\prime}(t)=D f((1-t) A+t B)(B-A), t \in(0,1) \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{+(A, B)}^{\prime}(0)=D f(A)(B-A), \varphi_{-(A, B)}^{\prime}(1)=D f(B)(B-A) \tag{1.13}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
D f(A)(B-A) \leq D f((1-t) A+t B)(B-A) \leq D f(B)(B-A) \tag{1.14}
\end{equation*}
$$

for all $t \in(0,1)$.
Let T be a locally compact Hausdorff space. We say that a field $\left(A_{t}\right)_{t \in T}$ of operators in $\mathcal{B}(H)$ is continuous if the function $t \mapsto A_{t}$ is norm continuous on T. If in addition μ is a Radon measure on T and the function $t \mapsto\left\|A_{t}\right\|$ is integrable, then we can form the Bochner integral $\int_{T} A_{t} d \mu(t)$, which is the unique element in $\mathcal{B}(H)$ such that

$$
\varphi\left(\int_{T} A_{t} d \mu(t)\right)=\int_{T} \varphi\left(A_{t}\right) d \mu(t)
$$

for every linear functional φ in the norm dual $\mathcal{B}(H)^{*}$, cf. [14, Section 4.1].
Assume furthermore that there is a field $\left(\phi_{t}\right)_{t \in T}$ of positive linear mappings ϕ_{t} : $\mathcal{B}(H) \rightarrow \mathcal{B}(K)$ from $\mathcal{B}(H)$ to another C^{*}-algebra $\mathcal{B}(K)$, with K a Hilbert space. We say that such a field is continuous if the function $t \mapsto \phi_{t}(A)$ is continuous for every $A \in \mathcal{B}(H)$. If the field $t \mapsto \phi_{t}(\mathbf{1})$ is integrable with integral $\int_{T} \phi_{t}(\mathbf{1}) d \mu(t)=$ 1, we say that $\left(\phi_{t}\right)_{t \in T}$ is unital.

The following Jensen's integral inequality has been obtained in [13]:
Theorem 1. Let $f: I \rightarrow \mathbb{R}$ be an operator convex function defined on an interval I. If $\left(\phi_{t}\right)_{t \in T}$ is a unital field of positive linear mappings $\phi_{t}: \mathcal{B}(H) \rightarrow \mathcal{B}(K)$ defined
on a locally compact Hausdorff space T with a bounded Radon measure μ, then the inequality

$$
\begin{equation*}
f\left(\int_{T} \phi_{t}\left(A_{t}\right) d \mu(t)\right) \leq \int_{T} \phi_{t}\left(f\left(A_{t}\right)\right) d \mu(t) \tag{1.15}
\end{equation*}
$$

holds for every bounded continuous field $\left(A_{t}\right)_{t \in T}$ of selfadjoint operators in $\mathcal{B}(H)$ with spectra contained in I.

The discrete case is as follows [15]:

$$
f\left(\sum_{i=1}^{n} w_{i} \phi_{i}\left(A_{i}\right)\right) \leq \sum_{i=1}^{n} w_{i} \phi_{i}\left(f\left(A_{i}\right)\right)
$$

for operator convex functions f defined on an interval I, where $\phi_{i}: \mathcal{B}(H) \rightarrow$ $\mathcal{B}(K), i \in\{1, \ldots, n\}$ are unital positive linear maps, $A_{i}, i \in\{1, \ldots, n\}$ are selfadjoint operators in $\mathcal{B}(H)$ with spectra contained in I and $w_{i} \geq 0, i \in\{1, \ldots, n\}$ with $\sum_{i=1}^{n} w_{i}=1$.

Also, if $f: I \rightarrow \mathbb{R}$ is operator convex on I and $U_{i} \in \mathcal{B}(H), i \in\{1, \ldots, n\}$ with $\sum_{i=1}^{n} U^{*} U_{i}=1$, then [14]

$$
f\left(\sum_{i=1}^{n} U^{*} A_{i} U_{i}\right) \leq \sum_{i=1}^{n} U^{*} f\left(A_{i}\right) U_{i}
$$

where $A_{i}, i \in\{1, \ldots, n\}$ are selfadjoint operators in $\mathcal{B}(H)$ with spectra contained in I.

In this paper we establish some reverses of Jensen's integral inequality for operator convex functions of class $C^{1}(I)$, continuous fields $\left(A_{t}\right)_{t \in T}$ of selfadjoint operators in $\mathcal{B}(H)$ with spectra contained in I defined on a locally compact Hausdorff space T with a bounded Radon measure μ and such that $\int_{T} \mathbf{1} d \mu(t)=\mathbf{1}$. These reverses are given in terms of the Fréchet derivative $D f(\cdot)(\cdot)$. Some applications for the Hermite-Hadamard inequalities are also provided.

2. Main Results

We have the following inequalities in terms of the Fréchet derivative $D f(\cdot)(\cdot)$:
Theorem 2. Let $f: I \rightarrow \mathbb{R}$ be an operator convex function of class $C^{1}(I)$. If $\left(A_{t}\right)_{t \in T}$ is a bounded continuous field $\left(A_{t}\right)_{t \in T}$ of selfadjoint operators in $\mathcal{B}(H)$ with spectra contained in I defined on a locally compact Hausdorff space T with a bounded Radon measure μ and such that $\int_{T} \mathbf{1} d \mu(t)=\mathbf{1}$, then we have the double inequality in terms of the Fréchet derivative $D f(\cdot)(\cdot)$

$$
\begin{align*}
& f(A)-D f(A)(A)+D f(A)\left(\int_{T} A_{t} d \mu(t)\right) \tag{2.1}\\
& \leq \int_{T} f\left(A_{t}\right) d \mu(t) \\
& \leq f(A)-\int_{T} D f\left(A_{t}\right)(A) d \mu(t)+\int_{T} D f\left(A_{t}\right)\left(A_{t}\right) d \mu(t)
\end{align*}
$$

for all $A \in \mathcal{S} \mathcal{A}_{I}(H)$.

We have the reverse Jensen's inequality

$$
\begin{align*}
0 & \leq \int_{T} f\left(A_{t}\right) d \mu(t)-f\left(\int_{T} A_{s} d \mu(s)\right) \tag{2.2}\\
& \leq \int_{T} D f\left(A_{t}\right)\left(A_{t}\right) d \mu(t)-\int_{T} D f\left(A_{t}\right)\left(\int_{T} A_{s} d \mu(s)\right) d \mu(t)
\end{align*}
$$

If $S \in \mathcal{S A}_{I}(H)$ is an operator satisfying the equality

$$
\begin{equation*}
\int_{T} D f\left(A_{t}\right)(S) d \mu(t)=\int_{T} D f\left(A_{t}\right)\left(A_{t}\right) d \mu(t) \tag{Sl}
\end{equation*}
$$

then we have the Slater type inequality

$$
\begin{equation*}
0 \leq f(S)-\int_{T} f\left(A_{t}\right) d \mu(t) \leq D f(S)(S)-D f(S)\left(\int_{T} A_{t} d \mu(t)\right) \tag{2.3}
\end{equation*}
$$

Proof. From (Gr) we have

$$
\begin{equation*}
D f(A)\left(A_{t}-A\right) \leq f\left(A_{t}\right)-f(A) \leq D f\left(A_{t}\right)\left(A_{t}-A\right) \tag{2.4}
\end{equation*}
$$

for all $t \in T$.
By the linearity of the Fréchet derivative we have

$$
\begin{align*}
f(A)-D f(A)(A)+D f(A)\left(A_{t}\right) & \leq f\left(A_{t}\right) \tag{2.5}\\
& \leq f(A)-D f\left(A_{t}\right)(A)+D f\left(A_{t}\right)\left(A_{t}\right)
\end{align*}
$$

for all $t \in T$.
By taking the integral over $t \in T$, we have

$$
\begin{align*}
& f(A)-D f(A)(A)+\int_{T} D f(A)\left(A_{t}\right) d \mu(t) \tag{2.6}\\
& \leq \int_{T} f\left(A_{t}\right) d \mu(t) \\
& \leq f(A)-\int_{T} D f\left(A_{t}\right)(A) d \mu(t)+\int_{T} D f\left(A_{t}\right)\left(A_{t}\right) d \mu(t)
\end{align*}
$$

Since $\operatorname{Sp}\left(A_{t}\right) \subset I, t \in T$, then there exists $m<M$ such that $\operatorname{Sp}\left(A_{t}\right) \subseteq[m, M] \subset I$, $t \in T$, namely $\mathbf{1} m \leq A_{t} \leq \mathbf{1} M$ which implies that $\mathbf{1} m \leq \int_{T} A_{t} d \mu(t) \leq \mathbf{1} M$. Namely, $\int_{T} A_{t} d \mu(t) \in \mathcal{S} \mathcal{A}_{I}(H)$. By the linearity and continuity of the Fréchet derivative we then have

$$
\int_{T} D f(A)\left(A_{t}\right) d \mu(t)=D f(A)\left(\int_{T} A_{t} d \mu(t)\right)
$$

and by (2.6) we get (2.1).
By taking $A=\int_{T} A_{t} d \mu(t)$ in (2.1) we get (2.2). If we take $A=S$ in (2.1), then we also get (2.3).

We assume that \mathfrak{D} is a bounded linear operator that acts on $\mathcal{S} \mathcal{A}_{I}(H)$ with values in $\mathcal{S} \mathcal{A}_{I}(H)$. We denote this as $\mathfrak{D} \in \mathcal{B}\left(\mathcal{S} \mathcal{A}_{I}(H)\right)$.

Corollary 2. Let $f: I \rightarrow \mathbb{R}$ be an operator convex function of class $C^{1}(I)$. If $\left(A_{t}\right)_{t \in T}$ is a bounded continuous field $\left(A_{t}\right)_{t \in T}$ of selfadjoint operators in $\mathcal{B}(H)$
with spectra contained in I defined on a locally compact Hausdorff space T with a bounded Radon measure μ and such that $\int_{T} \mathbf{1} d \mu(t)=\mathbf{1}$, then

$$
\begin{align*}
& \left\|\int_{T} f\left(A_{t}\right) d \mu(t)-f\left(\int_{T} A_{s} d \mu(s)\right)\right\| \tag{2.7}\\
& \leq\left\{\begin{array}{l}
\inf _{\mathfrak{D} \in \mathcal{B}\left(\mathcal{S} \mathcal{A}_{I}(H)\right)}\left(\sup _{t \in T}\left\|D f\left(A_{t}\right)-\mathfrak{D}\right\|\right) \\
\times \int_{T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\| d \mu(t) \\
\inf _{\mathfrak{D} \in \mathcal{B}\left(\mathcal{S} \mathcal{A}_{I}(H)\right)}\left(\int_{T}\left\|D f\left(A_{t}\right)-\mathfrak{D}\right\|^{p} d \mu(t)\right)^{1 / p} \\
\times\left(\int_{T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\|^{q} d \mu(t)\right)^{1 / q} ; p, q>1, \frac{1}{p}+\frac{1}{q}=1 \\
\inf _{\mathfrak{D} \in \mathcal{B}\left(\mathcal{S} \mathcal{A}_{I}(H)\right)}\left(\int_{T}\left\|D f\left(A_{t}\right)-\mathfrak{D}\right\| d \mu(t)\right) \\
\times \sup _{t \in T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\|
\end{array}\right.
\end{align*}
$$

In particular,

$$
\begin{align*}
& \left\|\int_{T} f\left(A_{t}\right) d \mu(t)-f\left(\int_{T} A_{s} d \mu(s)\right)\right\| \tag{2.8}\\
& \leq\left\{\begin{array}{l}
\sup _{t \in T}\left\|D f\left(A_{t}\right)\right\| \int_{T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\| d \mu(t) \\
\left(\int_{T}\left\|D f\left(A_{t}\right)\right\|^{p} d \mu(t)\right)^{1 / p}\left(\int_{T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\|^{q} d \mu(t)\right)^{1 / q} \\
p, q>1, \frac{1}{p}+\frac{1}{q}=1 \\
\int_{T}\left\|D f\left(A_{t}\right)\right\| d \mu(t) \sup _{t \in T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\|
\end{array}\right.
\end{align*}
$$

Proof. We have for any operator $\mathfrak{D} \in \mathcal{B}\left(\mathcal{S} \mathcal{A}_{I}(H)\right)$ and the properties of Fréchet derivative and integral, that

$$
\begin{aligned}
& \int_{T}\left(D f\left(A_{t}\right)-\mathfrak{D}\right)\left(A_{t}-\int_{T} A_{s} d \mu(s)\right) d \mu(t) \\
& =\int_{T} D f\left(A_{t}\right)\left(A_{t}-\int_{T} A_{s} d \mu(s)\right) d \mu(t)-\int_{T} \mathfrak{D}\left(A_{t}-\int_{T} A_{s} d \mu(s)\right) d \mu(t) \\
& =\int_{T} D f\left(A_{t}\right)\left(A_{t}\right) d \mu(t)-\int_{T} D f\left(A_{t}\right)\left(\int_{T} A_{s} d \mu(s)\right) d \mu(t) \\
& -\mathfrak{D} \int_{T}\left(\int_{T} A_{t} d \mu(t)-\int_{T}\left(\int_{T} A_{s} d \mu(s)\right) d \mu(t)\right) \\
& =\int_{T} D f\left(A_{t}\right)\left(A_{t}\right) d \mu(t)-\int_{T} D f\left(A_{t}\right)\left(\int_{T} A_{s} d \mu(s)\right) d \mu(t) \\
& -\mathfrak{D} \int_{T}\left(\int_{T} A_{t} d \mu(t)-\left(\int_{T} A_{s} d \mu(s)\right)\right) \\
& =\int_{T} D f\left(A_{t}\right)\left(A_{t}\right) d \mu(t)-\int_{T} D f\left(A_{t}\right)\left(\int_{T} A_{s} d \mu(s)\right) d \mu(t) .
\end{aligned}
$$

From (2.2) we have

$$
\begin{align*}
0 & \leq \int_{T} f\left(A_{t}\right) d \mu(t)-f\left(\int_{T} A_{s} d \mu(s)\right) \tag{2.9}\\
& \leq \int_{T}\left(D f\left(A_{t}\right)-\mathfrak{D}\right)\left(A_{t}-\int_{T} A_{s} d \mu(s)\right) d \mu(t)
\end{align*}
$$

for any operator $\mathfrak{D} \in \mathcal{B}\left(\mathcal{S} \mathcal{A}_{I}(H)\right)$.
By taking the norm in (2.9) we get

$$
\begin{gather*}
\left\|\int_{T} f\left(A_{t}\right) d \mu(t)-f\left(\int_{T} A_{s} d \mu(s)\right)\right\| \tag{2.10}\\
\leq \int_{T}\left\|\left(D f\left(A_{t}\right)-\mathfrak{D}\right)\left(A_{t}-\int_{T} A_{s} d \mu(s)\right)\right\| d \mu(t) \\
\leq\left\{\begin{array}{l}
\left\|D f\left(A_{t}\right)-\mathfrak{D}\right\|\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\| d \mu(t) \\
\begin{array}{l}
\left(\int_{T}\left\|D f\left(A_{t}\right)-\mathfrak{D}\right\|^{p}\right)^{1 / p}\left(\int_{T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\|^{q} d \mu(t)\right)^{1 / q} \\
p, q>1, \frac{1}{p}+\frac{1}{q}=1 \\
\int_{T}\left\|D f\left(A_{t}\right)-\mathfrak{D}\right\| d \mu(t) \sup _{t \in T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\|
\end{array}
\end{array} . \begin{array}{l}
\sup _{t \in T}\left\|D f\left(A_{t}\right)-\mathfrak{D}\right\| \int_{T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\| d \mu(t)
\end{array}\right.
\end{gather*}
$$

for any operator $\mathfrak{D} \in \mathcal{B}\left(\mathcal{S} \mathcal{A}_{I}(H)\right)$.
By taking the infimum over $\mathfrak{D} \in \mathcal{B}\left(\mathcal{S} \mathcal{A}_{I}(H)\right)$ in (2.10) we obtain the desired result.
Corollary 3. With the assumptions of Corollary 2 and if there exists $\mathfrak{D}_{1}, \mathfrak{D}_{2} \in \mathcal{B}\left(\mathcal{S} \mathcal{A}_{I}(H)\right)$ such that

$$
\begin{equation*}
\left\|D f\left(A_{t}\right)-\frac{\mathfrak{D}_{1}+\mathfrak{D}_{2}}{2}\right\| \leq \frac{1}{2}\left\|\mathfrak{D}_{2}-\mathfrak{D}_{1}\right\| \tag{2.11}
\end{equation*}
$$

then

$$
\begin{align*}
& \left\|\int_{T} f\left(A_{t}\right) d \mu(t)-f\left(\int_{T} A_{s} d \mu(s)\right)\right\| \tag{2.12}\\
& \leq \frac{1}{2}\left\|\mathfrak{D}_{2}-\mathfrak{D}_{1}\right\| \int_{T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\| d \mu(t)
\end{align*}
$$

The proof follows by the first inequality in (2.7) and the condition (2.11).
Corollary 4. With the assumptions of Corollary 2 and if $S \in \mathcal{S} \mathcal{A}_{I}(H)$ is an operator satisfying the equality (Sl), then

$$
\begin{align*}
\left\|f(S)-\int_{T} f\left(A_{t}\right) d \mu(t)\right\| & \leq\|D f(S)\|\left\|S-\int_{T} A_{t} d \mu(t)\right\| \tag{2.13}\\
& \leq\|D f(S)\| \int_{T}\left\|S-A_{t}\right\| d \mu(t)
\end{align*}
$$

Proof. By taking the norm in (2.3) we get

$$
\begin{aligned}
\left\|f(S)-\int_{T} f\left(A_{t}\right) d \mu(t)\right\| & \leq\left\|D f(S)\left(S-\int_{T} A_{t} d \mu(t)\right)\right\| \\
& \leq\left\|S-\int_{T} A_{t} d \mu(t)\right\| \\
& =\left\|\int_{T}\left(S-A_{t}\right) d \mu(t)\right\| \leq \int_{T}\left\|S-A_{t}\right\| d \mu(t)
\end{aligned}
$$

and the inequality (2.13) is obtained.

We assume that $f: I \rightarrow \mathbb{R}$ is an operator convex function of class $C^{1}(I)$ and $D f(\cdot)$ is Lipschitzian with constant $L>0$ on $\mathcal{S} \mathcal{A}_{I}(H)$, namely

$$
\begin{equation*}
\|D f(A)-D f(B)\| \leq L\|A-B\| \tag{2.14}
\end{equation*}
$$

for any $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$.

Corollary 5. With the assumptions of Corollary 1 and if $D f(\cdot)$ is Lipschitzian with constant $L>0$ on $\mathcal{S} \mathcal{A}_{I}(H)$,

$$
\begin{align*}
& \left\|\int_{T} f\left(A_{t}\right) d \mu(t)-f\left(\int_{T} A_{s} d \mu(s)\right)\right\| \tag{2.15}\\
& \leq L\left\{\begin{array}{l}
\inf _{B \in \mathcal{S} \mathcal{A}_{I}(H)}\left(\sup _{t \in T}\left\|A_{t}-B\right\|\right) \int_{T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\| d \mu(t) \\
\inf _{B \in \mathcal{S} \mathcal{A}_{I}(H)}\left(\int_{T}\left\|A_{t}-B\right\|^{p} d \mu(t)\right)^{1 / p} \\
\times\left(\int_{T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\|^{q} d \mu(t)\right)^{1 / q}, p, q>1, \frac{1}{p}+\frac{1}{q}=1 \\
\inf _{B \in \mathcal{S} \mathcal{A}_{I}(H)} \int_{T}\left\|A_{t}-B\right\| d \mu(t) \sup _{t \in T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\| .
\end{array}\right.
\end{align*}
$$

In particular,

$$
\begin{align*}
& \left\|\int_{T} f\left(A_{t}\right) d \mu(t)-f\left(\int_{T} A_{s} d \mu(s)\right)\right\| \tag{2.16}\\
& \leq L\left\{\begin{array}{l}
\sup _{t \in T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\| \int_{T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\| d \mu(t) \\
\left(\int_{T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\|^{p} d \mu(t)\right)^{1 / p} \\
\times\left(\int_{T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\|^{q} d \mu(t)\right)^{1 / q}, p, q>1, \frac{1}{p}+\frac{1}{q}=1
\end{array}\right.
\end{align*}
$$

For $p=q=2$ we also get

$$
\begin{equation*}
\left\|\int_{T} f\left(A_{t}\right) d \mu(t)-f\left(\int_{T} A_{s} d \mu(s)\right)\right\| \leq L \int_{T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\|^{2} d \mu(t) \tag{2.17}
\end{equation*}
$$

Proof. Let $B \in \mathcal{S} \mathcal{A}_{I}(H)$. From (2.9) we have

$$
\begin{align*}
0 & \leq \int_{T} f\left(A_{t}\right) d \mu(t)-f\left(\int_{T} A_{s} d \mu(s)\right) \tag{2.18}\\
& \leq \int_{T}\left(D f\left(A_{t}\right)-D f(B)\right)\left(A_{t}-\int_{T} A_{s} d \mu(s)\right) d \mu(t)
\end{align*}
$$

By taking the norm in (2.18) we get

$$
\begin{align*}
& \left\|\int_{T} f\left(A_{t}\right) d \mu(t)-f\left(\int_{T} A_{s} d \mu(s)\right)\right\| \tag{2.19}\\
& \leq \int_{T}\left\|\left(D f\left(A_{t}\right)-D f(B)\right)\left(A_{t}-\int_{T} A_{s} d \mu(s)\right)\right\| d \mu(t) \\
& \leq \int_{T}\left\|D f\left(A_{t}\right)-D f(B)\right\|\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\| d \mu(t) \\
& \leq L \int_{T}\left\|A_{t}-B\right\|\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\| d \mu(t) \\
& \leq L\left\{\begin{array}{l}
\sup _{t \in T}\left\|A_{t}-B\right\| \int_{T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\| d \mu(t) \\
\left(\int_{T}\left\|A_{t}-B\right\|^{p} d \mu(t)\right)^{1 / p}\left(\int_{T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\|^{q} d \mu(t)\right)^{1 / q} \\
p, q>1, \frac{1}{p}+\frac{1}{q}=1 \\
\int_{T}\left\|A_{t}-B\right\| d \mu(t) \sup _{t \in T}\left\|A_{t}-\int_{T} A_{s} d \mu(s)\right\|
\end{array}\right.
\end{align*}
$$

for any $B \in \mathcal{S} \mathcal{A}_{I}(H)$.
By taking the infimum over $B \in \mathcal{S} \mathcal{A}_{I}(H)$ in (2.19) we obtain the desired result.

Remark 1. For the sake of completeness, we give here the discrete case as well. Let $f: I \rightarrow \mathbb{R}$ be an operator convex function of class $C^{1}(I)$. If $\left(A_{i}\right)_{i \in\{1, \ldots, n\}}$ is a sequence of selfadjoint operators in $\mathcal{B}(H)$ with spectra contained in I and $p_{i} \geq 0$, $i \in\{1, \ldots, n\}$ with $\sum_{i=1}^{n} p_{i}=1$. Then for all $A \in \mathcal{S} \mathcal{A}_{I}(H)$ we have

$$
\begin{align*}
& f(A)-D f(A)(A)+D f(A)\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \tag{2.20}\\
& \leq \sum_{i=1}^{n} p_{i} f\left(A_{i}\right) \\
& \leq f(A)-\sum_{i=1}^{n} p_{i} D f\left(A_{i}\right)(A)+\sum_{i=1}^{n} p_{i} D f\left(A_{i}\right)\left(A_{i}\right)
\end{align*}
$$

We have

$$
\begin{align*}
0 & \leq \sum_{i=1}^{n} p_{i} f\left(A_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \tag{2.21}\\
& \leq \sum_{i=1}^{n} p_{i} D f\left(A_{i}\right)\left(A_{i}\right)-\sum_{i=1}^{n} p_{i} D f\left(A_{i}\right)\left(\sum_{j=1}^{n} p_{j} A_{j}\right)
\end{align*}
$$

If $S \in \mathcal{S A}_{I}(H)$ is an operator satisfying the equality

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} D f\left(A_{i}\right)(S) d \mu(t)=\sum_{i=1}^{n} p_{i} D f\left(A_{i}\right)\left(A_{i}\right) \tag{Sld}
\end{equation*}
$$

then we have the Slater type discrete inequality

$$
\begin{equation*}
0 \leq f(S)-\sum_{i=1}^{n} p_{i} f\left(A_{i}\right) \leq D f(S)(S)-D f(S)\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \tag{2.22}
\end{equation*}
$$

We have the norm inequalities

$$
\begin{align*}
& \left\|\sum_{i=1}^{n} p_{i} f\left(A_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} A_{i}\right)\right\| \tag{2.23}\\
& \leq\left\{\begin{array}{l}
\inf _{\mathfrak{D} \in \mathcal{B}\left(\mathcal{S} \mathcal{A}_{I}(H)\right)}\left(\max _{i \in\{1, \ldots, n\}}\left\|D f\left(A_{i}\right)-\mathfrak{D}\right\|\right) \\
\times \sum_{i=1}^{n} p_{i}\left\|A_{i}-\sum_{j=1}^{n} p_{j} A_{j}\right\| \\
\inf _{\mathfrak{D} \in \mathcal{B}\left(\mathcal{S} \mathcal{A}_{I}(H)\right)}\left(\sum_{i=1}^{n} p_{i}\left\|D f\left(A_{i}\right)-\mathfrak{D}\right\|^{p}\right)^{1 / p} \\
\times\left(\sum_{i=1}^{n} p_{i}\left\|A_{i}-\sum_{j=1}^{n} p_{j} A_{j}\right\|^{q}\right)^{1 / q}, p, q>1, \frac{1}{p}+\frac{1}{q}=1 \\
\inf _{\mathfrak{D} \in \mathcal{B}\left(\mathcal{S A}_{I}(H)\right)}\left(\sum_{i=1}^{n} p_{i}\left\|D f\left(A_{i}\right)-\mathfrak{D}\right\|\right) \\
\times \max _{i \in\{1, \ldots, n\}}\left\|A_{i}-\sum_{j=1}^{n} p_{j} A_{j}\right\| .
\end{array}\right.
\end{align*}
$$

In particular,

$$
\begin{align*}
& \left\|\sum_{i=1}^{n} p_{i} f\left(A_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} A_{i}\right)\right\| \tag{2.24}\\
& \leq\left\{\begin{array}{l}
\max _{i \in\{1, \ldots, n\}}\left\|D f\left(A_{i}\right)\right\| \sum_{i=1}^{n} p_{i}\left\|A_{i}-\sum_{j=1}^{n} p_{j} A_{j}\right\| \\
\left(\sum_{i=1}^{n} p_{i}\left\|D f\left(A_{i}\right)\right\|^{p}\right)^{1 / p} \\
\times\left(\sum_{i=1}^{n} p_{i}\left\|A_{i}-\sum_{j=1}^{n} p_{j} A_{j}\right\|^{q}\right)^{1 / q}, p, q>1, \frac{1}{p}+\frac{1}{q}=1 \\
\sum_{i=1}^{n} p_{i}\left\|D f\left(A_{i}\right)\right\| \max _{i \in\{1, \ldots, n\}}\left\|A_{i}-\sum_{j=1}^{n} p_{j} A_{j}\right\| .
\end{array}\right.
\end{align*}
$$

If there exists $\mathfrak{D}_{1}, \mathfrak{D}_{2} \in \mathcal{B}\left(\mathcal{S} \mathcal{A}_{I}(H)\right)$ such that

$$
\begin{equation*}
\left\|D f\left(A_{i}\right)-\frac{\mathfrak{D}_{1}+\mathfrak{D}_{2}}{2}\right\| \leq \frac{1}{2}\left\|\mathfrak{D}_{2}-\mathfrak{D}_{1}\right\| \tag{2.25}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} p_{i} f\left(A_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} A_{i}\right)\right\| \leq \frac{1}{2}\left\|\mathfrak{D}_{2}-\mathfrak{D}_{1}\right\| \sum_{i=1}^{n} p_{i}\left\|A_{i}-\sum_{j=1}^{n} p_{j} A_{j}\right\| \tag{2.26}
\end{equation*}
$$

If $S \in \mathcal{S A}_{I}(H)$ is an operator satisfying the equality (Sld), then

$$
\begin{align*}
\left\|f(S)-\sum_{i=1}^{n} p_{i} f\left(A_{i}\right)\right\| & \leq\|D f(S)\|\left\|S-\sum_{i=1}^{n} p_{i} A_{i}\right\| \tag{2.27}\\
& \leq\|D f(S)\| \sum_{i=1}^{n} p_{i}\left\|S-A_{i}\right\| .
\end{align*}
$$

Moreover, if $D f(\cdot)$ is Lipschitzian with constant $L>0$ on $\mathcal{S} \mathcal{A}_{I}(H)$, then

$$
\begin{align*}
& \left\|\sum_{i=1}^{n} p_{i} f\left(A_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} A_{i}\right)\right\| \tag{2.28}\\
& \leq L\left\{\begin{array}{l}
\inf _{B \in \mathcal{S} \mathcal{A}_{I}(H)}\left(\sup _{i \in\{1, \ldots, n\}}\left\|A_{i}-B\right\|\right) \sum_{i=1}^{n} p_{i}\left\|A_{i}-\sum_{j=1}^{n} p_{j} A_{j}\right\| \\
\inf _{B \in \mathcal{S} \mathcal{A}_{I}(H)}\left(\sum_{i=1}^{n} p_{i}\left\|A_{i}-B\right\|^{p}\right)^{1 / p} \\
\times\left(\sum_{i=1}^{n} p_{i}\left\|A_{i}-\sum_{j=1}^{n} p_{j} A_{j}\right\|^{q}\right)^{1 / q}, p, q>1, \frac{1}{p}+\frac{1}{q}=1 \\
\inf _{B \in \mathcal{S} \mathcal{A}_{I}(H)} \sum_{i=1}^{n} p_{i}\left\|A_{i}-B\right\| \sup _{i \in\{1, \ldots, n\}}\left\|A_{i}-\sum_{j=1}^{n} p_{j} A_{j}\right\|
\end{array}\right.
\end{align*}
$$

In particular,

$$
\begin{align*}
& \left\|\sum_{i=1}^{n} p_{i} f\left(A_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} A_{i}\right)\right\| \tag{2.29}\\
& \leq L\left\{\begin{array}{l}
\sup _{i \in\{1, \ldots, n\}}\left\|A_{i}-\sum_{j=1}^{n} p_{j} A_{j}\right\| \sum_{i=1}^{n} p_{i}\left\|A_{i}-\sum_{j=1}^{n} p_{j} A_{j}\right\| \\
\left(\sum_{i=1}^{n} p_{i}\left\|A_{i}-\sum_{j=1}^{n} p_{j} A_{j}\right\|^{p}\right)^{1 / p} \\
\times\left(\sum_{i=1}^{n} p_{i}\left\|A_{i}-\sum_{j=1}^{n} p_{j} A_{j}\right\|^{q}\right)^{1 / q}, p, q>1, \frac{1}{p}+\frac{1}{q}=1 .
\end{array}\right.
\end{align*}
$$

For $p=q=2$ we also get

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} p_{i} f\left(A_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} A_{i}\right)\right\| \leq L \sum_{i=1}^{n} p_{i}\left\|A_{i}-\sum_{j=1}^{n} p_{j} A_{j}\right\|^{q} \tag{2.30}
\end{equation*}
$$

3. Hermite-Hadamard Type Inequalities

Let $f: I \rightarrow \mathbb{R}$ be an operator convex function of class $C^{1}(I)$. If A, B are selfadjoint operators in $\mathcal{B}(H)$ with spectra contained in I, then by taking $A_{t}:=$ $(1-t) A+t B, t \in[0,1]$ and the Lebesgue measure on $[0,1]$, we have by (2.1) the double inequality in terms of the Fréchet derivative $D f(\cdot)(\cdot)$

$$
\begin{align*}
& f(A)-D f(A)(A)+D f(A)\left(\int_{0}^{1}[(1-t) A+t B] d t\right) \tag{3.1}\\
& \leq \int_{0}^{1} f((1-t) A+t B) d t \\
& \leq f(A)-\int_{0}^{1} D f((1-t) A+t B)(A) d t \\
& +\int_{0}^{1} D f((1-t) A+t B)((1-t) A+t B) d t
\end{align*}
$$

for all $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$.
Observe that

$$
\int_{0}^{1}[(1-t) A+t B] d t=\frac{A+B}{2}
$$

and

$$
\begin{aligned}
& \int_{0}^{1} D f((1-t) A+t B)((1-t) A+t B) d t-\int_{0}^{1} D f((1-t) A+t B)(A) d t \\
& =\int_{0}^{1} t D f((1-t) A+t B)(B-A)
\end{aligned}
$$

By utilising (3.1) we get the following inequality of interest

$$
\begin{align*}
& f(A)-D f(A)(A)+D f(A)\left(\frac{A+B}{2}\right) \tag{3.2}\\
& \leq \int_{0}^{1} f((1-t) A+t B) d t \\
& \leq f(A)+\int_{0}^{1} t D f((1-t) A+t B)(B-A)
\end{align*}
$$

for all $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$.
From (2.2) we have the reverse of the first Hermite-Hadamard inequality

$$
\begin{align*}
0 & \leq \int_{0}^{1} f((1-t) A+t B) d t-f\left(\frac{A+B}{2}\right) \tag{3.3}\\
& \leq \int_{0}^{1} D f((1-t) A+t B)((1-t) A+t B) d t \\
& -\int_{0}^{1} D f((1-t) A+t B)\left(\frac{A+B}{2}\right) d t \\
& =\int_{0}^{1}\left(t-\frac{1}{2}\right) D f((1-t) A+t B)(B-A) d t
\end{align*}
$$

for all $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$.
If $S \in \mathcal{S} \mathcal{A}_{I}(H)$ is an operator satisfying the equality

$$
\begin{equation*}
\int_{0}^{1} D f((1-t) A+t B)(S) d t=\int_{T} D f((1-t) A+t B)((1-t) A+t B) d t \tag{Sl}
\end{equation*}
$$

then we have the Slater type inequality

$$
\begin{equation*}
0 \leq f(S)-\int_{T} f((1-t) A+t B) d t \leq D f(S)(S)-D f(S)\left(\frac{A+B}{2}\right) \tag{3.4}
\end{equation*}
$$

Now, observe that, by (1.12) and integrating by parts, we have

$$
\begin{aligned}
& \int_{0}^{1}\left(t-\frac{1}{2}\right) D f((1-t) A+t B)(B-A) \\
& =\int_{0}^{1}\left(t-\frac{1}{2}\right) \varphi_{(A, B)}^{\prime}(t) \\
& =\left.\left(t-\frac{1}{2}\right) \varphi_{(A, B)}(t)\right|_{0} ^{1}-\int_{0}^{1} \varphi_{(A, B)}(t) d t \\
& =\frac{f(B)+f(A)}{2}-\int_{0}^{1} f((1-t) A+t B) d t
\end{aligned}
$$

By the inequality (3.3) we then have (see also [6])

$$
\begin{align*}
0 & \leq \int_{0}^{1} f((1-t) A+t B) d t-f\left(\frac{A+B}{2}\right) \tag{3.5}\\
& \leq \frac{f(B)+f(A)}{2}-\int_{T} f((1-t) A+t B) d t
\end{align*}
$$

for all $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$.
Observe that

$$
\begin{aligned}
& \int_{0}^{1}\left(t-\frac{1}{2}\right) D f((1-t) A+t B)(B-A) d t \\
& =\int_{1 / 2}^{1}\left(t-\frac{1}{2}\right) D f((1-t) A+t B)(B-A) d t \\
& -\int_{0}^{1 / 2}\left(\frac{1}{2}-t\right) D f((1-t) A+t B)(B-A) d t
\end{aligned}
$$

for all $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$.
From (1.14) we get

$$
\begin{aligned}
\left(t-\frac{1}{2}\right) D f(A)(B-A) & \leq\left(t-\frac{1}{2}\right) D f((1-t) A+t B)(B-A) \\
& \leq\left(t-\frac{1}{2}\right) D f(B)(B-A), t \in[1 / 2,1)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\frac{1}{2}-t\right) D f(A)(B-A) & \leq\left(\frac{1}{2}-t\right) D f((1-t) A+t B)(B-A) \\
& \leq\left(\frac{1}{2}-t\right) D f(B)(B-A), t \in(0,1 / 2]
\end{aligned}
$$

The second inequality can be written as

$$
\begin{aligned}
-\left(\frac{1}{2}-t\right) D f(B)(B-A) & \leq-\left(\frac{1}{2}-t\right) D f((1-t) A+t B)(B-A) \\
& \leq-\left(\frac{1}{2}-t\right) D f(A)(B-A), t \in(0,1 / 2]
\end{aligned}
$$

By integration, we have

$$
\begin{aligned}
\int_{1 / 2}^{1}\left(t-\frac{1}{2}\right) d t D f(A)(B-A) & \leq \int_{1 / 2}^{1}\left(t-\frac{1}{2}\right) D f((1-t) A+t B)(B-A) d t \\
& \leq \int_{1 / 2}^{1}\left(t-\frac{1}{2}\right) d t D f(B)(B-A)
\end{aligned}
$$

namely

$$
\begin{align*}
\frac{1}{8} D f(A)(B-A) & \leq \int_{1 / 2}^{1}\left(t-\frac{1}{2}\right) D f((1-t) A+t B)(B-A) d t \tag{3.6}\\
& \leq \frac{1}{8} D f(B)(B-A)
\end{align*}
$$

Also

$$
\begin{aligned}
-\int_{0}^{1 / 2}\left(\frac{1}{2}-t\right) d t D f(B)(B-A) & \leq-\int_{0}^{1 / 2}\left(\frac{1}{2}-t\right) D f((1-t) A+t B)(B-A) d t \\
& \leq-\int_{0}^{1 / 2}\left(\frac{1}{2}-t\right) d t D f(A)(B-A)
\end{aligned}
$$

namely

$$
\begin{align*}
-\frac{1}{8} D f(B)(B-A) & \leq-\int_{0}^{1 / 2}\left(\frac{1}{2}-t\right) D f((1-t) A+t B)(B-A) d t \tag{3.7}\\
& \leq-\frac{1}{8} D f(A)(B-A)
\end{align*}
$$

By adding the right sides of the inequalities (3.6) and (3.7) we get

$$
\begin{aligned}
& \int_{1 / 2}^{1}\left(t-\frac{1}{2}\right) D f((1-t) A+t B)(B-A) d t \\
& -\int_{0}^{1 / 2}\left(\frac{1}{2}-t\right) D f((1-t) A+t B)(B-A) d t \\
& \leq \frac{1}{8} D f(B)(B-A)-\frac{1}{8} D f(A)(B-A)
\end{aligned}
$$

By (3.5) we then get the following reverse of Hermite-Hadamard inequalities

$$
\begin{align*}
0 & \leq \int_{0}^{1} f((1-t) A+t B) d t-f\left(\frac{A+B}{2}\right) \tag{3.8}\\
& \leq \frac{f(B)+f(A)}{2}-\int_{0}^{1} f((1-t) A+t B) d t \\
& \leq \frac{1}{8}[D f(B)-D f(A)](B-A)
\end{align*}
$$

for all $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$.
From (3.8) we also have the norm inequalities

$$
\begin{align*}
& \left\|\int_{0}^{1} f((1-t) A+t B) d t-f\left(\frac{A+B}{2}\right)\right\| \tag{3.9}\\
& \leq\left\|\frac{f(B)+f(A)}{2}-\int_{0}^{1} f((1-t) A+t B) d t\right\| \\
& \leq \frac{1}{8}\|D f(B)-D f(A)\|\|B-A\|
\end{align*}
$$

for all $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$.

4. Some Examples

The function $f(x)=x^{-1}$ is operator convex on $(0, \infty)$, operator Fréchet differentiable and the Fréchet derivative $D f(\cdot)(\cdot)$ is given by

$$
D f(T)(S)=-T^{-1} S T^{-1}
$$

for $T, S>0$.

If $\left(A_{t}\right)_{t \in T}$ is a bounded continuous field of positive operators in $\mathcal{B}(H)$ defined on a locally compact Hausdorff space T with a bounded Radon measure μ and such that $\int_{T} \mathbf{1} d \mu(t)=\mathbf{1}$, then by (2.1) we have the double inequality

$$
\begin{align*}
& 2 A^{-1}-A^{-1}\left(\int_{T} A_{t} d \mu(t)\right) A^{-1} \tag{4.1}\\
& \leq \int_{T} A_{t}^{-1} d \mu(t) \\
& \leq A^{-1}+\int_{T} A_{t}^{-1} A A_{t}^{-1} d \mu(t)-\int_{T} A_{t}^{-1} d \mu(t)
\end{align*}
$$

for all $A>0$.
The first inequality in (4.1) is equivalent to

$$
\begin{equation*}
A^{-1} \leq \frac{1}{2}\left[\int_{T} A_{t}^{-1} d \mu(t)+A^{-1}\left(\int_{T} A_{t} d \mu(t)\right) A^{-1}\right] \tag{4.2}
\end{equation*}
$$

while the second inequality is equivalent to

$$
\begin{equation*}
\int_{T} A_{t}^{-1} d \mu(t) \leq \frac{1}{2}\left[A^{-1}+\int_{T} A_{t}^{-1} A A_{t}^{-1} d \mu(t)\right] \tag{4.3}
\end{equation*}
$$

From (2.2) we have the reverse Jensen's inequality

$$
\begin{align*}
0 & \leq \int_{T} A_{t}^{-1} d \mu(t)-\left(\int_{T} A_{s} d \mu(s)\right)^{-1} \tag{4.4}\\
& \leq \int_{T} A_{t}^{-1}\left(\int_{T} A_{s} d \mu(s)\right) A_{t}^{-1} d \mu(t)-\int_{T} A_{t}^{-1} d \mu(t)
\end{align*}
$$

The second inequality in (4.4) is equivalent to

$$
\begin{equation*}
\int_{T} A_{t}^{-1} d \mu(t) \leq \frac{1}{2}\left[\int_{T} A_{t}^{-1}\left(\int_{T} A_{s} d \mu(s)\right) A_{t}^{-1} d \mu(t)+\left(\int_{T} A_{s} d \mu(s)\right)^{-1}\right] \tag{4.5}
\end{equation*}
$$

If S is a positive operator satisfying the equality

$$
\begin{equation*}
\int_{T} A_{t}^{-1} S A_{t}^{-1} d \mu(t)=\int_{T} A_{t}^{-1} d \mu(t) \tag{Sl}
\end{equation*}
$$

then we have the Slater type inequality

$$
\begin{equation*}
0 \leq S^{-1}-\int_{T} A_{t}^{-1} d \mu(t) \leq S^{-1}\left(\int_{T} A_{t} d \mu(t)\right) S^{-1}-S^{-1} \tag{4.6}
\end{equation*}
$$

The second inequality in (4.6) is equivalent to

$$
\begin{equation*}
S^{-1} \leq \frac{1}{2}\left[S^{-1}\left(\int_{T} A_{t} d \mu(t)\right) S^{-1}+\int_{T} A_{t}^{-1} d \mu(t)\right] \tag{4.7}
\end{equation*}
$$

From (3.8) we also have the inequalities

$$
\begin{align*}
0 & \leq \int_{0}^{1}((1-t) A+t B)^{-1} d t-\left(\frac{A+B}{2}\right)^{-1} \tag{4.8}\\
& \leq \frac{B^{-1}+A^{-1}}{2}-\int_{0}^{1}((1-t) A+t B)^{-1} d t \\
& \leq \frac{1}{8}\left[A^{-1}(B-A) A^{-1}-B^{-1}(B-A) B^{-1}\right]
\end{align*}
$$

for all $A, B>0$.
We note that the function $f(x)=-\ln x$ is operator convex on $(0, \infty)$. The \ln function is operator Fréchet differentiable with the following explicit formula for the derivative (cf. Pedersen [16, p. 155]):

$$
\begin{equation*}
D \ln (T)(S)=\int_{0}^{\infty}\left(s 1_{H}+T\right)^{-1} S\left(s 1_{H}+T\right)^{-1} d s \tag{4.9}
\end{equation*}
$$

for $T, S>0$.
If $\left(A_{t}\right)_{t \in T}$ is a bounded continuous field $\left(A_{t}\right)_{t \in T}$ of positive operators in $\mathcal{B}(H)$ defined on a locally compact Hausdorff space T with a bounded Radon measure μ and such that $\int_{T} \mathbf{1} d \mu(t)=\mathbf{1}$, then by (2.1) we have the double inequality

$$
\begin{align*}
& \int_{0}^{\infty}\left(s 1_{H}+A\right)^{-1} A\left(s 1_{H}+A\right)^{-1} d s-\ln A \tag{4.10}\\
& -\int_{0}^{\infty}\left(s 1_{H}+\int_{T} A_{t} d \mu(t)\right)^{-1} A\left(s 1_{H}+\int_{T} A_{t} d \mu(t)\right)^{-1} d s \\
& \leq-\int_{T} \ln \left(A_{t}\right) d \mu(t) \\
& \leq \int_{0}^{\infty}\left(s 1_{H}+A_{t}\right)^{-1} A\left(s 1_{H}+A_{t}\right)^{-1} d s-\ln A \\
& -\int_{0}^{\infty}\left(s 1_{H}+A_{t}\right)^{-1} A_{t}\left(s 1_{H}+A_{t}\right)^{-1} d s
\end{align*}
$$

for all A positive operators.
From the first inequality in (4.10) we have

$$
\begin{align*}
& \int_{0}^{\infty}\left(s 1_{H}+A\right)^{-1} A\left(s 1_{H}+A\right)^{-1} d s+\int_{T} \ln \left(A_{t}\right) d \mu(t) \tag{4.11}\\
& \leq \ln A+\int_{0}^{\infty}\left(s 1_{H}+\int_{T} A_{t} d \mu(t)\right)^{-1} A\left(s 1_{H}+\int_{T} A_{t} d \mu(t)\right)^{-1} d s
\end{align*}
$$

while from the second inequality

$$
\begin{align*}
& \ln A+\int_{0}^{\infty}\left(s 1_{H}+A_{t}\right)^{-1} A_{t}\left(s 1_{H}+A_{t}\right)^{-1} d s \tag{4.12}\\
& \leq \int_{T} \ln \left(A_{t}\right) d \mu(t)+\int_{0}^{\infty}\left(s 1_{H}+A_{t}\right)^{-1} A\left(s 1_{H}+A_{t}\right)^{-1} d s
\end{align*}
$$

for all A positive operators.
We have the reverse Jensen's inequality

$$
\begin{align*}
0 & \leq \ln \left(\int_{T} A_{s} d \mu(s)\right)-\int_{T} \ln \left(A_{t}\right) d \mu(t) \tag{4.13}\\
& \leq \int_{T} \int_{0}^{\infty}\left(s 1_{H}+A_{t}\right)^{-1}\left(\int_{T} A_{s} d \mu(s)\right)\left(s 1_{H}+A_{t}\right)^{-1} d s d \mu(t) \\
& -\int_{T} \int_{0}^{\infty}\left(s 1_{H}+A_{t}\right)^{-1} A_{t}\left(s 1_{H}+A_{t}\right)^{-1} d s d \mu(t)
\end{align*}
$$

If $S>0$ is an operator satisfying the equality

$$
\begin{align*}
& \int_{T} \int_{0}^{\infty}\left(s 1_{H}+A_{t}\right)^{-1} S\left(s 1_{H}+A_{t}\right)^{-1} d s d \mu(t) \tag{4.14}\\
& =\int_{T} \int_{0}^{\infty}\left(s 1_{H}+A_{t}\right)^{-1} A_{t}\left(s 1_{H}+A_{t}\right)^{-1} d s d \mu(t)
\end{align*}
$$

then we have the Slater type inequality

$$
\begin{align*}
0 & \leq \int_{T} \ln \left(A_{t}\right) d \mu(t)-\ln (S) \tag{4.15}\\
& \leq \int_{0}^{\infty}\left(s 1_{H}+S\right)^{-1}\left(\int_{T} A_{t} d \mu(t)\right)\left(s 1_{H}+S\right)^{-1} d s \\
& -\int_{0}^{\infty}\left(s 1_{H}+S\right)^{-1} S\left(s 1_{H}+S\right)^{-1} d s
\end{align*}
$$

By (3.8) we then get the following reverse of Hermite-Hadamard inequalities

$$
\begin{align*}
0 & \leq \ln \left(\frac{A+B}{2}\right)-\int_{0}^{1} \ln ((1-t) A+t B) d t \tag{4.16}\\
& \leq \int_{0}^{1} \ln ((1-t) A+t B) d t-\frac{\ln B+\ln A}{2} \\
& \leq \frac{1}{8}\left[\int_{0}^{\infty}\left(s 1_{H}+A\right)^{-1}(B-A)\left(s 1_{H}+A\right)^{-1} d s\right. \\
& \left.-\int_{0}^{\infty}\left(s 1_{H}+B\right)^{-1}(B-A)\left(s 1_{H}+B\right)^{-1} d s\right]
\end{align*}
$$

for all $A, B>0$.

References

[1] Agarwal, R. P. and Dragomir, S. S., A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces. Comput. Math. Appl. 59 (2010), no. 12, 3785-3812.
[2] Bacak, V., Vildan T. andTürkmen, R., Refinements of Hermite-Hadamard type inequalities for operator convex functions. J. Inequal. Appl. 2013, 2013:262, 10 pp.
[3] Darvish, V., Dragomir, S. S., Nazari H. M. and Taghavi, A., Some inequalities associated with the Hermite-Hadamard inequalities for operator h-convex functions. Acta Comment. Univ. Tartu. Math. 21 (2017), no. 2, 287-297.
[4] Dragomir, S. S., Bounds for the deviation of a function from the chord generated by its extremities. Bull. Aust. Math. Soc. 78 (2008), no. 2, 225-248.
[5] Dragomir, S. S., Bounds for the normalised Jensen functional. Bull. Austral. Math. Soc. 74 (2006), no. 3, 471-478.
[6] Dragomir, S. S., Hermite-Hadamard's type inequalities for operator convex functions. Appl. Math. Comput. 218 (2011), no. 3, 766-772.
[7] Dragomir, S. S., Some Hermite-Hadamard type inequalities for operator convex functions and positive maps, Spec. Matrices; 7 (2019), 38-51.
[8] Dragomir, S. S., Reverses of operator Hermite-Hadamard inequalities, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art. 87, 10 pp., [Online http://rgmia.org/papers/v22/v22a87.pdf].
[9] Furuta, T., Mićić Hot, J., Pečarić, J. and Seo, Y., Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
[10] Ghazanfari, A. G., Hermite-Hadamard type inequalities for functions whose derivatives are operator convex. Complex Anal. Oper. Theory 10 (2016), no. 8, 1695-1703.
[11] Ghazanfari, A. G.,The Hermite-Hadamard type inequalities for operator s-convex functions. J. Adv. Res. Pure Math. 6 (2014), no. 3, 52-61.
[12] Han J. and Shi, J., Refinements of Hermite-Hadamard inequality for operator convex function. J. Nonlinear Sci. Appl. 10 (2017), no. 11, 6035-6041.
[13] Hansen, F., Pečarić, J. and Perić, I., Jensen's operator inequality and its converses. Math. Scand. 100 (2007), no. 1, 61-73.
[14] Hansen, F. and Pedersen, G. K., Jensen's operator inequality, Bull. London Math. Soc. 35 (2003), 553-564.
[15] Mond, B. and Pečarić, J., Converses of Jensen's inequality for several operators, Rev. Anal. Numér. Théor. Approx. 23 (1994), 179-183.
[16] G. K. Pedersen, Operator differentiable functions. Publ. Res. Inst. Math. Sci. 36 (1) (2000), 139-157.
[17] Taghavi, A., Darvish, V., Nazari H. M. and Dragomir, S. S., Hermite-Hadamard type inequalities for operator geometrically convex functions. Monatsh. Math. 181 (2016), no. 1, 187-203.
[18] Vivas Cortez, M. and Hernández Hernández, E. J., Refinements for Hermite-Hadamard type inequalities for operator h-convex function. Appl. Math. Inf. Sci. 11 (2017), no. 5, 1299-1307.
[19] Vivas Cortez, M. and Hernández Hernández, E. J., , On some new generalized Hermite-Hadamard-Fejér inequalities for product of two operator h-convex functions. Appl. Math. Inf. Sci. 11 (2017), no. 4, 983-992.
[20] Wang, S.-H., Hermite-Hadamard type inequalities for operator convex functions on the coordinates. J. Nonlinear Sci. Appl. 10 (2017), no. 3, 1116-1125
[21] Wang, S.-H., New integral inequalities of Hermite-Hadamard type for operator m-convex and (α, m)-convex functions. J. Comput. Anal. Appl. 22 (2017), no. 4, 744-753.
${ }^{1}$ Mathematics, School of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ School of Computer Science \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 47A63; 47A99.
 Key words and phrases. Unital C^{*}-algebras, Selfadjoint elements, Functions of selfadjoint elements, Positive linear maps, Operator convex functions, Jensen's operator inequality, Integral inequalities.

