SOME WEIGHTED INTEGRAL INEQUALITIES FOR
SUB/SUPERADDITIVE FUNCTIONS ON LINEAR SPACES

SILVESTRU SEVER DRAGOMIR!+?

ABSTRACT. Assume that f: C — R is subadditive (superadditive) and hemi-
Lebesgue integrable on C, a cone in the linear space X with 0 € C. Then for
all z, y € C' and a symmetric Lebesgue integrable and nonnegative function
p:[0,1] — [0,00),
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s(z)/o p(t)f(tw)dt+/0 p () f (ty) dt.

In particular, for p = 1, we have
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Some particular inequalities related to Jensen’s dicrete inequality for convex
functions are also given.

1. INTRODUCTION

Let X be areal linear space, x,y € X, x # yandlet [x,y] :== {(1 — Nz + Ay, A € [0,1]}
be the segment generated by = and y. We consider the function f : [z,y] — R and
the attached function ¢, v : [0,1] = R, ¢, ) (t) :== f[(1 —t)z +ty], ¢t € [0, 1].

The following inequality is the well-known Hermite-Hadamard integral inequality
for convex functions defined on a segment [z,y] C X :

1
(HH) f(x;y>§/of[(1t)x+ty}dt§f(x);f(y)7

which easily follows by the classical Hermite-Hadamard inequality for the convex
function ¢ (z,y) : [0,1] = R

Pa,y) (2> S/O Pay) (1) dt < 5 :

For other related results see the monograph on line [6]. For some recent results in
linear spaces, see [1], [2] and [14]-[17].
By the convexity of f we have for all ¢ € [0, 1] that

f(:v+y) < flA=t)z+ty]+ f[(1 -1ty + ta] < f2)+ fy)
2 2 2
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2 S.S. DRAGOMIR

If we multiply this inequality by p : [0,1] — [0, 00), a Lebesgue integrable function
on [0,1], and integrate on [0, 1] over ¢ € [0,1], then we get

(1) f(g”‘;y)/olp(t)dt

D F = et tylp () de+ Jy F1(0 1)y + ta]p(t) dt
- 2

< W/O p(t)dt.

If p is symmetric on [0, 1], namely p (¢) = p (1 —t) for ¢t € [0,1], then by changing
the variable s = 1 — ¢, we get

1 1
/f[(lft)yﬂx]p(t)dt:/ flsy+(1—s)a]p(l—s)dt
0 0

=/O SO = t)a+ ty]p () dt

and by (1.1) we obtain the Féjer’s inequality

1 1
(12 (552 [ rwars [ ria-neralpoa
1
REEYICY
If (X;]-]]) is a normed linear space, then f (x) = ||z|", 7 > 1 is convex and by
(1.2) we get
T+y

(1.3)

T 1 1
[ pwar< [1a-ne el

T T 1
e ] [
0

2

for all z, y € X.
For r =1 we get

9”"2”/”/0119(75)&g/01 (=) +tylp (t) dt

1
< B
2 0

(1.4)

for all z, y € X.
Let X be a linear space. A subset C' C X is called a convezr cone in X provided
the following conditions hold:

(i) z, y € C imply z + y € C;
(ii)) z € C, a > 0 imply az € C.
A functional h : C — R is called superadditive (subadditive) on C' if
(ili) h(z+y) > (L) h(z) +h(y) for any z,y € C
and nonnegative (strictly positive) on C' if, obviously, it satisfies
(iv) h(z) > (>)0 for each = € C.
The functional h is s-positive homogeneous on C, for a given s > 0, if
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(v) h(az) =a®h(z) for any « > 0 and z € C.
In [9] we obtained further results concerning the quasilinearity of some composite
functionals:

Theorem 1. Let C be a convex cone in the linear space X and v : C — (0,00)
an additive functional on C. If h : C — [0,00) is a superadditive (subadditive)
functional on C and p, g > 1 (0 <p, q < 1) then the functional

(1.5) Wy C—[0,00), Uy (2) = A (2) 0?75 (x)
is superadditive (subadditive) on C.

Theorem 2. Let C be a convex cone in the linear space X and v : C — (0,00) an
additive functional on C. If h : C' — [0,00) is a superadditive functional on C' and
0 < p, g <1 then the functional

(1.6) ®,,:C —1[0,00), Opq(z) =

is subadditive on C.
The following result holds [11].

Theorem 3. Let C be a convex cone in the linear space X and v : C — (0,00) an
additive functional on C.

(i) Ifp>q>0,p>1and h: C — [0,00) is superadditive on C, then the new
mapping

(1.7) My C = [0,50), Ay (x) = "5 (2) h? (2)
is superadditive on C|
(1) If p < ¢q,p € (0,1) and h : C — [0,00) is subadditive on C, then the mapping
A, 4 is subadditive on C.
Now, if we assume that p > ¢ > 0, p > 1, then by denoting r :=
deduce that the functional
O (2) i= 017 (&) b (2)

is superadditive, provided v is additive and h is superadditive on C. In particular,
the functional

1e10,1], we

T (z) := v? (z) h' ()
is superadditive for ¢ > %
If p<gq, pe€(0,1) and if we denote s := % € [1,00), then the functional
h*P (x)
Usfl (iE)
is subadditive provided v is additive and h is subadditive on C. In particular, the
functional

Fps(z) =

W ()

=, (x): v (@)

is subadditive for z € (0,2).

Motivated by the above results, in this paper we establish some weighted integral
inequalities for subadditive (superadditive) functions defined on cones from linear
spaces that are hemi-Lebesgue integrable.
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2. MAIN RESULTS

A superadditive or a subadditive function f defined on a cone C' in the linear
space X will be called hemi-Lebesgue integrable on C' if for any x € C the function
[0,1] 5t — f (tx) € R is Lebesgue integrable on [0, 1].

Theorem 4. Assume that f : C — R is subadditive (superadditive) and hemi-
Lebesgue integrable on C, a cone in the linear space X with 0 € C. Then for all x,
y € C and a symmetric Lebesgue integrable and nonnegative function p : [0,1] —
0,00),

1 1
@) gl [ p@ase) [ a0 -no e
<) [ pO st [ o s

In particular, for p =1, we have
1 1 1 1
92) = — d d dt.
22 3fatn<E) [ 1-varma<E) [ fuias [ rea

Proof. From the subadditivity of f we have for z, y € C and ¢ € [0, 1] that

f+y)=f(1-t)z+ty+tz+(1—-1t)y)
<f((A-tHa+ty)+fltz+(1-1)y)
<fA=ta)+f(ty) + fx)+ fF((L-1)y).

If we multiply this inequality by p (¢) > 0 and integrate over ¢ € [0, 1] we get
1
(2.3) ﬂm+wézﬁﬂﬁ
SAP@fW-ﬂ%Hwﬁ+Ap@fwﬁﬂ—ﬂwﬁ
élp@fm—ﬂ@ﬁ+4p@ﬂmﬁ
+Apmﬂmw+épmfm—wwﬁ

By the symmetry of p and changing the variable, we have
1 1
[ p@fara-vya= [ pa-sf(-s)s+sds
0 0
1
= [ p0r@-nasmar
1 1 1
/ p(t) f((1—t)z)dt =/ p(1—s)f(sz)ds =/ p(t) f (tz)dt
0 0 0

and

[ rosa-oni= [ p0s @
0 0
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Then by (2.3) we obtain
1 1
f(w+y)/0 p(t)dtsz/O p() £ ((1—t)a +ty) di

1 1
<2 [ p) s+ [ ol f ()
0 0
which is equivalent to (2.1). O

Remark 1. We observe, for the simple symmetrical weight p(t) = |t —%
[0,1], we get from (2.1) that

te

1
e gan<e) [

g(z)/ol t—;’f(tx)dtJr/ol

while forp(t) =t(1—1t), t €[0,1], we get

t—;’f((l—t)x—kty)dt

05| rena

1 1
(2.5) ﬁf(aﬂ+y>s<z>/0 L= 1) f (1 1)+ ty) dt

g(z)/o t(l—t)f(tx)dt+/0 t(1—1t) f(ty)dt

for z, y € C, where f : C — R is subadditive (superadditive) and hemi-Lebesgue
integrable on C, a cone C in the linear space X with 0 € C.

Definition 1. Let C' be a cone in the linear space X with 0 € C. The function
f defined on C is called convex-starshaped if f (tx) < tf (x) for all t € [0,1] and
x € C. It is called concave-starshaped if f (tx) > tf (x) for allt € [0,1] and z € C.

Corollary 1. With the assumptions of Theorem 4 and, in addition, f is convex-
starshaped (concave-starshaped), then for all x, y € C

eo 1(5Y) [rwaseigran [ poa
g(z)/o p() F((1—t)a +ty) dt
< (z)/o p(t)f(tx)dt+/0 p(t) f (ty) dt

< (>)[f () + f () / tp (1) dt.

In particular, for p =1, we have

(2.7) f<x;ry>S(z);f(x+y)§(2)/01f((lt)fc+ty)dt
(@) +1 W)

2

1 1
g(z)/o f(tfc)dt+/0 f(ty) di < (>)

forallx, y € C.
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If (X;||l) is a normed space, then the function f is subadditive and convex-
starshaped, and for all x, y € X we have

(2.8)

/Opu)dts/o P 11— )z + ty] dt

Tty
2

< [llzll + 1] / or

Since p is symmetric, then

1 1 1
/Otp(t)dt:/o (17t)p(17t)dt:/0 (1—t)p(t)dt

:/Olp(t)dt—/oltp(t)dt,

/Oltp(t)dt:;/olp(t)dt.

Therefore the inequality (2.8) is the same with the inequality (1.4).

which shows that

Remark 2. If f is a function of real variable defined on [0,00) that is subadditive
(superadditive) and continuous, and since for 0 < a <b

[ s -nerma= 1 [ (12) s .

[rorea=1 o (%) s

1 b v
| rorea=5 [o(5) rwan,

then by (2.1) we get

and

@) Sraen [voase it () s

s(z)i/oap(Z)f(v)dwUobp(;’)f(v)dv

for any symmetric Lebesgue integrable and nonnegative function p : [0,1] — [0, 00).
In particular, if p =1, then we have the inequality

(2.10) ;f(cﬂ—bg > /f ) du < ( /f Vv + /f

—a
which was obtained in [18].

Corollary 2. Let C be a convex cone in the linear space X with 0 € C and
v : C — (0,00) an additive functional on C. Assume that h : C — [0,00) is a
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superadditive (subadditive) functional on C and p, ¢ > 1 (0<p, g<1). If h and
v are hemi-Lebesgue integrable on C, then

1
(2.11) %hq(ery)vq(l_%) (:z:+y)/0 w (t) dt
g(z)/o Wt B (1= t) @+ ty) 075 (1= t) & + ty) dt

1 1
g(z)/o w () h (tz) v?(1- )(t:c)dt+/0 w (t) he (ty) v1(1=3) (ty) dt,

where x, y € C and a symmetric Lebesgue integrable and nonnegative function
w: [0,1] — [0, 00).
In particular, we have

212 Sh a4y @ty
<<z>/1hq<<1t>x+ty>v“ D (1=t +ty)ds

/ hi (tz) v 1-3) (tz)dt + /1 hi (ty) vi(1=3) (ty) dt,
where x, y € C. i
Proof. Observe, by Theorem 1, that the functional

q:C —[0,00), ¥, (z)=h7(x) p1(1-3) (z)

is superadditive (subadditive) on C.
If we write Theorem 4 for the function f = ¥, , and p = w, we get (2.11). O

Corollary 3. Let C' be a convex cone in the linear space X with 0 € C and
v: C — (0,00) an additive functional on C. Assume that h : C — [0,00) is a
superadditive functional on C and 0 < p, ¢ < 1. If h and v are hemi-Lebesque
integrable on C, then

Uq(lfé) T 1
(2.13) ;W /0 w(t) dt
L e (LR
<) O e
v p1(73) (t) v1(1=%) (ty)
§/0 w(t)ﬁdt /Ow(t) Wdt,

where x, y € C, for a symmetric Lebesgue integrable and nonnegative function
w : [0,1] — [0, 00).
In particular, for w =1, we have

10700~ m—i—y a(1- %) l—t)$+ty)
. <
(2.14) 2 hi(z+y) _/ ha ((1—t)z + ty) dt
1 %) 1 yq(lfi) (ty)
<
—/ St Sty

where z, y € C.
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Similar results may be obtained by the use of Theorem 3 and its consequences,
however we do not provide them here.
We also have the double integral inequalities:

Theorem 5. Assume that f : C — R is subadditive (superadditive) and hemi-
Lebesgue integrable on C, a cone in the linear space X with 0 € C. Then for all x,
y € C and symmetric Lebesgue integrable and nonnegative functions p, q : [0,1] —
[0, 00), we have

1 1
215 ity | <>dt/0q<t>dt

// (1—t—s+2ts)z+ (s+t—2st)y)dtds

/ / (t(1—s)x+tsy)dtds
/ / f(tsz +t(1— s)y) dtds
<2 / / f (tsz) dtds + 2 / / f (tsy) dtds.

In particular, for p, ¢ =1, we have

(2.16) %f(x—ky)
</1/1f((1—t—s+2ts)x+(s+t—2st)y)dtds

/ f(1—s)x+tsy) dtds—|—/ f(tsz+t(1—s)y)dtds
o Jo

<2//ftsx dtds+2//ftsy dtds.

Proof. If we replace x with (1 — s) z + sy and y with sz + (1 — s)y, s € [0,1] in the
inequality (2.1), then we get

3/ @) [ o
g(z)/o p(t) F((L—t) (1= 8)a+ )+t (sz+ (1— 8)y)) dt

1 1
s(z)/o p(t)f(t((lfs>x+sy>>dt+/0 p(t) f (t (s + (1— 5)y)) dt.
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If we multiply this inequality by ¢ (t) > 0, s € [0,1], integrate and use Fubini’s
theorem, then we get

(217) §f<x+y>/ <>dt/ a(t)di
// (I=-t)(I=9s)z+sy)+t(sz+ (1 —s)y))dtds

/ / (1 —s)xz+ sy)) dtds
/ / t(sx+ (1—s)y))dtds.

Observe that

/ / (1—=t)(L=s)xz+sy)+t(sz+ (1—s)y))dtds

I
/

(1-t)y(1=9s)z+(1—-t)sy+tszx+t(1—s)y)dtds

\\

(1—t—s+2ts)z+ (s+t— 2st)y) dtds,

(t)q(s) f(t((1—s)x+ sy))dtds

IN c\
S— S5~ 5—

[y

p()q(s) f(t(1—s)x+tsy)dids

t)q(s)ft(1—s)a dtds+// 1 (tsy)

1
p(t)q (1 —w) f (tuz) dtdu+/ / f (tsy)

f (tuz) dtdu—l—/ / I (tsy)

—

o\o\o\)ﬁo\ ’UH
3

3

and

—~
~

Yq(s) f (t(sz+ (1 —s)y))dtds

s
S~

[y
—

1
p
:/ /p(t)Q()f(t:%S‘i’t(l*S ) dtds
0o Jo
1 1
S/ / p(t) [ (tsx) dtds+/ / t(1— s)y)dtds
o Jo
1ol
:/ / p(t) f (tsx) dtds+/ / q (1 —u) f (tuy) dtds
o Jo
1,1
:/ / p(t) f (tsx) dtds—l—/ / f (tuy) dtdu.
o Jo

By utilising (2.17) we get the desired result (2.15). O

aQ
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3. SOME RESULTS RELATED TO JENSEN’S INEQUALITY

Let C be a convex subset of the real linear space X and let ¢ : C — R be
a convex mapping. Here we consider the following well-known form of Jensen’s
discrete inequality:

(3.1) ( Z]h%) =P Zplsﬁ i),

el el

where I denotes a finite subset of the set N of natural numbers, z; € C, p; > 0 for
icland Pr:=),;p; >0.

Let us fix I € Py (N) (the class of finite parts of N) and z; € C (i € I). Now
consider the functional f;: Sy (I) — R given by

(3-2) fr(p) =Y pig (@) — Pryp < szzz) >0,
i€l i€l

where S, (I) := {p = p7)lel|p7 >0,i€l and P; >0} and f is convex on C.
We observe that Sy (I) is a convex cone and the functional J; is nonnegative
and positive homogeneous on S4 ().

Lemma 1 ([13]). The functional fr (-) is a superadditive functional on Sy (I).
We have for p, q €Sy (I) that
fr(p+a) ::Z(pi+Qi)90(mi) —(Pr+Qr)y (P 10, Z (pi +aqi)x z) )
iel i€l

and for a symmetric nonnegative Lebesgue integrable function w : [0,1] — [0, 00)
we have

/ w(t) fr ((1—t)p + ta) dt
_Z/ (1= t)pi + tq;) dteo (z;)

el

1
_/0 ()((1—t)P1+tQ1)go(W;((l—t)pi+tqi)mi>dt

=D _pig w/ (t)(l—t)dt+zw(xi)/o w (t) tdt

icl iel

1—t) Pr+1tQr PI 10, - Z (A=t)pi + tqi)xi> dt

1
w (t) tdt

—/01 () ((1— 1) Py +1Q1)

[szso (@) + Y aip fc]

el el

/—\h/—\

1
*/0 w(t) (1 —1)Pr+1tQr) ¢ 1—t PI+tQIZ((1t)pi+tQi)xi> dt,
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1
| o s ema
= ngo xz dt—P © DiZ; tw t dt
Gt [[wa=rie (5 Zn) [
/ t)dt [Zpl (z;) — Pro ( szxl>1
el LEI
and
1
[ v s
= %90 X )dt -Q © < q1$l> ’LU dt
~Zarte) [[mon=ae (g ) [
1
- [qu(mt Qﬂp( quwl)]/ tw (t) dt.
iel Ier
From the inequality (2.1) we have
1
(3.3) %fl(erq/w t)dt > /Ow (1—-t)p+tq)dt

1 1
z/o w(t) fr (tp) dt+/0 w(t) f1 (ta) dt,

for all p, q €S+ (I).
Therefore

(3.4) ; lz (pi + @) o (@) — (Pr+ Q1) (PI-il-QI ; (pi + qv)%)]

i€l

t)tdt
[sz z)+ Y g (i) w{f)
el el f() (t)

1
ﬁ]®ﬁ4w®«103+@0
0 w

1
7 ((1—t)ﬂ+tQ1 Z (L =1t)pi +tq;) $z> dt

1
> [ZP#(CEZ) - PISO( > piw 7,) (t) t
el ZEI fO t
) 15, )] o e
+ ;%‘P( i) — Qe (Qz ;qz z>‘| o

for all p, q €S+ (I).

11
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If w=11in (3.4), then we get, after some calculations, that

Pr+Qr 1
(3.5) 5 ¥ (PI 0, ; (pi + @) xz)

! 1
SA ((1—t)P]+tQI)SO (WMTZ((I—t)pi—thi)xi) dt

i€l

1 1
Pro (PI ;m%) +Qrp (QI Z%%)]

el

for all p, q €54 (1) .
If (X, ||-|]) is a normed space and ¢ (z) = ||z||", r > 1, then ¢ is convex and by
(3.5) we get

T

36) v @y

D) Z(Pz + i) @i

i€l

< / (1= 1) Pr Q) (1 =€) pr + tgs) | dt
0

Zpixi Zqz‘wi 1
iel iel
forallp,qeSy (I)and x; € C (1 €1).
Ifx; R, (i € I) and p, q €S4 (I), then by taking ¢ (z) = expx, we get

(37) Pr '; Qr exp <P1-|1-C2] Z (pi + Qi) .’131>

iel

1 T
<3 Pyt +Q7 !

icl

Prexp (;j Zm%) + Qrexp <Q11 > Qixi>] :

iel i€l

! 1
< /0 (L —=1t) Pr +1tQr)exp (WMT Z((l — 1) pi +tQi)fL‘i> dt

Ifxz; >0, (i € I) and p, q €Sy (I), then by taking ¢ (z) = —Inz in (3.5) we get

Pr+Q; 1
(3.8) 5o (PI O ZEZI (pi + i) fEi)

! 1
> /0 ((1 —t) Py +tQ1)ln (WMZ((I —t)pi +tqi)xi> dt

i€l

1 1
Prin (PI Z;Pﬁm) +Qrln (QI Z qm)]

el
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or, equivalently,
Pr+Qr
2

1
(3.9) m ; (pi + i) s

zeprOl((1—t)PI+th)

1
xIn | m—— - 1—1t)pi +tq;) x; | dt
(1—t)P1+tQI;(( )Pt ia)
1 Py Qr
Ezpixi 0 Z%fﬂz
i€l el

forp,qeSy (I)and z; >0, (i €1).
Define the following functional

(310) Lp,q,I ( - P p sz xz PIf szxz
iel zel
forp>1and p>qg>0.
The following proposition can be stated via Theorem 3:

Proposition 1. The functional L, 41 (-) is superadditive on Sy (I) for any p > 1
andp>q > 0.

Remark 3. We observe that, in particular, the following functionals

ap
Lp,oz,l (p) = Pll_a szf (177) - Pff Zpﬂfz
i€l ZEI
and

[

LPJ( % Zpl zl - Prf Zpr%

i€l ZEI
are superadditive on Sy (I) for anyp > 1 and o € (0,1).

One can state similar results by utilising the functionals L, 4 7, Ly o r and i/p7]’
however we do not provide the details here.
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