SOME WEIGHTED INTEGRAL INEQUALITIES FOR SUB/SUPERADDITIVE FUNCTIONS ON LINEAR SPACES

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

$$
\begin{aligned}
& \text { Abstract. Assume that } f: C \rightarrow \mathbb{R} \text { is subadditive (superadditive) and hemi- } \\
& \text { Lebesgue integrable on } C \text {, a cone in the linear space } X \text { with } 0 \in C \text {. Then for } \\
& \text { all } x, y \in C \text { and a symmetric Lebesgue integrable and nonnegative function } \\
& p:[0,1] \rightarrow[0, \infty), \\
& \qquad \frac{1}{2} f(x+y) \int_{0}^{1} p(t) d t \leq(\geq) \int_{0}^{1} p(t) f((1-t) x+t y) d t \\
& \qquad(\geq) \int_{0}^{1} p(t) f(t x) d t+\int_{0}^{1} p(t) f(t y) d t
\end{aligned}
$$

In particular, for $p \equiv 1$, we have
$\frac{1}{2} f(x+y) \leq(\geq) \int_{0}^{1} f((1-t) x+t y) d t \leq(\geq) \int_{0}^{1} f(t x) d t+\int_{0}^{1} f(t y) d t$.
Some particular inequalities related to Jensen's dicrete inequality for convex functions are also given.

1. Introduction

Let X be a real linear space, $x, y \in X, x \neq y$ and let $[x, y]:=\{(1-\lambda) x+\lambda y, \lambda \in[0,1]\}$ be the segment generated by x and y. We consider the function $f:[x, y] \rightarrow \mathbb{R}$ and the attached function $\varphi_{(x, y)}:[0,1] \rightarrow \mathbb{R}, \varphi_{(x, y)}(t):=f[(1-t) x+t y], t \in[0,1]$.

The following inequality is the well-known Hermite-Hadamard integral inequality for convex functions defined on a segment $[x, y] \subset X$:

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq \int_{0}^{1} f[(1-t) x+t y] d t \leq \frac{f(x)+f(y)}{2} \tag{HH}
\end{equation*}
$$

which easily follows by the classical Hermite-Hadamard inequality for the convex function $\varphi(x, y):[0,1] \rightarrow \mathbb{R}$

$$
\varphi_{(x, y)}\left(\frac{1}{2}\right) \leq \int_{0}^{1} \varphi_{(x, y)}(t) d t \leq \frac{\varphi_{(x, y)}(0)+\varphi_{(x, y)}(1)}{2}
$$

For other related results see the monograph on line [6]. For some recent results in linear spaces, see [1], [2] and [14]-[17].

By the convexity of f we have for all $t \in[0,1]$ that

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f[(1-t) x+t y]+f[(1-t) y+t x]}{2} \leq \frac{f(x)+f(y)}{2}
$$

[^0]If we multiply this inequality by $p:[0,1] \rightarrow[0, \infty)$, a Lebesgue integrable function on $[0,1]$, and integrate on $[0,1]$ over $t \in[0,1]$, then we get

$$
\begin{align*}
& f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t \tag{1.1}\\
& \leq \frac{\int_{0}^{1} f[(1-t) x+t y] p(t) d t+\int_{0}^{1} f[(1-t) y+t x] p(t) d t}{2} \\
& \leq \frac{f(x)+f(y)}{2} \int_{0}^{1} p(t) d t
\end{align*}
$$

If p is symmetric on $[0,1]$, namely $p(t)=p(1-t)$ for $t \in[0,1]$, then by changing the variable $s=1-t$, we get

$$
\begin{aligned}
\int_{0}^{1} f[(1-t) y+t x] p(t) d t & =\int_{0}^{1} f[s y+(1-s) x] p(1-s) d t \\
& =\int_{0}^{1} f[(1-t) x+t y] p(t) d t
\end{aligned}
$$

and by (1.1) we obtain the Féjer's inequality

$$
\begin{align*}
f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t & \leq \int_{0}^{1} f[(1-t) x+t y] p(t) d t \tag{1.2}\\
& \leq \frac{f(x)+f(y)}{2} \int_{0}^{1} p(t) d t
\end{align*}
$$

If $(X ;\|\cdot\|)$ is a normed linear space, then $f(x)=\|x\|^{r}, r \geq 1$ is convex and by (1.2) we get

$$
\begin{align*}
\left\|\frac{x+y}{2}\right\|^{r} \int_{0}^{1} p(t) d t & \leq \int_{0}^{1}\|(1-t) x+t y\|^{r} p(t) d t \tag{1.3}\\
& \leq \frac{\|x\|^{r}+\|y\|^{r}}{2} \int_{0}^{1} p(t) d t
\end{align*}
$$

for all $x, y \in X$.
For $r=1$ we get

$$
\begin{align*}
\left\|\frac{x+y}{2}\right\| \int_{0}^{1} p(t) d t & \leq \int_{0}^{1}\|(1-t) x+t y\| p(t) d t \tag{1.4}\\
& \leq \frac{\|x\|+\|y\|}{2} \int_{0}^{1} p(t) d t
\end{align*}
$$

for all $x, y \in X$.
Let X be a linear space. A subset $C \subseteq X$ is called a convex cone in X provided the following conditions hold:
(i) $x, y \in C$ imply $x+y \in C$;
(ii) $x \in C, \alpha \geq 0$ imply $\alpha x \in C$.

A functional $h: C \rightarrow \mathbb{R}$ is called superadditive (subadditive) on C if
(iii) $h(x+y) \geq(\leq) h(x)+h(y)$ for any $x, y \in C$
and nonnegative (strictly positive) on C if, obviously, it satisfies
(iv) $h(x) \geq(>) 0$ for each $x \in C$.

The functional h is s-positive homogeneous on C, for a given $s>0$, if
(v) $h(\alpha x)=\alpha^{s} h(x)$ for any $\alpha \geq 0$ and $x \in C$.

In [9] we obtained further results concerning the quasilinearity of some composite functionals:

Theorem 1. Let C be a convex cone in the linear space X and $v: C \rightarrow(0, \infty)$ an additive functional on C. If $h: C \rightarrow[0, \infty)$ is a superadditive (subadditive) functional on C and $p, q \geq 1(0<p, q<1)$ then the functional

$$
\begin{equation*}
\Psi_{p, q}: C \rightarrow[0, \infty), \Psi_{p, q}(x)=h^{q}(x) v^{q\left(1-\frac{1}{p}\right)}(x) \tag{1.5}
\end{equation*}
$$

is superadditive (subadditive) on C.
Theorem 2. Let C be a convex cone in the linear space X and $v: C \rightarrow(0, \infty)$ an additive functional on C. If $h: C \rightarrow[0, \infty)$ is a superadditive functional on C and $0<p, q<1$ then the functional

$$
\begin{equation*}
\Phi_{p, q}: C \rightarrow[0, \infty), \Phi_{p, q}(x)=\frac{v^{q\left(1-\frac{1}{p}\right)}(x)}{h^{q}(x)} \tag{1.6}
\end{equation*}
$$

is subadditive on C.
The following result holds [11].
Theorem 3. Let C be a convex cone in the linear space X and $v: C \rightarrow(0, \infty)$ an additive functional on C.
(i) If $p \geq q \geq 0, p \geq 1$ and $h: C \rightarrow[0, \infty)$ is superadditive on C, then the new mapping

$$
\begin{equation*}
\Lambda_{p, q}: C \rightarrow[0, \infty), \Lambda_{p, q}(x):=v^{\frac{p-q}{p}}(x) h^{q}(x) \tag{1.7}
\end{equation*}
$$

is superadditive on C;
(ii) If $p \leq q, p \in(0,1)$ and $h: C \rightarrow[0, \infty)$ is subadditive on C, then the mapping $\Lambda_{p, q}$ is subadditive on C.

Now, if we assume that $p \geq q \geq 0, p \geq 1$, then by denoting $r:=\frac{q}{p} \in[0,1]$, we deduce that the functional

$$
\Theta_{p, r}(x):=v^{1-r}(x) h^{p r}(x)
$$

is superadditive, provided v is additive and h is superadditive on C. In particular, the functional

$$
\Upsilon_{t}(x):=v^{\frac{1}{2}}(x) h^{t}(x)
$$

is superadditive for $t \geq \frac{1}{2}$.
If $p \leq q, p \in(0,1)$ and if we denote $s:=\frac{q}{p} \in[1, \infty)$, then the functional

$$
\digamma_{p, s}(x):=\frac{h^{s p}(x)}{v^{s-1}(x)}
$$

is subadditive provided v is additive and h is subadditive on C. In particular, the functional

$$
\Xi_{z}(x):=\frac{h^{z}(x)}{v(x)}
$$

is subadditive for $z \in(0,2)$.
Motivated by the above results, in this paper we establish some weighted integral inequalities for subadditive (superadditive) functions defined on cones from linear spaces that are hemi-Lebesgue integrable.

2. Main Results

A superadditive or a subadditive function f defined on a cone C in the linear space X will be called hemi-Lebesgue integrable on C if for any $x \in C$ the function $[0,1] \ni t \mapsto f(t x) \in \mathbb{R}$ is Lebesgue integrable on $[0,1]$.

Theorem 4. Assume that $f: C \rightarrow \mathbb{R}$ is subadditive (superadditive) and hemiLebesgue integrable on C, a cone in the linear space X with $0 \in C$. Then for all x, $y \in C$ and a symmetric Lebesgue integrable and nonnegative function $p:[0,1] \rightarrow$ $[0, \infty)$,

$$
\begin{align*}
\frac{1}{2} f(x+y) \int_{0}^{1} p(t) d t & \leq(\geq) \int_{0}^{1} p(t) f((1-t) x+t y) d t \tag{2.1}\\
& \leq(\geq) \int_{0}^{1} p(t) f(t x) d t+\int_{0}^{1} p(t) f(t y) d t
\end{align*}
$$

In particular, for $p \equiv 1$, we have

$$
\begin{equation*}
\frac{1}{2} f(x+y) \leq(\geq) \int_{0}^{1} f((1-t) x+t y) d t \leq(\geq) \int_{0}^{1} f(t x) d t+\int_{0}^{1} f(t y) d t \tag{2.2}
\end{equation*}
$$

Proof. From the subadditivity of f we have for $x, y \in C$ and $t \in[0,1]$ that

$$
\begin{aligned}
f(x+y) & =f((1-t) x+t y+t x+(1-t) y) \\
& \leq f((1-t) x+t y)+f(t x+(1-t) y) \\
& \leq f((1-t) x)+f(t y)+f(t x)+f((1-t) y)
\end{aligned}
$$

If we multiply this inequality by $p(t) \geq 0$ and integrate over $t \in[0,1]$ we get

$$
\begin{align*}
& f(x+y) \int_{0}^{1} p(t) d t \tag{2.3}\\
& \leq \int_{0}^{1} p(t) f((1-t) x+t y) d t+\int_{0}^{1} p(t) f(t x+(1-t) y) d t \\
& \leq \int_{0}^{1} p(t) f((1-t) x) d t+\int_{0}^{1} p(t) f(t y) d t \\
& +\int_{0}^{1} p(t) f(t x) d t+\int_{0}^{1} p(t) f((1-t) y) d t
\end{align*}
$$

By the symmetry of p and changing the variable, we have

$$
\begin{aligned}
\int_{0}^{1} p(t) f(t x+(1-t) y) d t & =\int_{0}^{1} p(1-s) f((1-s) x+s y) d s \\
& =\int_{0}^{1} p(t) f((1-t) x+t y) d t
\end{aligned} ~ \begin{aligned}
\int_{0}^{1} p(t) f((1-t) x) d t=\int_{0}^{1} p(1-s) f(s x) d s=\int_{0}^{1} p(t) f(t x) d t
\end{aligned}
$$

and

$$
\int_{0}^{1} p(t) f((1-t) y) d t=\int_{0}^{1} p(t) f(t y) d t
$$

Then by (2.3) we obtain

$$
\begin{aligned}
f(x+y) \int_{0}^{1} p(t) d t & \leq 2 \int_{0}^{1} p(t) f((1-t) x+t y) d t \\
& \leq 2 \int_{0}^{1} p(t) f(t x) d t+2 \int_{0}^{1} p(t) f(t y) d t
\end{aligned}
$$

which is equivalent to (2.1).
Remark 1. We observe, for the simple symmetrical weight $p(t)=\left|t-\frac{1}{2}\right|, t \in$ $[0,1]$, we get from (2.1) that

$$
\begin{align*}
\frac{1}{8} f(x+y) & \leq(\geq) \int_{0}^{1}\left|t-\frac{1}{2}\right| f((1-t) x+t y) d t \tag{2.4}\\
& \leq(\geq) \int_{0}^{1}\left|t-\frac{1}{2}\right| f(t x) d t+\int_{0}^{1}\left|t-\frac{1}{2}\right| f(t y) d t
\end{align*}
$$

while for $p(t)=t(1-t), t \in[0,1]$, we get

$$
\begin{align*}
\frac{1}{12} f(x+y) & \leq(\geq) \int_{0}^{1} t(1-t) f((1-t) x+t y) d t \tag{2.5}\\
& \leq(\geq) \int_{0}^{1} t(1-t) f(t x) d t+\int_{0}^{1} t(1-t) f(t y) d t
\end{align*}
$$

for $x, y \in C$, where $f: C \rightarrow \mathbb{R}$ is subadditive (superadditive) and hemi-Lebesgue integrable on C, a cone C in the linear space X with $0 \in C$.

Definition 1. Let C be a cone in the linear space X with $0 \in C$. The function f defined on C is called convex-starshaped if $f(t x) \leq t f(x)$ for all $t \in[0,1]$ and $x \in C$. It is called concave-starshaped if $f(t x) \geq t f(x)$ for all $t \in[0,1]$ and $x \in C$.

Corollary 1. With the assumptions of Theorem 4 and, in addition, f is convexstarshaped (concave-starshaped), then for all $x, y \in C$

$$
\begin{align*}
f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t & \leq(\geq) \frac{1}{2} f(x+y) \int_{0}^{1} p(t) d t \tag{2.6}\\
& \leq(\geq) \int_{0}^{1} p(t) f((1-t) x+t y) d t \\
& \leq(\geq) \int_{0}^{1} p(t) f(t x) d t+\int_{0}^{1} p(t) f(t y) d t \\
& \leq(\geq)[f(x)+f(y)] \int_{0}^{1} t p(t) d t
\end{align*}
$$

In particular, for $p \equiv 1$, we have

$$
\begin{align*}
f\left(\frac{x+y}{2}\right) & \leq(\geq) \frac{1}{2} f(x+y) \leq(\geq) \int_{0}^{1} f((1-t) x+t y) d t \tag{2.7}\\
& \leq(\geq) \int_{0}^{1} f(t x) d t+\int_{0}^{1} f(t y) d t \leq(\geq) \frac{f(x)+f(y)}{2}
\end{align*}
$$

for all $x, y \in C$.

If $(X ;\|\cdot\|)$ is a normed space, then the function f is subadditive and convexstarshaped, and for all $x, y \in X$ we have

$$
\begin{align*}
\left\|\frac{x+y}{2}\right\| \int_{0}^{1} p(t) d t & \leq \int_{0}^{1} p(t)\|(1-t) x+t y\| d t \tag{2.8}\\
& \leq[\|x\|+\|y\|] \int_{0}^{1} t p(t) d t
\end{align*}
$$

Since p is symmetric, then

$$
\begin{aligned}
\int_{0}^{1} t p(t) d t & =\int_{0}^{1}(1-t) p(1-t) d t=\int_{0}^{1}(1-t) p(t) d t \\
& =\int_{0}^{1} p(t) d t-\int_{0}^{1} t p(t) d t
\end{aligned}
$$

which shows that

$$
\int_{0}^{1} t p(t) d t=\frac{1}{2} \int_{0}^{1} p(t) d t
$$

Therefore the inequality (2.8) is the same with the inequality (1.4).
Remark 2. If f is a function of real variable defined on $[0, \infty)$ that is subadditive (superadditive) and continuous, and since for $0<a<b$

$$
\begin{aligned}
\int_{0}^{1} p(t) f((1-t) a+t y) d t & =\frac{1}{b-a} \int_{a}^{b} p\left(\frac{u-a}{b-a}\right) f(u) d u \\
\int_{0}^{1} p(t) f(t a) d t & =\frac{1}{a} \int_{0}^{a} p\left(\frac{v}{a}\right) f(v) d v
\end{aligned}
$$

and

$$
\int_{0}^{1} p(t) f(t b) d t=\frac{1}{b} \int_{0}^{b} p\left(\frac{v}{b}\right) f(v) d v
$$

then by (2.1) we get

$$
\begin{align*}
\frac{1}{2} f(a+b) \int_{0}^{1} p(t) d t & \leq(\geq) \frac{1}{b-a} \int_{a}^{b} p\left(\frac{u-a}{b-a}\right) f(u) d u \tag{2.9}\\
& \leq(\geq) \frac{1}{a} \int_{0}^{a} p\left(\frac{v}{a}\right) f(v) d v+\frac{1}{b} \int_{0}^{b} p\left(\frac{v}{b}\right) f(v) d v
\end{align*}
$$

for any symmetric Lebesgue integrable and nonnegative function $p:[0,1] \rightarrow[0, \infty)$.
In particular, if $p \equiv 1$, then we have the inequality

$$
\begin{equation*}
\frac{1}{2} f(a+b) \leq(\geq) \frac{1}{b-a} \int_{a}^{b} f(u) d u \leq(\geq) \frac{1}{a} \int_{0}^{a} f(v) d v+\frac{1}{b} \int_{0}^{b} f(v) d v \tag{2.10}
\end{equation*}
$$

which was obtained in [18].
Corollary 2. Let C be a convex cone in the linear space X with $0 \in C$ and $v: C \rightarrow(0, \infty)$ an additive functional on C. Assume that $h: C \rightarrow[0, \infty)$ is a
superadditive (subadditive) functional on C and $p, q \geq 1(0<p, q<1)$. If h and v are hemi-Lebesgue integrable on C, then

$$
\begin{align*}
& \frac{1}{2} h^{q}(x+y) v^{q\left(1-\frac{1}{p}\right)}(x+y) \int_{0}^{1} w(t) d t \tag{2.11}\\
& \leq(\geq) \int_{0}^{1} w(t) h^{q}((1-t) x+t y) v^{q\left(1-\frac{1}{p}\right)}((1-t) x+t y) d t \\
& \leq(\geq) \int_{0}^{1} w(t) h^{q}(t x) v^{q\left(1-\frac{1}{p}\right)}(t x) d t+\int_{0}^{1} w(t) h^{q}(t y) v^{q\left(1-\frac{1}{p}\right)}(t y) d t
\end{align*}
$$

where $x, y \in C$ and a symmetric Lebesgue integrable and nonnegative function $w:[0,1] \rightarrow[0, \infty)$.

In particular, we have

$$
\begin{align*}
& \frac{1}{2} h^{q}(x+y) v^{q\left(1-\frac{1}{p}\right)}(x+y) \tag{2.12}\\
& \leq(\geq) \int_{0}^{1} h^{q}((1-t) x+t y) v^{q\left(1-\frac{1}{p}\right)}((1-t) x+t y) d t \\
& \leq(\geq) \int_{0}^{1} h^{q}(t x) v^{q\left(1-\frac{1}{p}\right)}(t x) d t+\int_{0}^{1} h^{q}(t y) v^{q\left(1-\frac{1}{p}\right)}(t y) d t
\end{align*}
$$

where $x, y \in C$.
Proof. Observe, by Theorem 1, that the functional

$$
\Psi_{p, q}: C \rightarrow[0, \infty), \Psi_{p, q}(x)=h^{q}(x) v^{q\left(1-\frac{1}{p}\right)}(x)
$$

is superadditive (subadditive) on C.
If we write Theorem 4 for the function $f=\Psi_{p, q}$ and $p=w$, we get (2.11).
Corollary 3. Let C be a convex cone in the linear space X with $0 \in C$ and $v: C \rightarrow(0, \infty)$ an additive functional on C. Assume that $h: C \rightarrow[0, \infty)$ is a superadditive functional on C and $0<p, q<1$. If h and v are hemi-Lebesgue integrable on C, then

$$
\begin{align*}
& \frac{1}{2} \frac{v^{q\left(1-\frac{1}{p}\right)}(x+y)}{h^{q}(x+y)} \int_{0}^{1} w(t) d t \tag{2.13}\\
& \leq \int_{0}^{1} w(t) \frac{v^{q\left(1-\frac{1}{p}\right)}((1-t) x+t y)}{h^{q}((1-t) x+t y)} d t \\
& \leq \int_{0}^{1} w(t) \frac{v^{q\left(1-\frac{1}{p}\right)}(t x)}{h^{q}(t x)} d t+\int_{0}^{1} w(t) \frac{v^{q\left(1-\frac{1}{p}\right)}(t y)}{h^{q}(t y)} d t
\end{align*}
$$

where $x, y \in C$, for a symmetric Lebesgue integrable and nonnegative function $w:[0,1] \rightarrow[0, \infty)$.

In particular, for $w \equiv 1$, we have

$$
\begin{align*}
\frac{1}{2} \frac{v^{q\left(1-\frac{1}{p}\right)}(x+y)}{h^{q}(x+y)} & \leq \int_{0}^{1} \frac{v^{q\left(1-\frac{1}{p}\right)}((1-t) x+t y)}{h^{q}((1-t) x+t y)} d t \tag{2.14}\\
& \leq \int_{0}^{1} \frac{v^{q\left(1-\frac{1}{p}\right)}(t x)}{h^{q}(t x)} d t+\int_{0}^{1} \frac{v^{q\left(1-\frac{1}{p}\right)}(t y)}{h^{q}(t y)} d t
\end{align*}
$$

where $x, y \in C$.

Similar results may be obtained by the use of Theorem 3 and its consequences, however we do not provide them here.

We also have the double integral inequalities:

Theorem 5. Assume that $f: C \rightarrow \mathbb{R}$ is subadditive (superadditive) and hemiLebesgue integrable on C, a cone in the linear space X with $0 \in C$. Then for all x, $y \in C$ and symmetric Lebesgue integrable and nonnegative functions $p, q:[0,1] \rightarrow$ $[0, \infty)$, we have

$$
\begin{align*}
& \frac{1}{2} f(x+y) \int_{0}^{1} p(t) d t \int_{0}^{1} q(t) d t \tag{2.15}\\
& \leq \int_{0}^{1} \int_{0}^{1} p(t) q(s) f((1-t-s+2 t s) x+(s+t-2 s t) y) d t d s \\
& \leq \int_{0}^{1} \int_{0}^{1} p(t) q(s) f(t(1-s) x+t s y) d t d s \\
& +\int_{0}^{1} \int_{0}^{1} p(t) q(s) f(t s x+t(1-s) y) d t d s \\
& \leq 2 \int_{0}^{1} \int_{0}^{1} p(t) q(s) f(t s x) d t d s+2 \int_{0}^{1} \int_{0}^{1} p(t) q(s) f(t s y) d t d s
\end{align*}
$$

In particular, for $p, q \equiv 1$, we have

$$
\begin{align*}
& \frac{1}{2} f(x+y) \tag{2.16}\\
& \leq \int_{0}^{1} \int_{0}^{1} f((1-t-s+2 t s) x+(s+t-2 s t) y) d t d s \\
& \leq \int_{0}^{1} \int_{0}^{1} f(t(1-s) x+t s y) d t d s+\int_{0}^{1} \int_{0}^{1} f(t s x+t(1-s) y) d t d s \\
& \leq 2 \int_{0}^{1} \int_{0}^{1} f(t s x) d t d s+2 \int_{0}^{1} \int_{0}^{1} f(t s y) d t d s
\end{align*}
$$

Proof. If we replace x with $(1-s) x+s y$ and y with $s x+(1-s) y, s \in[0,1]$ in the inequality (2.1), then we get

$$
\begin{aligned}
& \frac{1}{2} f(x+y) \int_{0}^{1} p(t) d t \\
& \leq(\geq) \int_{0}^{1} p(t) f((1-t)((1-s) x+s y)+t(s x+(1-s) y)) d t \\
& \leq(\geq) \int_{0}^{1} p(t) f(t((1-s) x+s y)) d t+\int_{0}^{1} p(t) f(t(s x+(1-s) y)) d t
\end{aligned}
$$

If we multiply this inequality by $q(t) \geq 0, s \in[0,1]$, integrate and use Fubini's theorem, then we get

$$
\begin{align*}
& \frac{1}{2} f(x+y) \int_{0}^{1} p(t) d t \int_{0}^{1} q(t) d t \tag{2.17}\\
& \leq(\geq) \int_{0}^{1} \int_{0}^{1} p(t) q(s) f((1-t)((1-s) x+s y)+t(s x+(1-s) y)) d t d s \\
& \leq(\geq) \int_{0}^{1} \int_{0}^{1} p(t) q(s) f(t((1-s) x+s y)) d t d s \\
& +\int_{0}^{1} \int_{0}^{1} p(t) q(s) f(t(s x+(1-s) y)) d t d s
\end{align*}
$$

Observe that

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} p(t) q(s) f((1-t)((1-s) x+s y)+t(s x+(1-s) y)) d t d s \\
& =\int_{0}^{1} \int_{0}^{1} p(t) q(s) f((1-t)(1-s) x+(1-t) s y+t s x+t(1-s) y) d t d s \\
& =\int_{0}^{1} \int_{0}^{1} p(t) q(s) f((1-t-s+2 t s) x+(s+t-2 s t) y) d t d s \\
& \quad \int_{0}^{1} \int_{0}^{1} p(t) q(s) f(t((1-s) x+s y)) d t d s \\
& \quad=\int_{0}^{1} \int_{0}^{1} p(t) q(s) f(t(1-s) x+t s y) d t d s \\
& \quad \leq \int_{0}^{1} \int_{0}^{1} p(t) q(s) f(t(1-s) x) d t d s+\int_{0}^{1} \int_{0}^{1} p(t) q(s) f(t s y) \\
& \quad=\int_{0}^{1} \int_{0}^{1} p(t) q(1-u) f(t u x) d t d u+\int_{0}^{1} \int_{0}^{1} p(t) q(s) f(t s y) \\
& \quad=\int_{0}^{1} \int_{0}^{1} p(t) q(u) f(t u x) d t d u+\int_{0}^{1} \int_{0}^{1} p(t) q(s) f(t s y)
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} p(t) q(s) f(t(s x+(1-s) y)) d t d s \\
& =\int_{0}^{1} \int_{0}^{1} p(t) q(s) f(t s x+t(1-s) y) d t d s \\
& \leq \int_{0}^{1} \int_{0}^{1} p(t) q(s) f(t s x) d t d s+\int_{0}^{1} \int_{0}^{1} p(t) q(s) f(t(1-s) y) d t d s \\
& =\int_{0}^{1} \int_{0}^{1} p(t) q(s) f(t s x) d t d s+\int_{0}^{1} \int_{0}^{1} p(t) q(1-u) f(t u y) d t d s \\
& =\int_{0}^{1} \int_{0}^{1} p(t) q(s) f(t s x) d t d s+\int_{0}^{1} \int_{0}^{1} p(t) q(u) f(t u y) d t d u
\end{aligned}
$$

By utilising (2.17) we get the desired result (2.15).

3. Some Results Related to Jensen's Inequality

Let C be a convex subset of the real linear space X and let $\varphi: C \rightarrow \mathbb{R}$ be a convex mapping. Here we consider the following well-known form of Jensen's discrete inequality:

$$
\begin{equation*}
\varphi\left(\frac{1}{P_{I}} \sum_{i \in I} p_{i} x_{i}\right) \leq \frac{1}{P_{I}} \sum_{i \in I} p_{i} \varphi\left(x_{i}\right) \tag{3.1}
\end{equation*}
$$

where I denotes a finite subset of the set \mathbb{N} of natural numbers, $x_{i} \in C$, $p_{i} \geq 0$ for $i \in I$ and $P_{I}:=\sum_{i \in I} p_{i}>0$.

Let us fix $I \in \mathcal{P}_{f}(\mathbb{N})$ (the class of finite parts of $\left.\mathbb{N}\right)$ and $x_{i} \in C(i \in I)$. Now consider the functional $f_{I}: S_{+}(I) \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
f_{I}(\mathbf{p}):=\sum_{i \in I} p_{i} \varphi\left(x_{i}\right)-P_{I} \varphi\left(\frac{1}{P_{I}} \sum_{i \in I} p_{i} x_{i}\right) \geq 0 \tag{3.2}
\end{equation*}
$$

where $S_{+}(I):=\left\{\mathbf{p}=\left(p_{i}\right)_{i \in I} \mid p_{i} \geq 0, i \in I\right.$ and $\left.P_{I}>0\right\}$ and f is convex on C.
We observe that $S_{+}(I)$ is a convex cone and the functional J_{I} is nonnegative and positive homogeneous on $S_{+}(I)$.

Lemma 1 ([13]). The functional $f_{I}(\cdot)$ is a superadditive functional on $S_{+}(I)$.
We have for $\mathbf{p}, \mathbf{q} \in S_{+}(I)$ that

$$
f_{I}(\mathbf{p}+\mathbf{q}):=\sum_{i \in I}\left(p_{i}+q_{i}\right) \varphi\left(x_{i}\right)-\left(P_{I}+Q_{I}\right) \varphi\left(\frac{1}{P_{I}+Q_{I}} \sum_{i \in I}\left(p_{i}+q_{i}\right) x_{i}\right)
$$

and for a symmetric nonnegative Lebesgue integrable function $w:[0,1] \rightarrow[0, \infty)$ we have

$$
\begin{aligned}
& \int_{0}^{1} w(t) f_{I}((1-t) \mathbf{p}+t \mathbf{q}) d t \\
& =\sum_{i \in I} \int_{0}^{1} w(t)\left((1-t) p_{i}+t q_{i}\right) d t \varphi\left(x_{i}\right) \\
& -\int_{0}^{1} w(t)\left((1-t) P_{I}+t Q_{I}\right) \varphi\left(\frac{1}{(1-t) P_{I}+t Q_{I}} \sum_{i \in I}\left((1-t) p_{i}+t q_{i}\right) x_{i}\right) d t \\
& =\sum_{i \in I} p_{i} \varphi\left(x_{i}\right) \int_{0}^{1} w(t)(1-t) d t+\sum_{i \in I} q_{i} \varphi\left(x_{i}\right) \int_{0}^{1} w(t) t d t \\
& -\int_{0}^{1} w(t)\left((1-t) P_{I}+t Q_{I}\right) \varphi\left(\frac{1}{(1-t) P_{I}+t Q_{I}} \sum_{i \in I}\left((1-t) p_{i}+t q_{i}\right) x_{i}\right) d t \\
& =\left[\sum_{i \in I} p_{i} \varphi\left(x_{i}\right)+\sum_{i \in I} q_{i} \varphi\left(x_{i}\right)\right] \int_{0}^{1} w(t) t d t \\
& -\int_{0}^{1} w(t)\left((1-t) P_{I}+t Q_{I}\right) \varphi\left(\frac{1}{(1-t) P_{I}+t Q_{I}} \sum_{i \in I}\left((1-t) p_{i}+t q_{i}\right) x_{i}\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{1} w(t) f_{I}(t \mathbf{p}) d t \\
& =\sum_{i \in I} p_{i} \varphi\left(x_{i}\right) \int_{0}^{1} t w(t) d t-P_{I} \varphi\left(\frac{1}{P_{I}} \sum_{i \in I} p_{i} x_{i}\right) \int_{0}^{1} t w(t) d t \\
& =\int_{0}^{1} t w(t) d t\left[\sum_{i \in I} p_{i} \varphi\left(x_{i}\right)-P_{I} \varphi\left(\frac{1}{P_{I}} \sum_{i \in I} p_{i} x_{i}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{0}^{1} w(t) f_{I}(t \mathbf{q}) d t \\
& =\sum_{i \in I} q_{i} \varphi\left(x_{i}\right) \int_{0}^{1} t w(t) d t-Q_{I} \varphi\left(\frac{1}{Q_{I}} \sum_{i \in I} q_{i} x_{i}\right) \int_{0}^{1} t w(t) d t \\
& =\left[\sum_{i \in I} q_{i} \varphi\left(x_{i}\right)-Q_{I} \varphi\left(\frac{1}{Q_{I}} \sum_{i \in I} q_{i} x_{i}\right)\right] \int_{0}^{1} t w(t) d t
\end{aligned}
$$

From the inequality (2.1) we have

$$
\begin{align*}
\frac{1}{2} f_{I}(\mathbf{p}+\mathbf{q}) \int_{0}^{1} w(t) d t & \geq \int_{0}^{1} w(t) f_{I}((1-t) \mathbf{p}+t \mathbf{q}) d t \tag{3.3}\\
& \geq \int_{0}^{1} w(t) f_{I}(t \mathbf{p}) d t+\int_{0}^{1} w(t) f_{I}(t \mathbf{q}) d t
\end{align*}
$$

for all $\mathbf{p}, \mathbf{q} \in S_{+}(I)$.
Therefore

$$
\begin{align*}
& \frac{1}{2}\left[\sum_{i \in I}\left(p_{i}+q_{i}\right) \varphi\left(x_{i}\right)-\left(P_{I}+Q_{I}\right) \varphi\left(\frac{1}{P_{I}+Q_{I}} \sum_{i \in I}\left(p_{i}+q_{i}\right) x_{i}\right)\right] \tag{3.4}\\
& \geq\left[\sum_{i \in I} p_{i} \varphi\left(x_{i}\right)+\sum_{i \in I} q_{i} \varphi\left(x_{i}\right)\right] \frac{\int_{0}^{1} w(t) t d t}{\int_{0}^{1} w(t) d t} \\
& -\frac{1}{\int_{0}^{1} w(t) d t} \int_{0}^{1} w(t)\left((1-t) P_{I}+t Q_{I}\right) \\
& \times \varphi\left(\frac{1}{(1-t) P_{I}+t Q_{I}} \sum_{i \in I}\left((1-t) p_{i}+t q_{i}\right) x_{i}\right) d t \\
& \geq\left[\sum_{i \in I} p_{i} \varphi\left(x_{i}\right)-P_{I} \varphi\left(\frac{1}{P_{I}} \sum_{i \in I} p_{i} x_{i}\right)\right] \frac{\int_{0}^{1} w(t) t d t}{\int_{0}^{1} w(t) d t} \\
& +\left[\sum_{i \in I} q_{i} \varphi\left(x_{i}\right)-Q_{I} \varphi\left(\frac{1}{Q_{I}} \sum_{i \in I} q_{i} x_{i}\right)\right] \frac{\int_{0}^{1} w(t) t d t}{\int_{0}^{1} w(t) d t}
\end{align*}
$$

for all $\mathbf{p}, \mathbf{q} \in S_{+}(I)$.

If $w \equiv 1$ in (3.4), then we get, after some calculations, that

$$
\begin{align*}
& \frac{P_{I}+Q_{I}}{2} \varphi\left(\frac{1}{P_{I}+Q_{I}} \sum_{i \in I}\left(p_{i}+q_{i}\right) x_{i}\right) \tag{3.5}\\
& \leq \int_{0}^{1}\left((1-t) P_{I}+t Q_{I}\right) \varphi\left(\frac{1}{(1-t) P_{I}+t Q_{I}} \sum_{i \in I}\left((1-t) p_{i}+t q_{i}\right) x_{i}\right) d t \\
& \leq \frac{1}{2}\left[P_{I} \varphi\left(\frac{1}{P_{I}} \sum_{i \in I} p_{i} x_{i}\right)+Q_{I} \varphi\left(\frac{1}{Q_{I}} \sum_{i \in I} q_{i} x_{i}\right)\right]
\end{align*}
$$

for all $\mathbf{p}, \mathbf{q} \in S_{+}(I)$.
If $(X,\|\cdot\|)$ is a normed space and $\varphi(x)=\|x\|^{r}, r \geq 1$, then φ is convex and by (3.5) we get

$$
\begin{align*}
& \frac{\left(P_{I}+Q_{I}\right)^{r-1}}{2}\left\|\sum_{i \in I}\left(p_{i}+q_{i}\right) x_{i}\right\|^{r} \tag{3.6}\\
& \leq \int_{0}^{1}\left((1-t) P_{I}+t Q_{I}\right)^{r-1}\left\|\left((1-t) p_{i}+t q_{i}\right) x_{i}\right\|^{r} d t \\
& \leq \frac{1}{2}\left[P_{I}^{r-1}\left\|\sum_{i \in I} p_{i} x_{i}\right\|^{r}+Q_{I}^{r-1}\left\|\sum_{i \in I} q_{i} x_{i}\right\|^{r}\right]
\end{align*}
$$

for all $\mathbf{p}, \mathbf{q} \in S_{+}(I)$ and $x_{i} \in C(i \in I)$.
If $x_{i} \in \mathbb{R},(i \in I)$ and $\mathbf{p}, \mathbf{q} \in S_{+}(I)$, then by taking $\varphi(x)=\exp x$, we get

$$
\begin{align*}
& \frac{P_{I}+Q_{I}}{2} \exp \left(\frac{1}{P_{I}+Q_{I}} \sum_{i \in I}\left(p_{i}+q_{i}\right) x_{i}\right) \tag{3.7}\\
& \leq \int_{0}^{1}\left((1-t) P_{I}+t Q_{I}\right) \exp \left(\frac{1}{(1-t) P_{I}+t Q_{I}} \sum_{i \in I}\left((1-t) p_{i}+t q_{i}\right) x_{i}\right) d t \\
& \leq \frac{1}{2}\left[P_{I} \exp \left(\frac{1}{P_{I}} \sum_{i \in I} p_{i} x_{i}\right)+Q_{I} \exp \left(\frac{1}{Q_{I}} \sum_{i \in I} q_{i} x_{i}\right)\right]
\end{align*}
$$

If $x_{i}>0,(i \in I)$ and $\mathbf{p}, \mathbf{q} \in S_{+}(I)$, then by taking $\varphi(x)=-\ln x$ in (3.5) we get

$$
\begin{align*}
& \frac{P_{I}+Q_{I}}{2} \ln \left(\frac{1}{P_{I}+Q_{I}} \sum_{i \in I}\left(p_{i}+q_{i}\right) x_{i}\right) \tag{3.8}\\
& \geq \int_{0}^{1}\left((1-t) P_{I}+t Q_{I}\right) \ln \left(\frac{1}{(1-t) P_{I}+t Q_{I}} \sum_{i \in I}\left((1-t) p_{i}+t q_{i}\right) x_{i}\right) d t \\
& \geq \frac{1}{2}\left[P_{I} \ln \left(\frac{1}{P_{I}} \sum_{i \in I} p_{i} x_{i}\right)+Q_{I} \ln \left(\frac{1}{Q_{I}} \sum_{i \in I} q_{i} x_{i}\right)\right]
\end{align*}
$$

or, equivalently,

$$
\begin{align*}
& \left(\frac{1}{P_{I}+Q_{I}} \sum_{i \in I}\left(p_{i}+q_{i}\right) x_{i}\right)^{\frac{P_{I}+Q_{I}}{2}} \tag{3.9}\\
& \geq \exp \left[\int_{0}^{1}\left((1-t) P_{I}+t Q_{I}\right)\right. \\
& \left.\times \ln \left(\frac{1}{(1-t) P_{I}+t Q_{I}} \sum_{i \in I}\left((1-t) p_{i}+t q_{i}\right) x_{i}\right) d t\right] \\
& \geq \sqrt{\left(\frac{1}{P_{I}} \sum_{i \in I} p_{i} x_{i}\right)^{P_{I}}\left(\frac{1}{Q_{I}} \sum_{i \in I} q_{i} x_{i}\right)^{Q_{I}}}
\end{align*}
$$

for $\mathbf{p}, \mathbf{q} \in S_{+}(I)$ and $x_{i}>0,(i \in I)$.
Define the following functional

$$
\begin{equation*}
L_{p, q, I}(\mathbf{p}):=P_{I}^{\frac{p-q}{p}}\left[\sum_{i \in I} p_{i} f\left(x_{i}\right)-P_{I} f\left(\frac{1}{P_{I}} \sum_{i \in I} p_{i} x_{i}\right)\right]^{q} \tag{3.10}
\end{equation*}
$$

for $p \geq 1$ and $p \geq q \geq 0$.
The following proposition can be stated via Theorem 3:
Proposition 1. The functional $L_{p, q, I}(\cdot)$ is superadditive on $S_{+}(I)$ for any $p \geq 1$ and $p \geq q \geq 0$.

Remark 3. We observe that, in particular, the following functionals

$$
L_{p, \alpha, I}(\mathbf{p}):=P_{I}^{1-\alpha}\left[\sum_{i \in I} p_{i} f\left(x_{i}\right)-P_{I} f\left(\frac{1}{P_{I}} \sum_{i \in I} p_{i} x_{i}\right)\right]^{\alpha p}
$$

and

$$
\tilde{L}_{p, I}(\mathbf{p}):=P_{I}^{\frac{1}{2}}\left[\sum_{i \in I} p_{i} f\left(x_{i}\right)-P_{I} f\left(\frac{1}{P_{I}} \sum_{i \in I} p_{i} x_{i}\right)\right]^{\frac{p}{2}}
$$

are superadditive on $S_{+}(I)$ for any $p \geq 1$ and $\alpha \in(0,1)$.
One can state similar results by utilising the functionals $L_{p, q, I}, L_{p, \alpha, I}$ and $\tilde{L}_{p, I}$, however we do not provide the details here.

References

[1] M. Alomari and M. Darus, Refinements of s-Orlicz convex functions in normed linear spaces. Int. J. Contemp. Math. Sci. 3 (2008), no. 29-32, 1569-1594.
[2] I. Ciorănescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.
[3] X. Chen, New convex functions in linear spaces and Jensen's discrete inequality. J. Inequal. Appl. 2013, 2013:472, 8 pp.
[4] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure \& Appl. Math., Volume 3, Issue 2, Article 31, 2002. [Online https://www.emis.de/journals/JIPAM/article183.html?sid=183].
[5] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure \mathcal{E} Appl. Math. Volume 3, Issue 3, Article 35, 2002. [Online https://www.emis.de/journals/JIPAM/article187.html?sid=187].
[6] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. [Online https://rgmia.org/monographs/hermite_hadamard.html].
[7] S. S. Dragomir, Semi-inner Products and Applications. Nova Science Publishers, Inc., Hauppauge, NY, 2004. x+222 pp. ISBN: 1-59033-947-9.
[8] S. S. Dragomir, Inequalities for superadditive functionals with applications, Bull. Austral. Math. Soc. 77 (2008), 401-411.
[9] S. S. Dragomir, Quasilinearity of some composite functionals with applications, Bull. Aust. Math. Soc. 83 (2011), no. 1, 108-121.
[10] S. S. Dragomir, Quasilinearity of some functionals associated with monotonic convex functions. J. Inequal. Appl. 2012, 2012:276, 13 pp.
[11] S. S. Dragomir, The quasilinearity of a family of functionals in linear spaces with applications to inequalities, Riv. Math. Univ. Parma (N.S.) 4 (2013), no. 1, 135-149.
[12] S. S. Dragomir, Superadditivity and subadditivity of some functionals with applications to inequalities. Carpathian J. Math. 30 (2014), no. 1, 71-78.
[13] S. S. Dragomir, J. Pečarić and L. E. Persson, Properties of some functionals related to Jensen's inequality, Acta Math. Hungarica, 70 (1996), 129-143.
[14] M. Adil Khan, S. Khalid and J. Pečarić, Improvement of Jensen's inequality in terms of Gâteaux derivatives for convex functions in linear spaces with applications. Kyungpook Math. J. 52 (2012), no. 4, 495-511.
[15] E. Kikianty and S. S. Dragomir, Hermite-Hadamard's inequality and the p - $H H$-norm on the Cartesian product of two copies of a normed space. Math. Inequal. Appl. 13 (2010), no. 1, 1-32.
[16] E. Kikianty, S. S. Dragomir and P. Cerone, Ostrowski type inequality for absolutely continuous functions on segments in linear spaces. Bull. Korean Math. Soc. 45 (2008), no. 4, 763-780.
[17] E. Kikianty, S. S. Dragomir and P. Cerone, Sharp inequalities of Ostrowski type for convex functions defined on linear spaces and application. Comput. Math. Appl. 56 (2008), no. 9, 2235-2246.
[18] M. Z. Sarikaya, and A. A. Muhammad, Hermite-hadamard type inequalities and related inequality for subadditive functions, Preprint, https://www.researchgate.net.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa.

[^0]: 1991 Mathematics Subject Classification. 26D15, 26D10.
 Key words and phrases. Subadditive and Superadditive functions, Integral inequalities, Hermite-Hadamard inequality, Féjer's inequalities.

