REVERSE JENSEN INTEGRAL INEQUALITIES FOR OPERATOR CONVEX FUNCTIONS IN TERMS OF FRÉCHET DERIVATIVE

S. S. DRAGOMIR^{1,2}

ABSTRACT. Let $f: I \to \mathbb{R}$ be an operator convex function of class $C^1(I)$. If $(A_t)_{t\in T}$ is a bounded continuous field of selfadjoint operators in $\mathcal{B}(H)$ with spectra contained in I defined on a locally compact Hausdorff space T with a bounded Radon measure μ and such that $\int_T \mathbf{1} d\mu(t) = \mathbf{1}$, then we have obtained among others the following reverse of Jensen's inequality

$$0 \leq \int_{T} f(A_{t}) d\mu(t) - f\left(\int_{T} A_{s} d\mu(s)\right)$$
$$\leq \int_{T} Df(A_{t}) (A_{t}) d\mu(t) - \int_{T} Df(A_{t}) \left(\int_{T} A_{s} d\mu(s)\right) d\mu(t)$$

in terms of the *Fréchet derivative* $Df(\cdot)(\cdot)$. Some applications for the Hermite-Hadamard inequalities are also given.

1. INTRODUCTION

A real valued continuous function f on an interval I is said to be *operator convex* (*operator concave*) on I if

(1.1)
$$f((1-\lambda)A + \lambda B) \le (\ge)(1-\lambda)f(A) + \lambda f(B)$$

in the operator order, for all $\lambda \in [0, 1]$ and for every selfadjoint operator A and B on a Hilbert space H whose spectra are contained in I. Notice that a function f is operator concave if -f is operator convex.

A real valued continuous function f on an interval I is said to be *operator* monotone if it is monotone with respect to the operator order, i.e., $A \leq B$ with $\operatorname{Sp}(A)$, $\operatorname{Sp}(B) \subset I$ imply $f(A) \leq f(B)$.

For some fundamental results on operator convex (operator concave) and operator monotone functions, see [9] and the references therein.

As examples of such functions, we note that $f(t) = t^r$ is operator monotone on $[0, \infty)$ if and only if $0 \le r \le 1$. The function $f(t) = t^r$ is operator convex on $(0, \infty)$ if either $1 \le r \le 2$ or $-1 \le r \le 0$ and is operator concave on $(0, \infty)$ if $0 \le r \le 1$. The logarithmic function $f(t) = \ln t$ is operator monotone and operator concave on $(0, \infty)$. The entropy function $f(t) = -t \ln t$ is operator concave on $(0, \infty)$. The exponential function $f(t) = e^t$ is neither operator convex nor operator monotone.

For two distinct operators $A, B \in \mathcal{SA}_I(H)$ we consider the segment of selfadjoint operators

$$[A, B] := \{ (1 - t) A + tB \mid t \in [0, 1] \}.$$

¹⁹⁹¹ Mathematics Subject Classification. 47A63; 47A99.

Key words and phrases. Unital C^* -algebras, Selfadjoint elements, Functions of selfadjoint elements, Positive linear maps, Operator convex functions, Jensen's operator inequality, Integral inequalities.

We observe that $A, B \in [A, B]$ and $[A, B] \subset SA_I(H)$.

A continuous function $g: \mathcal{SA}_I(H) \to \mathcal{B}(H)$ is said to be *Gâteaux differentiable* in $A \in \mathcal{SA}_I(H)$ along the direction $B \in \mathcal{B}(H)$ if the following limit exists in the strong topology of $\mathcal{B}(H)$

(1.2)
$$\nabla g_A(B) := \lim_{s \to 0} \frac{g(A+sB) - g(A)}{s} \in \mathcal{B}(H).$$

If the limit (1.2) exists for all $B \in \mathcal{B}(H)$, then we say that f is *Gâteaux differentiable* in A and we can write $g \in \mathcal{G}(A)$. If this is true for any A in a subset S from $S\mathcal{A}_{I}(H)$ we write that $g \in \mathcal{G}(S)$.

Let f be an operator convex function on I. For A, $B \in \mathcal{SA}_{I}(H)$, the class of all selfadjoint operators with spectra in I, we consider the auxiliary function $\varphi_{(A,B)}: [0,1] \to \mathcal{SA}_{I}(H)$ defined by

(1.3)
$$\varphi_{(A,B)}(t) := f((1-t)A + tB).$$

For $x \in H$ we can also consider the auxiliary function $\varphi_{(A,B);x} : [0,1] \to \mathbb{R}$ defined by

(1.4)
$$\varphi_{(A,B);x}(t) := \left\langle \varphi_{(A,B)}(t) \, x, x \right\rangle = \left\langle f\left((1-t) \, A + tB\right) \, x, x \right\rangle$$

By employing the properties of convex functions of a real variable, we have the following basic facts, see for instance [8]:

Lemma 1. Let f be an operator convex function on I. For any $A, B \in SA_I(H)$, $\varphi_{(A,B)}$ is well defined and convex in the operator order. For any $(A, B) \in SA_I(H)$ and $x \in H$ the function $\varphi_{(A,B);x}$ is convex in the usual sense on [0,1].

Lemma 2. Let f be an operator convex function on I and $A, B \in SA_I(H)$, with $A \neq B$. If $f \in \mathcal{G}([A, B])$, then the auxiliary function $\varphi_{(A,B)}$ is differentiable on (0,1) and

(1.5)
$$\varphi'_{(A,B)}(t) = \nabla f_{(1-t)A+tB}(B-A).$$

Also we have for the lateral derivative that

(1.6)
$$\varphi'_{+(A,B)}(0) = \nabla f_A (B - A)$$

and

(1.7)
$$\varphi'_{-(A,B)}(1) = \nabla f_B(B-A).$$

and

Lemma 3. Let f be an operator convex function on I and $A, B \in SA_I(H)$, with $A \neq B$. If $f \in \mathcal{G}([A, B])$, then for $0 < t_1 < t_2 < 1$ we have

(1.8)
$$\nabla g_{(1-t_1)A+t_1B}(B-A) \le \nabla g_{(1-t_2)A+t_2B}(B-A)$$

in the operator order. We also have

(1.9)
$$\nabla f_A \left(B - A \right) \le \nabla g_{(1-t_1)A+t_1B} \left(B - A \right)$$

and

(1.10)
$$\nabla g_{(1-t_2)A+t_2B} \left(B-A\right) \le \nabla f_B \left(B-A\right).$$

Corollary 1. Let f be an operator convex function on I and $A, B \in SA_I(H)$, with $A \neq B$. If $f \in \mathcal{G}([A, B])$, then for all $t \in (0, 1)$ we have

(1.11)
$$\nabla f_A \left(B - A \right) \le \nabla f_{(1-t)A+tB} \left(B - A \right) \le \nabla f_B \left(B - A \right).$$

By making use of the gradient inequality for the convex function of a real variable $\varphi_{(A,B);x}$ with $x \in H$,

$$\varphi'_{+(A,B);x}(0) \le \varphi_{(A,B);x}(1) - \varphi_{(A,B);x}(0) \le \varphi'_{-(A,B)}(1),$$

namely

$$\langle \nabla f_A (B - A) x, x \rangle \le \langle f (B) x, x \rangle - \langle f (A) x, x \rangle \le \langle \nabla f_B (B - A) x, x \rangle$$

for any $x \in H$. This is equivalent in the operatorial order with the operator gradient inequality

$$\nabla f_A \left(B - A \right) \le f \left(B \right) - f \left(A \right) \le \nabla f_B \left(B - A \right).$$

It is well known that, if f is a C^1 -function defined on an open interval, then the operator function f(X) is *Fréchet differentiable* and the derivative Df(A)(B)equals the Gâteaux derivative $\nabla f_A(B)$. So for operator convex functions f that are of class C^1 on I we have the *Fréchet gradient operator inequality*

(Gr)
$$Df(A)(B-A) \le f(B) - f(A) \le Df(B)(B-A)$$

for any $A, B \in \mathcal{SA}_{I}(H)$.

For a C^1 -function f defined on I we also have by Lemma 2 that

(1.12)
$$\varphi'_{(A,B)}(t) = Df((1-t)A + tB)(B-A), \ t \in (0,1)$$

and

(1.13)
$$\varphi'_{+(A,B)}(0) = Df(A)(B-A), \ \varphi'_{-(A,B)}(1) = Df(B)(B-A).$$

Moreover, we have

(1.14)
$$Df(A)(B-A) \le Df((1-t)A+tB)(B-A) \le Df(B)(B-A)$$

for all $t \in (0,1)$.

Let T be a locally compact Hausdorff space. We say that a field $(A_t)_{t\in T}$ of operators in $\mathcal{B}(H)$ is continuous if the function $t \mapsto A_t$ is norm continuous on T. If in addition μ is a Radon measure on T and the function $t \mapsto ||A_t||$ is integrable, then we can form the Bochner integral $\int_T A_t d\mu(t)$, which is the unique element in $\mathcal{B}(H)$ such that

$$\varphi\left(\int_{T} A_{t} d\mu\left(t\right)\right) = \int_{T} \varphi\left(A_{t}\right) d\mu\left(t\right)$$

for every linear functional φ in the norm dual $\mathcal{B}(H)^*$, cf. [14, Section 4.1].

Assume furthermore that there is a field $(\phi_t)_{t\in T}$ of positive linear mappings ϕ_t : $\mathcal{B}(H) \to \mathcal{B}(K)$ from $\mathcal{B}(H)$ to another C^* -algebra $\mathcal{B}(K)$, with K a Hilbert space. We say that such a field is continuous if the function $t \mapsto \phi_t(A)$ is continuous for every $A \in \mathcal{B}(H)$. If the field $t \mapsto \phi_t(\mathbf{1})$ is integrable with integral $\int_T \phi_t(\mathbf{1}) d\mu(t) =$ $\mathbf{1}$, we say that $(\phi_t)_{t\in T}$ is unital.

The following Jensen's integral inequality has been obtained in [13]:

Theorem 1. Let $f : I \to \mathbb{R}$ be an operator convex function defined on an interval I. If $(\phi_t)_{t \in T}$ is a unital field of positive linear mappings $\phi_t : \mathcal{B}(H) \to \mathcal{B}(K)$ defined on a locally compact Hausdorff space T with a bounded Radon measure μ , then the inequality

(1.15)
$$f\left(\int_{T}\phi_{t}\left(A_{t}\right)d\mu\left(t\right)\right) \leq \int_{T}\phi_{t}\left(f\left(A_{t}\right)\right)d\mu\left(t\right)$$

holds for every bounded continuous field $(A_t)_{t\in T}$ of selfadjoint operators in $\mathcal{B}(H)$ with spectra contained in I.

The discrete case is as follows [15]:

$$f\left(\sum_{i=1}^{n} w_{i}\phi_{i}\left(A_{i}\right)\right) \leq \sum_{i=1}^{n} w_{i}\phi_{i}\left(f\left(A_{i}\right)\right)$$

for operator convex functions f defined on an interval I, where $\phi_i : \mathcal{B}(H) \to \mathcal{B}(K), i \in \{1, ..., n\}$ are unital positive linear maps, $A_i, i \in \{1, ..., n\}$ are selfadjoint operators in $\mathcal{B}(H)$ with spectra contained in I and $w_i \geq 0, i \in \{1, ..., n\}$ with $\sum_{i=1}^{n} w_i = 1$.

Also, if $f: I \to \mathbb{R}$ is operator convex on I and $U_i \in \mathcal{B}(H), i \in \{1, ..., n\}$ with $\sum_{i=1}^{n} U^* U_i = 1$, then [14]

$$f\left(\sum_{i=1}^{n} U^* A_i U_i\right) \le \sum_{i=1}^{n} U^* f\left(A_i\right) U_i,$$

where $A_i, i \in \{1, ..., n\}$ are selfadjoint operators in $\mathcal{B}(H)$ with spectra contained in I.

In this paper we establish some reverses of Jensen's integral inequality for operator convex functions of class $C^1(I)$, continuous fields $(A_t)_{t\in T}$ of selfadjoint operators in $\mathcal{B}(H)$ with spectra contained in I defined on a locally compact Hausdorff space T with a bounded Radon measure μ and such that $\int_T 1d\mu(t) = 1$. These reverses are given in terms of the Fréchet derivative $Df(\cdot)(\cdot)$. Some applications for the Hermite-Hadamard inequalities are also provided.

2. Main Results

We have the following inequalities in terms of the Fréchet derivative $Df(\cdot)(\cdot)$:

Theorem 2. Let $f : I \to \mathbb{R}$ be an operator convex function of class $C^1(I)$. If $(A_t)_{t\in T}$ is a bounded continuous field $(A_t)_{t\in T}$ of selfadjoint operators in $\mathcal{B}(H)$ with spectra contained in I defined on a locally compact Hausdorff space T with a bounded Radon measure μ and such that $\int_T \mathbf{1} d\mu(t) = \mathbf{1}$, then we have the double inequality in terms of the Fréchet derivative $Df(\cdot)(\cdot)$

(2.1)
$$f(A) - Df(A)(A) + Df(A)\left(\int_{T} A_{t}d\mu(t)\right)$$
$$\leq \int_{T} f(A_{t}) d\mu(t)$$
$$\leq f(A) - \int_{T} Df(A_{t})(A) d\mu(t) + \int_{T} Df(A_{t})(A_{t}) d\mu(t)$$

for all $A \in \mathcal{SA}_{I}(H)$.

We have the reverse Jensen's inequality

(2.2)
$$0 \leq \int_{T} f(A_{t}) d\mu(t) - f\left(\int_{T} A_{s} d\mu(s)\right)$$
$$\leq \int_{T} Df(A_{t}) (A_{t}) d\mu(t) - \int_{T} Df(A_{t}) \left(\int_{T} A_{s} d\mu(s)\right) d\mu(t).$$

If $S \in SA_{I}(H)$ is an operator satisfying the equality

(SI)
$$\int_{T} Df(A_t)(S) d\mu(t) = \int_{T} Df(A_t)(A_t) d\mu(t),$$

then we have the Slater type inequality

(2.3)
$$0 \le f(S) - \int_{T} f(A_t) \, d\mu(t) \le Df(S)(S) - Df(S)\left(\int_{T} A_t d\mu(t)\right).$$

Proof. From (Gr) we have

(2.4)
$$Df(A)(A_t - A) \le f(A_t) - f(A) \le Df(A_t)(A_t - A)$$

for all $t \in T$.

By the linearity of the Fréchet derivative we have

(2.5)
$$f(A) - Df(A)(A) + Df(A)(A_t) \le f(A_t)$$

 $\le f(A) - Df(A_t)(A) + Df(A_t)(A_t)$

for all $t \in T$.

By taking the integral over $t \in T$, we have

(2.6)
$$f(A) - Df(A)(A) + \int_{T} Df(A)(A_{t}) d\mu(t) \\ \leq \int_{T} f(A_{t}) d\mu(t) \\ \leq f(A) - \int_{T} Df(A_{t})(A) d\mu(t) + \int_{T} Df(A_{t})(A_{t}) d\mu(t).$$

Since $\operatorname{Sp}(A_t) \subset I$, $t \in T$, then there exists m < M such that $\operatorname{Sp}(A_t) \subseteq [m, M] \subset I$, $t \in T$, namely $\mathbf{1}m \leq A_t \leq \mathbf{1}M$ which implies that $\mathbf{1}m \leq \int_T A_t d\mu(t) \leq \mathbf{1}M$. Namely, $\int_T A_t d\mu(t) \in \mathcal{SA}_I(H)$. By the linearity and continuity of the Fréchet derivative we then have

$$\int_{T} Df(A)(A_{t}) d\mu(t) = Df(A)\left(\int_{T} A_{t} d\mu(t)\right)$$

and by (2.6) we get (2.1).

By taking $A = \int_T A_t d\mu(t)$ in (2.1) we get (2.2). If we take A = S in (2.1), then we also get (2.3).

We assume that \mathfrak{D} is a bounded linear operator that acts on $\mathcal{SA}_{I}(H)$ with values in $\mathcal{SA}_{I}(H)$. We denote this as $\mathfrak{D} \in \mathcal{B}(\mathcal{SA}_{I}(H))$.

Corollary 2. Let $f : I \to \mathbb{R}$ be an operator convex function of class $C^1(I)$. If $(A_t)_{t\in T}$ is a bounded continuous field $(A_t)_{t\in T}$ of selfadjoint operators in $\mathcal{B}(H)$

with spectra contained in I defined on a locally compact Hausdorff space T with a bounded Radon measure μ and such that $\int_{T} \mathbf{1} d\mu(t) = \mathbf{1}$, then

$$(2.7) \qquad \left\| \int_{T} f\left(A_{t}\right) d\mu\left(t\right) - f\left(\int_{T} A_{s} d\mu\left(s\right)\right) \right\|$$
$$\leq \begin{cases} \inf_{\mathfrak{D} \in \mathcal{B}(\mathcal{SA}_{I}(H))} \left(\sup_{t \in T} \|Df(A_{t}) - \mathfrak{D}\|\right) \\ \times \int_{T} \|A_{t} - \int_{T} A_{s} d\mu\left(s\right)\| d\mu\left(t\right) \\ \inf_{\mathfrak{D} \in \mathcal{B}(\mathcal{SA}_{I}(H))} \left(\int_{T} \|Df(A_{t}) - \mathfrak{D}\|^{p} d\mu\left(t\right)\right)^{1/p} \\ \times \left(\int_{T} \|A_{t} - \int_{T} A_{s} d\mu\left(s\right)\|^{q} d\mu\left(t\right)\right)^{1/q}; \ p, \ q > 1, \ \frac{1}{p} + \frac{1}{q} = 1 \\ \inf_{\mathfrak{D} \in \mathcal{B}(\mathcal{SA}_{I}(H))} \left(\int_{T} \|Df(A_{t}) - \mathfrak{D}\| d\mu\left(t\right)\right) \\ \times \sup_{t \in T} \|A_{t} - \int_{T} A_{s} d\mu\left(s\right)\|. \end{cases}$$

In particular,

(2.8)
$$\left\| \int_{T} f(A_{t}) d\mu(t) - f\left(\int_{T} A_{s} d\mu(s)\right) \right\|$$
$$\leq \begin{cases} \sup_{t \in T} \|Df(A_{t})\| \int_{T} \|A_{t} - \int_{T} A_{s} d\mu(s)\| d\mu(t) \\ \left(\int_{T} \|Df(A_{t})\|^{p} d\mu(t)\right)^{1/p} \left(\int_{T} \|A_{t} - \int_{T} A_{s} d\mu(s)\|^{q} d\mu(t)\right)^{1/q}; \\ p, \ q > 1, \ \frac{1}{p} + \frac{1}{q} = 1 \\ \int_{T} \|Df(A_{t})\| d\mu(t) \sup_{t \in T} \|A_{t} - \int_{T} A_{s} d\mu(s)\|. \end{cases}$$

Proof. We have for any operator $\mathfrak{D} \in \mathcal{B}(\mathcal{SA}_{I}(H))$ and the properties of Fréchet derivative and integral, that

$$\begin{split} &\int_{T} \left(Df(A_t) - \mathfrak{D} \right) \left(A_t - \int_{T} A_s d\mu \left(s \right) \right) d\mu \left(t \right) \\ &= \int_{T} Df(A_t) \left(A_t - \int_{T} A_s d\mu \left(s \right) \right) d\mu \left(t \right) - \int_{T} \mathfrak{D} \left(A_t - \int_{T} A_s d\mu \left(s \right) \right) d\mu \left(t \right) \\ &= \int_{T} Df(A_t) \left(A_t \right) d\mu \left(t \right) - \int_{T} Df(A_t) \left(\int_{T} A_s d\mu \left(s \right) \right) d\mu \left(t \right) \\ &- \mathfrak{D} \int_{T} \left(\int_{T} A_t d\mu \left(t \right) - \int_{T} \left(\int_{T} A_s d\mu \left(s \right) \right) d\mu \left(t \right) \right) \\ &= \int_{T} Df(A_t) \left(A_t \right) d\mu \left(t \right) - \int_{T} Df(A_t) \left(\int_{T} A_s d\mu \left(s \right) \right) d\mu \left(t \right) \\ &- \mathfrak{D} \int_{T} \left(\int_{T} A_t d\mu \left(t \right) - \left(\int_{T} A_s d\mu \left(s \right) \right) \right) \\ &= \int_{T} Df(A_t) \left(A_t \right) d\mu \left(t \right) - \int_{T} Df(A_t) \left(\int_{T} A_s d\mu \left(s \right) \right) d\mu \left(t \right) . \end{split}$$

From (2.2) we have

(2.9)
$$0 \leq \int_{T} f(A_{t}) d\mu(t) - f\left(\int_{T} A_{s} d\mu(s)\right)$$
$$\leq \int_{T} \left(Df(A_{t}) - \mathfrak{D}\right) \left(A_{t} - \int_{T} A_{s} d\mu(s)\right) d\mu(t)$$

for any operator $\mathfrak{D} \in \mathcal{B}(\mathcal{SA}_{I}(H))$.

By taking the norm in (2.9) we get

$$(2.10) \qquad \left\| \int_{T} f\left(A_{t}\right) d\mu\left(t\right) - f\left(\int_{T} A_{s} d\mu\left(s\right)\right) \right\| \\ \leq \int_{T} \left\| \left(Df(A_{t}) - \mathfrak{D}\right) \left(A_{t} - \int_{T} A_{s} d\mu\left(s\right)\right) \right\| d\mu\left(t\right) \\ \leq \int_{T} \left\|Df(A_{t}) - \mathfrak{D}\right\| \left\|A_{t} - \int_{T} A_{s} d\mu\left(s\right)\right\| d\mu\left(t\right) \\ \leq \begin{cases} \sup_{t \in T} \left\|Df(A_{t}) - \mathfrak{D}\right\| \int_{T} \left\|A_{t} - \int_{T} A_{s} d\mu\left(s\right)\right\| d\mu\left(t\right) \\ \left(\int_{T} \left\|Df(A_{t}) - \mathfrak{D}\right\|^{p}\right)^{1/p} \left(\int_{T} \left\|A_{t} - \int_{T} A_{s} d\mu\left(s\right)\right\|^{q} d\mu\left(t\right)\right)^{1/q} \\ p, \ q > 1, \ \frac{1}{p} + \frac{1}{q} = 1 \\ \int_{T} \left\|Df(A_{t}) - \mathfrak{D}\right\| d\mu\left(t\right) \sup_{t \in T} \left\|A_{t} - \int_{T} A_{s} d\mu\left(s\right)\right\| \end{cases}$$

for any operator $\mathfrak{D} \in \mathcal{B}(\mathcal{SA}_{I}(H))$.

By taking the infimum over $\mathfrak{D} \in \mathcal{B}(\mathcal{SA}_I(H))$ in (2.10) we obtain the desired result. \Box

Corollary 3. With the assumptions of Corollary 2 and if there exists $\mathfrak{D}_1, \mathfrak{D}_2 \in \mathcal{B}(\mathcal{SA}_I(H))$ such that

(2.11)
$$\left\| Df(A_t) - \frac{\mathfrak{D}_1 + \mathfrak{D}_2}{2} \right\| \le \frac{1}{2} \left\| \mathfrak{D}_2 - \mathfrak{D}_1 \right\|$$

then

(2.12)
$$\left\| \int_{T} f(A_{t}) d\mu(t) - f\left(\int_{T} A_{s} d\mu(s) \right) \right\|$$
$$\leq \frac{1}{2} \left\| \mathfrak{D}_{2} - \mathfrak{D}_{1} \right\| \int_{T} \left\| A_{t} - \int_{T} A_{s} d\mu(s) \right\| d\mu(t).$$

The proof follows by the first inequality in (2.7) and the condition (2.11).

Corollary 4. With the assumptions of Corollary 2 and if $S \in SA_I(H)$ is an operator satisfying the equality (Sl), then

(2.13)
$$\left\| f(S) - \int_{T} f(A_{t}) d\mu(t) \right\| \leq \|Df(S)\| \left\| S - \int_{T} A_{t} d\mu(t) \right\| \\ \leq \|Df(S)\| \int_{T} \|S - A_{t}\| d\mu(t) \, .$$

Proof. By taking the norm in (2.3) we get

$$\left\| f\left(S\right) - \int_{T} f\left(A_{t}\right) d\mu\left(t\right) \right\| \leq \left\| Df(S)\left(S - \int_{T} A_{t} d\mu\left(t\right)\right) \right\|$$
$$\leq \left\| S - \int_{T} A_{t} d\mu\left(t\right) \right\|$$
$$= \left\| \int_{T} \left(S - A_{t}\right) d\mu\left(t\right) \right\| \leq \int_{T} \left\| S - A_{t} \right\| d\mu\left(t\right)$$

and the inequality (2.13) is obtained.

We assume that $f: I \to \mathbb{R}$ is an operator convex function of class $C^{1}(I)$ and $Df(\cdot)$ is Lipschitzian with constant L > 0 on $\mathcal{SA}_{I}(H)$, namely

(2.14)
$$||Df(A) - Df(B)|| \le L ||A - B||$$

for any $A, B \in \mathcal{SA}_{I}(H)$.

Corollary 5. With the assumptions of Corollary 1 and if $Df(\cdot)$ is Lipschitzian with constant L > 0 on $SA_I(H)$,

$$(2.15) \qquad \left\| \int_{T} f(A_{t}) d\mu(t) - f\left(\int_{T} A_{s} d\mu(s)\right) \right\|$$
$$\leq L \begin{cases} \inf_{B \in \mathcal{SA}_{I}(H)} \left(\sup_{t \in T} \|A_{t} - B\| \right) \int_{T} \|A_{t} - \int_{T} A_{s} d\mu(s)\| d\mu(t) \right) \\ \inf_{B \in \mathcal{SA}_{I}(H)} \left(\int_{T} \|A_{t} - B\|^{p} d\mu(t) \right)^{1/p} \\ \times \left(\int_{T} \|A_{t} - \int_{T} A_{s} d\mu(s)\|^{q} d\mu(t) \right)^{1/q}, \ p, \ q > 1, \ \frac{1}{p} + \frac{1}{q} = 1 \\ \inf_{B \in \mathcal{SA}_{I}(H)} \int_{T} \|A_{t} - B\| d\mu(t) \sup_{t \in T} \|A_{t} - \int_{T} A_{s} d\mu(s)\|. \end{cases}$$

In particular,

$$(2.16) \qquad \left\| \int_{T} f(A_{t}) d\mu(t) - f\left(\int_{T} A_{s} d\mu(s)\right) \right\|$$
$$\leq L \begin{cases} \sup_{t \in T} \left\| A_{t} - \int_{T} A_{s} d\mu(s) \right\| \int_{T} \left\| A_{t} - \int_{T} A_{s} d\mu(s) \right\| d\mu(t) \\ \left(\int_{T} \left\| A_{t} - \int_{T} A_{s} d\mu(s) \right\|^{p} d\mu(t) \right)^{1/p} \\ \times \left(\int_{T} \left\| A_{t} - \int_{T} A_{s} d\mu(s) \right\|^{q} d\mu(t) \right)^{1/q}, \ p, \ q > 1, \ \frac{1}{p} + \frac{1}{q} = 1. \end{cases}$$

For p = q = 2 we also get

(2.17)
$$\left\|\int_{T} f(A_{t}) d\mu(t) - f\left(\int_{T} A_{s} d\mu(s)\right)\right\| \leq L \int_{T} \left\|A_{t} - \int_{T} A_{s} d\mu(s)\right\|^{2} d\mu(t).$$

Proof. Let $B \in \mathcal{SA}_{I}(H)$. From (2.9) we have

(2.18)
$$0 \leq \int_{T} f(A_{t}) d\mu(t) - f\left(\int_{T} A_{s} d\mu(s)\right)$$
$$\leq \int_{T} \left(Df(A_{t}) - Df(B)\right) \left(A_{t} - \int_{T} A_{s} d\mu(s)\right) d\mu(t).$$

By taking the norm in (2.18) we get

$$(2.19) \qquad \left\| \int_{T} f(A_{t}) d\mu(t) - f\left(\int_{T} A_{s} d\mu(s)\right) \right\| \\ \leq \int_{T} \left\| (Df(A_{t}) - Df(B)) \left(A_{t} - \int_{T} A_{s} d\mu(s)\right) \right\| d\mu(t) \\ \leq \int_{T} \left\| Df(A_{t}) - Df(B) \right\| \left\| A_{t} - \int_{T} A_{s} d\mu(s) \right\| d\mu(t) \\ \leq L \int_{T} \left\| A_{t} - B \right\| \left\| A_{t} - \int_{T} A_{s} d\mu(s) \right\| d\mu(t) \\ \leq L \begin{cases} \sup_{t \in T} \left\| A_{t} - B \right\| \int_{T} \left\| A_{t} - \int_{T} A_{s} d\mu(s) \right\| d\mu(t) \\ \left(\int_{T} \left\| A_{t} - B \right\|^{p} d\mu(t) \right)^{1/p} \left(\int_{T} \left\| A_{t} - \int_{T} A_{s} d\mu(s) \right\|^{q} d\mu(t) \right)^{1/q}, \\ p, q > 1, \frac{1}{p} + \frac{1}{q} = 1 \\ \int_{T} \left\| A_{t} - B \right\| d\mu(t) \sup_{t \in T} \left\| A_{t} - \int_{T} A_{s} d\mu(s) \right\| \end{cases}$$

for any $B \in \mathcal{SA}_{I}(H)$.

By taking the infimum over $B \in \mathcal{SA}_{I}(H)$ in (2.19) we obtain the desired result.

Remark 1. For the sake of completeness, we give here the discrete case as well. Let $f: I \to \mathbb{R}$ be an operator convex function of class $C^1(I)$. If $(A_i)_{i \in \{1,...,n\}}$ is a sequence of selfadjoint operators in $\mathcal{B}(H)$ with spectra contained in I and $p_i \ge 0$, $i \in \{1,...,n\}$ with $\sum_{i=1}^{n} p_i = 1$. Then for all $A \in \mathcal{SA}_I(H)$ we have

(2.20)
$$f(A) - Df(A)(A) + Df(A)\left(\sum_{i=1}^{n} p_{i}A_{i}\right)$$
$$\leq \sum_{i=1}^{n} p_{i}f(A_{i})$$
$$\leq f(A) - \sum_{i=1}^{n} p_{i}Df(A_{i})(A) + \sum_{i=1}^{n} p_{i}Df(A_{i})(A_{i}).$$

We have

(2.21)
$$0 \leq \sum_{i=1}^{n} p_i f(A_i) - f\left(\sum_{i=1}^{n} p_i A_i\right)$$
$$\leq \sum_{i=1}^{n} p_i Df(A_i) (A_i) - \sum_{i=1}^{n} p_i Df(A_i) \left(\sum_{j=1}^{n} p_j A_j\right).$$

If $S \in \mathcal{SA}_{I}(H)$ is an operator satisfying the equality

(Sld)
$$\sum_{i=1}^{n} p_i Df(A_i)(S) d\mu(t) = \sum_{i=1}^{n} p_i Df(A_i)(A_i),$$

then we have the Slater type discrete inequality

(2.22)
$$0 \le f(S) - \sum_{i=1}^{n} p_i f(A_i) \le Df(S)(S) - Df(S)\left(\sum_{i=1}^{n} p_i A_i\right).$$

We have the norm inequalities

$$(2.23) \qquad \left\| \sum_{i=1}^{n} p_{i}f\left(A_{i}\right) - f\left(\sum_{i=1}^{n} p_{i}A_{i}\right) \right\| \\ \leq \begin{cases} \inf_{\mathfrak{D} \in \mathcal{B}(\mathcal{SA}_{I}(H))} \left(\max_{i \in \{1,...,n\}} \|Df(A_{i}) - \mathfrak{D}\|\right) \\ \times \sum_{i=1}^{n} p_{i} \left\| A_{i} - \sum_{j=1}^{n} p_{j}A_{j} \right\| \\ \inf_{\mathfrak{D} \in \mathcal{B}(\mathcal{SA}_{I}(H))} \left(\sum_{i=1}^{n} p_{i} \|Df(A_{i}) - \mathfrak{D}\|^{p}\right)^{1/p} \\ \times \left(\sum_{i=1}^{n} p_{i} \left\| A_{i} - \sum_{j=1}^{n} p_{j}A_{j} \right\|^{q}\right)^{1/q}, \ p, \ q > 1, \ \frac{1}{p} + \frac{1}{q} = 1 \\ \inf_{\mathfrak{D} \in \mathcal{B}(\mathcal{SA}_{I}(H))} \left(\sum_{i=1}^{n} p_{i} \|Df(A_{i}) - \mathfrak{D}\|\right) \\ \times \max_{i \in \{1,...,n\}} \left\| A_{i} - \sum_{j=1}^{n} p_{j}A_{j} \right\|. \end{cases}$$

In particular,

$$(2.24) \qquad \left\| \sum_{i=1}^{n} p_{i}f\left(A_{i}\right) - f\left(\sum_{i=1}^{n} p_{i}A_{i}\right) \right\| \\ \leq \begin{cases} \max_{i \in \{1,...,n\}} \|Df(A_{i})\| \sum_{i=1}^{n} p_{i} \|A_{i} - \sum_{j=1}^{n} p_{j}A_{j}\| \\ (\sum_{i=1}^{n} p_{i} \|Df(A_{i})\|^{p})^{1/p} \\ \times \left(\sum_{i=1}^{n} p_{i} \|A_{i} - \sum_{j=1}^{n} p_{j}A_{j}\|^{q}\right)^{1/q}, \ p, \ q > 1, \ \frac{1}{p} + \frac{1}{q} = 1 \\ \sum_{i=1}^{n} p_{i} \|Df(A_{i})\| \max_{i \in \{1,...,n\}} \|A_{i} - \sum_{j=1}^{n} p_{j}A_{j}\|. \end{cases}$$

If there exists $\mathfrak{D}_{1}, \mathfrak{D}_{2} \in \mathcal{B}(\mathcal{SA}_{I}(H))$ such that

(2.25)
$$\left\| Df(A_i) - \frac{\mathfrak{D}_1 + \mathfrak{D}_2}{2} \right\| \le \frac{1}{2} \left\| \mathfrak{D}_2 - \mathfrak{D}_1 \right\|,$$

then

(2.26)
$$\left\|\sum_{i=1}^{n} p_i f(A_i) - f\left(\sum_{i=1}^{n} p_i A_i\right)\right\| \le \frac{1}{2} \left\|\mathfrak{D}_2 - \mathfrak{D}_1\right\| \sum_{i=1}^{n} p_i \left\|A_i - \sum_{j=1}^{n} p_j A_j\right\|.$$

If $S \in SA_{I}(H)$ is an operator satisfying the equality (Sld), then

(2.27)
$$\left\| f(S) - \sum_{i=1}^{n} p_{i} f(A_{i}) \right\| \leq \|Df(S)\| \left\| S - \sum_{i=1}^{n} p_{i} A_{i} \right\|$$
$$\leq \|Df(S)\| \sum_{i=1}^{n} p_{i} \|S - A_{i}\|.$$

Moreover, if $Df(\cdot)$ is Lipschitzian with constant L > 0 on $\mathcal{SA}_{I}(H)$, then

$$(2.28) \left\| \sum_{i=1}^{n} p_{i} f\left(A_{i}\right) - f\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \right\| \\ \leq L \left\{ \begin{array}{l} \inf_{B \in \mathcal{SA}_{I}(H)} \left(\sup_{i \in \{1, \dots, n\}} \|A_{i} - B\|\right) \sum_{i=1}^{n} p_{i} \left\|A_{i} - \sum_{j=1}^{n} p_{j} A_{j}\right| \\ \inf_{B \in \mathcal{SA}_{I}(H)} \left(\sum_{i=1}^{n} p_{i} \|A_{i} - B\|^{p}\right)^{1/p} \\ \times \left(\sum_{i=1}^{n} p_{i} \left\|A_{i} - \sum_{j=1}^{n} p_{j} A_{j}\right\|^{q}\right)^{1/q}, \ p, \ q > 1, \ \frac{1}{p} + \frac{1}{q} = 1 \\ \inf_{B \in \mathcal{SA}_{I}(H)} \sum_{i=1}^{n} p_{i} \|A_{i} - B\| \sup_{i \in \{1, \dots, n\}} \left\|A_{i} - \sum_{j=1}^{n} p_{j} A_{j}\right\|. \end{array} \right.$$

In particular,

$$(2.29) \qquad \left\| \sum_{i=1}^{n} p_{i} f\left(A_{i}\right) - f\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \right\| \\ \leq L \begin{cases} \sup_{i \in \{1, \dots, n\}} \left\| A_{i} - \sum_{j=1}^{n} p_{j} A_{j} \right\| \sum_{i=1}^{n} p_{i} \left\| A_{i} - \sum_{j=1}^{n} p_{j} A_{j} \right\| \\ \left(\sum_{i=1}^{n} p_{i} \left\| A_{i} - \sum_{j=1}^{n} p_{j} A_{j} \right\|^{p} \right)^{1/p} \\ \times \left(\sum_{i=1}^{n} p_{i} \left\| A_{i} - \sum_{j=1}^{n} p_{j} A_{j} \right\|^{q} \right)^{1/q}, \ p, \ q > 1, \ \frac{1}{p} + \frac{1}{q} = 1. \end{cases}$$

For p = q = 2 we also get

(2.30)
$$\left\|\sum_{i=1}^{n} p_i f(A_i) - f\left(\sum_{i=1}^{n} p_i A_i\right)\right\| \le L \sum_{i=1}^{n} p_i \left\|A_i - \sum_{j=1}^{n} p_j A_j\right\|^{q}.$$

3. Hermite-Hadamard Type Inequalities

Let $f : I \to \mathbb{R}$ be an operator convex function of class $C^1(I)$. If A, B are selfadjoint operators in $\mathcal{B}(H)$ with spectra contained in I, then by taking $A_t := (1-t)A + tB$, $t \in [0,1]$ and the Lebesgue measure on [0,1], we have by (2.1) the double inequality in terms of the Fréchet derivative $Df(\cdot)(\cdot)$

(3.1)
$$f(A) - Df(A)(A) + Df(A)\left(\int_{0}^{1} [(1-t)A + tB]dt\right)$$
$$\leq \int_{0}^{1} f((1-t)A + tB)dt$$
$$\leq f(A) - \int_{0}^{1} Df((1-t)A + tB)(A)dt$$
$$+ \int_{0}^{1} Df((1-t)A + tB)((1-t)A + tB)dt$$

for all $A, B \in \mathcal{SA}_{I}(H)$.

Observe that

$$\int_{0}^{1} \left[(1-t) A + tB \right] dt = \frac{A+B}{2}$$

and

$$\int_{0}^{1} Df((1-t)A + tB) ((1-t)A + tB) dt - \int_{0}^{1} Df((1-t)A + tB) (A) dt$$
$$= \int_{0}^{1} tDf((1-t)A + tB) (B - A).$$

By utilising (3.1) we get the following inequality of interest

(3.2)
$$f(A) - Df(A)(A) + Df(A)\left(\frac{A+B}{2}\right)$$
$$\leq \int_{0}^{1} f((1-t)A + tB) dt$$
$$\leq f(A) + \int_{0}^{1} tDf((1-t)A + tB)(B-A)$$

for all $A, B \in \mathcal{SA}_{I}(H)$.

From (2.2) we have the reverse of the first Hermite-Hadamard inequality

(3.3)
$$0 \leq \int_{0}^{1} f((1-t)A + tB) dt - f\left(\frac{A+B}{2}\right)$$
$$\leq \int_{0}^{1} Df((1-t)A + tB) ((1-t)A + tB) dt$$
$$- \int_{0}^{1} Df((1-t)A + tB) \left(\frac{A+B}{2}\right) dt$$
$$= \int_{0}^{1} \left(t - \frac{1}{2}\right) Df((1-t)A + tB) (B - A) dt$$

for all $A, B \in \mathcal{SA}_{I}(H)$.

If $S \in \mathcal{SA}_{I}(H)$ is an operator satisfying the equality

(SI)
$$\int_0^1 Df((1-t)A + tB)(S) dt = \int_T Df((1-t)A + tB)((1-t)A + tB) dt$$
,

then we have the Slater type inequality

(3.4)
$$0 \le f(S) - \int_T f((1-t)A + tB) dt \le Df(S)(S) - Df(S)\left(\frac{A+B}{2}\right).$$

Now, observe that, by (1.12) and integrating by parts, we have

$$\int_{0}^{1} \left(t - \frac{1}{2}\right) Df((1 - t) A + tB) (B - A)$$

= $\int_{0}^{1} \left(t - \frac{1}{2}\right) \varphi'_{(A,B)}(t)$
= $\left(t - \frac{1}{2}\right) \varphi_{(A,B)}(t) \Big|_{0}^{1} - \int_{0}^{1} \varphi_{(A,B)}(t) dt$
= $\frac{f(B) + f(A)}{2} - \int_{0}^{1} f((1 - t) A + tB) dt.$

By the inequality (3.3) we then have (see also [6])

(3.5)
$$0 \le \int_{0}^{1} f((1-t)A + tB) dt - f\left(\frac{A+B}{2}\right) \\ \le \frac{f(B) + f(A)}{2} - \int_{T} f((1-t)A + tB) dt$$

for all $A, B \in \mathcal{SA}_{I}(H)$. Observe that

$$\int_{0}^{1} \left(t - \frac{1}{2}\right) Df((1-t)A + tB) (B - A) dt$$

= $\int_{1/2}^{1} \left(t - \frac{1}{2}\right) Df((1-t)A + tB) (B - A) dt$
- $\int_{0}^{1/2} \left(\frac{1}{2} - t\right) Df((1-t)A + tB) (B - A) dt$

for all $A, B \in \mathcal{SA}_{I}(H)$.

From (1.14) we get

$$\left(t - \frac{1}{2}\right) Df(A)(B - A) \le \left(t - \frac{1}{2}\right) Df((1 - t)A + tB)(B - A)$$
$$\le \left(t - \frac{1}{2}\right) Df(B)(B - A), \ t \in [1/2, 1)$$

and

$$\left(\frac{1}{2}-t\right)Df\left(A\right)\left(B-A\right) \le \left(\frac{1}{2}-t\right)Df\left((1-t)A+tB\right)\left(B-A\right)$$
$$\le \left(\frac{1}{2}-t\right)Df\left(B\right)\left(B-A\right), \ t \in (0,1/2].$$

The second inequality can be written as

$$-\left(\frac{1}{2}-t\right)Df(B)(B-A) \le -\left(\frac{1}{2}-t\right)Df((1-t)A+tB)(B-A) \le -\left(\frac{1}{2}-t\right)Df(A)(B-A), \ t \in (0, 1/2]$$

By integration, we have

$$\int_{1/2}^{1} \left(t - \frac{1}{2}\right) dt Df(A)(B - A) \le \int_{1/2}^{1} \left(t - \frac{1}{2}\right) Df((1 - t)A + tB)(B - A) dt$$
$$\le \int_{1/2}^{1} \left(t - \frac{1}{2}\right) dt Df(B)(B - A),$$

namely

(3.6)
$$\frac{1}{8}Df(A)(B-A) \le \int_{1/2}^{1} \left(t - \frac{1}{2}\right) Df((1-t)A + tB)(B-A) dt$$
$$\le \frac{1}{8}Df(B)(B-A).$$

Also

$$-\int_{0}^{1/2} \left(\frac{1}{2} - t\right) dt Df(B)(B - A) \leq -\int_{0}^{1/2} \left(\frac{1}{2} - t\right) Df((1 - t)A + tB)(B - A) dt$$
$$\leq -\int_{0}^{1/2} \left(\frac{1}{2} - t\right) dt Df(A)(B - A),$$

namely

(3.7)
$$-\frac{1}{8}Df(B)(B-A) \leq -\int_{0}^{1/2} \left(\frac{1}{2} - t\right) Df((1-t)A + tB)(B-A) dt \\ \leq -\frac{1}{8}Df(A)(B-A).$$

By adding the right sides of the inequalities (3.6) and (3.7) we get

$$\int_{1/2}^{1} \left(t - \frac{1}{2}\right) Df((1-t)A + tB) (B - A) dt$$

-
$$\int_{0}^{1/2} \left(\frac{1}{2} - t\right) Df((1-t)A + tB) (B - A) dt$$

$$\leq \frac{1}{8} Df(B) (B - A) - \frac{1}{8} Df(A) (B - A).$$

By (3.5) we then get the following reverse of Hermite-Hadamard inequalities

(3.8)
$$0 \leq \int_{0}^{1} f((1-t)A + tB) dt - f\left(\frac{A+B}{2}\right)$$
$$\leq \frac{f(B) + f(A)}{2} - \int_{0}^{1} f((1-t)A + tB) dt$$
$$\leq \frac{1}{8} \left[Df(B) - Df(A) \right] (B-A)$$

for all $A, B \in \mathcal{SA}_{I}(H)$.

From (3.8) we also have the norm inequalities

(3.9)
$$\left\| \int_{0}^{1} f\left((1-t)A + tB \right) dt - f\left(\frac{A+B}{2}\right) \right\|$$
$$\leq \left\| \frac{f(B) + f(A)}{2} - \int_{0}^{1} f\left((1-t)A + tB \right) dt \right\|$$
$$\leq \frac{1}{8} \left\| Df(B) - Df(A) \right\| \left\| B - A \right\|$$

for all $A, B \in \mathcal{SA}_{I}(H)$.

4. Some Examples

The function $f(x) = x^{-1}$ is operator convex on $(0, \infty)$, operator Fréchet differentiable and the Fréchet derivative $Df(\cdot)(\cdot)$ is given by

$$Df(T)(S) = -T^{-1}ST^{-1}$$

for T, S > 0.

If $(A_t)_{t\in T}$ is a bounded continuous field of positive operators in $\mathcal{B}(H)$ defined on a locally compact Hausdorff space T with a bounded Radon measure μ and such that $\int_T \mathbf{1} d\mu(t) = \mathbf{1}$, then by (2.1) we have the double inequality

(4.1)
$$2A^{-1} - A^{-1} \left(\int_T A_t d\mu(t) \right) A^{-1} \\ \leq \int_T A_t^{-1} d\mu(t) \\ \leq A^{-1} + \int_T A_t^{-1} A A_t^{-1} d\mu(t) - \int_T A_t^{-1} d\mu(t)$$

for all A > 0.

The first inequality in (4.1) is equivalent to

(4.2)
$$A^{-1} \leq \frac{1}{2} \left[\int_{T} A_{t}^{-1} d\mu \left(t \right) + A^{-1} \left(\int_{T} A_{t} d\mu \left(t \right) \right) A^{-1} \right]$$

while the second inequality is equivalent to

(4.3)
$$\int_{T} A_{t}^{-1} d\mu(t) \leq \frac{1}{2} \left[A^{-1} + \int_{T} A_{t}^{-1} A A_{t}^{-1} d\mu(t) \right].$$

From (2.2) we have the reverse Jensen's inequality

(4.4)
$$0 \leq \int_{T} A_{t}^{-1} d\mu(t) - \left(\int_{T} A_{s} d\mu(s)\right)^{-1} \\ \leq \int_{T} A_{t}^{-1} \left(\int_{T} A_{s} d\mu(s)\right) A_{t}^{-1} d\mu(t) - \int_{T} A_{t}^{-1} d\mu(t) \,.$$

The second inequality in (4.4) is equivalent to

(4.5)
$$\int_{T} A_{t}^{-1} d\mu(t) \leq \frac{1}{2} \left[\int_{T} A_{t}^{-1} \left(\int_{T} A_{s} d\mu(s) \right) A_{t}^{-1} d\mu(t) + \left(\int_{T} A_{s} d\mu(s) \right)^{-1} \right].$$

1

If S is a positive operator satisfying the equality

(SI)
$$\int_{T} A_{t}^{-1} S A_{t}^{-1} d\mu(t) = \int_{T} A_{t}^{-1} d\mu(t),$$

then we have the Slater type inequality

(4.6)
$$0 \le S^{-1} - \int_T A_t^{-1} d\mu(t) \le S^{-1} \left(\int_T A_t d\mu(t) \right) S^{-1} - S^{-1}.$$

The second inequality in (4.6) is equivalent to

(4.7)
$$S^{-1} \leq \frac{1}{2} \left[S^{-1} \left(\int_{T} A_{t} d\mu \left(t \right) \right) S^{-1} + \int_{T} A_{t}^{-1} d\mu \left(t \right) \right].$$

From (3.8) we also have the inequalities

(4.8)
$$0 \leq \int_{0}^{1} \left((1-t)A + tB \right)^{-1} dt - \left(\frac{A+B}{2} \right)^{-1} \\ \leq \frac{B^{-1} + A^{-1}}{2} - \int_{0}^{1} \left((1-t)A + tB \right)^{-1} dt \\ \leq \frac{1}{8} \left[A^{-1} \left(B - A \right) A^{-1} - B^{-1} \left(B - A \right) B^{-1} \right]$$

for all A, B > 0.

We note that the function $f(x) = -\ln x$ is operator convex on $(0, \infty)$. The ln function is operator Fréchet differentiable with the following explicit formula for the derivative (cf. Pedersen [16, p. 155]):

(4.9)
$$D\ln(T)(S) = \int_0^\infty (s1_H + T)^{-1} S(s1_H + T)^{-1} ds$$

for T, S > 0.

If $(A_t)_{t\in T}$ is a bounded continuous field $(A_t)_{t\in T}$ of positive operators in $\mathcal{B}(H)$ defined on a locally compact Hausdorff space T with a bounded Radon measure μ and such that $\int_T \mathbf{1} d\mu(t) = \mathbf{1}$, then by (2.1) we have the double inequality

(4.10)
$$\int_{0}^{\infty} (s1_{H} + A)^{-1} A (s1_{H} + A)^{-1} ds - \ln A$$
$$- \int_{0}^{\infty} \left(s1_{H} + \int_{T} A_{t} d\mu (t) \right)^{-1} A \left(s1_{H} + \int_{T} A_{t} d\mu (t) \right)^{-1} ds$$
$$\leq - \int_{T} \ln (A_{t}) d\mu (t)$$
$$\leq \int_{0}^{\infty} (s1_{H} + A_{t})^{-1} A (s1_{H} + A_{t})^{-1} ds - \ln A$$
$$- \int_{0}^{\infty} (s1_{H} + A_{t})^{-1} A_{t} (s1_{H} + A_{t})^{-1} ds$$

for all A positive operators.

From the first inequality in (4.10) we have

(4.11)
$$\int_{0}^{\infty} (s1_{H} + A)^{-1} A (s1_{H} + A)^{-1} ds + \int_{T} \ln (A_{t}) d\mu (t)$$
$$\leq \ln A + \int_{0}^{\infty} \left(s1_{H} + \int_{T} A_{t} d\mu (t) \right)^{-1} A \left(s1_{H} + \int_{T} A_{t} d\mu (t) \right)^{-1} ds$$

while from the second inequality

(4.12)
$$\ln A + \int_0^\infty (s \mathbf{1}_H + A_t)^{-1} A_t (s \mathbf{1}_H + A_t)^{-1} ds$$
$$\leq \int_T \ln (A_t) d\mu (t) + \int_0^\infty (s \mathbf{1}_H + A_t)^{-1} A (s \mathbf{1}_H + A_t)^{-1} ds$$

for all A positive operators.

We have the reverse Jensen's inequality

(4.13)
$$0 \leq \ln\left(\int_{T} A_{s} d\mu(s)\right) - \int_{T} \ln(A_{t}) d\mu(t)$$
$$\leq \int_{T} \int_{0}^{\infty} (s1_{H} + A_{t})^{-1} \left(\int_{T} A_{s} d\mu(s)\right) (s1_{H} + A_{t})^{-1} ds d\mu(t)$$
$$- \int_{T} \int_{0}^{\infty} (s1_{H} + A_{t})^{-1} A_{t} (s1_{H} + A_{t})^{-1} ds d\mu(t).$$

If S > 0 is an operator satisfying the equality

(4.14)
$$\int_{T} \int_{0}^{\infty} (s 1_{H} + A_{t})^{-1} S (s 1_{H} + A_{t})^{-1} ds d\mu (t)$$
$$= \int_{T} \int_{0}^{\infty} (s 1_{H} + A_{t})^{-1} A_{t} (s 1_{H} + A_{t})^{-1} ds d\mu (t)$$

then we have the Slater type inequality

(4.15)
$$0 \leq \int_{T} \ln(A_{t}) d\mu(t) - \ln(S)$$
$$\leq \int_{0}^{\infty} (s1_{H} + S)^{-1} \left(\int_{T} A_{t} d\mu(t) \right) (s1_{H} + S)^{-1} ds$$
$$- \int_{0}^{\infty} (s1_{H} + S)^{-1} S (s1_{H} + S)^{-1} ds.$$

By (3.8) we then get the following reverse of Hermite-Hadamard inequalities

(4.16)
$$0 \leq \ln\left(\frac{A+B}{2}\right) - \int_{0}^{1} \ln\left((1-t)A + tB\right)dt$$
$$\leq \int_{0}^{1} \ln\left((1-t)A + tB\right)dt - \frac{\ln B + \ln A}{2}$$
$$\leq \frac{1}{8} \left[\int_{0}^{\infty} (s1_{H} + A)^{-1} (B - A) (s1_{H} + A)^{-1} ds\right]$$
$$- \int_{0}^{\infty} (s1_{H} + B)^{-1} (B - A) (s1_{H} + B)^{-1} ds\right]$$

for all A, B > 0.

References

- Agarwal, R. P. and Dragomir, S. S., A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces. *Comput. Math. Appl.* 59 (2010), no. 12, 3785–3812.
- [2] Bacak, V., Vildan T. and Türkmen, R., Refinements of Hermite-Hadamard type inequalities for operator convex functions. J. Inequal. Appl. 2013, 2013:262, 10 pp.
- [3] Darvish, V., Dragomir, S. S., Nazari H. M. and Taghavi, A., Some inequalities associated with the Hermite-Hadamard inequalities for operator *h*-convex functions. Acta Comment. Univ. Tartu. Math. 21 (2017), no. 2, 287–297.
- [4] Dragomir, S. S., Bounds for the deviation of a function from the chord generated by its extremities. Bull. Aust. Math. Soc. 78 (2008), no. 2, 225–248.
- [5] Dragomir, S. S., Bounds for the normalised Jensen functional. Bull. Austral. Math. Soc. 74 (2006), no. 3, 471–478.
- [6] Dragomir, S. S., Hermite-Hadamard's type inequalities for operator convex functions. Appl. Math. Comput. 218 (2011), no. 3, 766–772.
- [7] Dragomir, S. S., Some Hermite-Hadamard type inequalities for operator convex functions and positive maps, Spec. Matrices; 7 (2019), 38–51.
- [8] Dragomir, S. S., Reverses of operator Hermite-Hadamard inequalities, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art. 87, 10 pp., [Online http://rgmia.org/papers/v22/v22a87.pdf].
- [9] Furuta, T., Mićić Hot, J., Pečarić, J. and Seo, Y., Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
- [10] Ghazanfari, A. G., Hermite-Hadamard type inequalities for functions whose derivatives are operator convex. *Complex Anal. Oper. Theory* 10 (2016), no. 8, 1695–1703.
- [11] Ghazanfari, A. G., The Hermite-Hadamard type inequalities for operator s-convex functions. J. Adv. Res. Pure Math. 6 (2014), no. 3, 52–61.

S. S. DRAGOMIR^{1,2}

- [12] Han J. and Shi, J., Refinements of Hermite-Hadamard inequality for operator convex function. J. Nonlinear Sci. Appl. 10 (2017), no. 11, 6035–6041.
- [13] Hansen, F., Pečarić, J. and Perić, I., Jensen's operator inequality and its converses. Math. Scand. 100 (2007), no. 1, 61–73.
- [14] Hansen, F. and Pedersen, G. K., Jensen's operator inequality, Bull. London Math. Soc. 35 (2003), 553–564.
- [15] Mond, B. and Pečarić, J., Converses of Jensen's inequality for several operators, Rev. Anal. Numér. Théor. Approx. 23 (1994), 179–183.
- [16] G. K. Pedersen, Operator differentiable functions. Publ. Res. Inst. Math. Sci. 36 (1) (2000), 139-157.
- [17] Taghavi, A., Darvish, V., Nazari H. M. and Dragomir, S. S., Hermite-Hadamard type inequalities for operator geometrically convex functions. *Monatsh. Math.* 181 (2016), no. 1, 187–203.
- [18] Vivas Cortez, M. and Hernández Hernández, E. J., Refinements for Hermite-Hadamard type inequalities for operator h-convex function. Appl. Math. Inf. Sci. 11 (2017), no. 5, 1299–1307.
- [19] Vivas Cortez, M. and Hernández Hernández, E. J., On some new generalized Hermite-Hadamard-Fejér inequalities for product of two operator *h*-convex functions. Appl. Math. Inf. Sci. 11 (2017), no. 4, 983–992.
- [20] Wang, S.-H., Hermite-Hadamard type inequalities for operator convex functions on the coordinates. J. Nonlinear Sci. Appl. 10 (2017), no. 3, 1116–1125
- [21] Wang, S.-H., New integral inequalities of Hermite-Hadamard type for operator m-convex and (α, m)-convex functions. J. Comput. Anal. Appl. 22 (2017), no. 4, 744–753.

¹Mathematics, School of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

²School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa