
SOME WEIGHTED INTEGRAL INEQUALITIES FOR
SUB/SUPERADDITIVE FUNCTIONS ON LINEAR SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Assume that f : C ! R is subadditive (superadditive) and hemi-
Lebesgue integrable on C; a cone in the linear space X with 0 2 C: Then for
all x; y 2 C and a symmetric Lebesgue integrable and nonnegative function
p : [0; 1]! [0;1);

1

2
f (x+ y)

Z 1

0
p (t) dt � (�)

Z 1

0
p (t) f ((1� t)x+ ty) dt

� (�)
Z 1

0
p (t) f (tx) dt+

Z 1

0
p (t) f (ty) dt:

In particular, for p � 1; we have
1

2
f (x+ y) � (�)

Z 1

0
f ((1� t)x+ ty) dt � (�)

Z 1

0
f (tx) dt+

Z 1

0
f (ty) dt:

Some particular inequalities related to Jensen�s dicrete inequality for convex
functions are also given.

1. Introduction

LetX be a real linear space, x; y 2 X, x 6= y and let [x; y] := f(1� �)x+ �y; � 2 [0; 1]g
be the segment generated by x and y. We consider the function f : [x; y]! R and
the attached function '(x;y) : [0; 1]! R, '(x;y) (t) := f [(1� t)x+ ty], t 2 [0; 1].
The following inequality is the well-known Hermite-Hadamard integral inequality

for convex functions de�ned on a segment [x; y] � X :

(HH) f

�
x+ y

2

�
�
Z 1

0

f [(1� t)x+ ty] dt � f (x) + f (y)

2
;

which easily follows by the classical Hermite-Hadamard inequality for the convex
function ' (x; y) : [0; 1]! R

'(x;y)

�
1

2

�
�
Z 1

0

'(x;y) (t) dt �
'(x;y) (0) + '(x;y) (1)

2
:

For other related results see the monograph on line [6]. For some recent results in
linear spaces, see [1], [2] and [14]-[17].
By the convexity of f we have for all t 2 [0; 1] that

f

�
x+ y

2

�
� f [(1� t)x+ ty] + f [(1� t) y + tx]

2
� f (x) + f (y)

2
:
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2 S. S. DRAGOMIR

If we multiply this inequality by p : [0; 1]! [0;1), a Lebesgue integrable function
on [0; 1] ; and integrate on [0; 1] over t 2 [0; 1] ; then we get

f

�
x+ y

2

�Z 1

0

p (t) dt(1.1)

�
R 1
0
f [(1� t)x+ ty] p (t) dt+

R 1
0
f [(1� t) y + tx] p (t) dt

2

� f (x) + f (y)

2

Z 1

0

p (t) dt:

If p is symmetric on [0; 1] ; namely p (t) = p (1� t) for t 2 [0; 1] ; then by changing
the variable s = 1� t; we getZ 1

0

f [(1� t) y + tx] p (t) dt =
Z 1

0

f [sy + (1� s)x] p (1� s) dt

=

Z 1

0

f [(1� t)x+ ty] p (t) dt

and by (1.1) we obtain the Féjer�s inequality

f

�
x+ y

2

�Z 1

0

p (t) dt �
Z 1

0

f [(1� t)x+ ty] p (t) dt(1.2)

� f (x) + f (y)

2

Z 1

0

p (t) dt:

If (X; k�k) is a normed linear space, then f (x) = kxkr ; r � 1 is convex and by
(1.2) we get 



x+ y2





r Z 1

0

p (t) dt �
Z 1

0

k(1� t)x+ tykr p (t) dt(1.3)

� kxkr + kykr

2

Z 1

0

p (t) dt;

for all x; y 2 X:
For r = 1 we get



x+ y2





Z 1

0

p (t) dt �
Z 1

0

k(1� t)x+ tyk p (t) dt(1.4)

� kxk+ kyk
2

Z 1

0

p (t) dt;

for all x; y 2 X:
Let X be a linear space. A subset C � X is called a convex cone in X provided

the following conditions hold:

(i) x; y 2 C imply x+ y 2 C;
(ii) x 2 C; � � 0 imply �x 2 C:
A functional h : C ! R is called superadditive (subadditive) on C if
(iii) h (x+ y) � (�)h (x) + h (y) for any x; y 2 C
and nonnegative (strictly positive) on C if, obviously, it satis�es

(iv) h (x) � (>) 0 for each x 2 C:
The functional h is s-positive homogeneous on C; for a given s > 0; if
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(v) h (�x) = �sh (x) for any � � 0 and x 2 C:
In [9] we obtained further results concerning the quasilinearity of some composite

functionals:

Theorem 1. Let C be a convex cone in the linear space X and v : C ! (0;1)
an additive functional on C: If h : C ! [0;1) is a superadditive (subadditive)
functional on C and p; q � 1 (0 < p; q < 1) then the functional

(1.5) 	p;q : C ! [0;1) ; 	p;q (x) = hq (x) vq(1�
1
p ) (x)

is superadditive (subadditive) on C:

Theorem 2. Let C be a convex cone in the linear space X and v : C ! (0;1) an
additive functional on C: If h : C ! [0;1) is a superadditive functional on C and
0 < p; q < 1 then the functional

(1.6) �p;q : C ! [0;1) ; �p;q (x) =
vq(1�

1
p ) (x)

hq (x)

is subadditive on C:

The following result holds [11].

Theorem 3. Let C be a convex cone in the linear space X and v : C ! (0;1) an
additive functional on C:
(i) If p � q � 0; p � 1 and h : C ! [0;1) is superadditive on C; then the new

mapping

(1.7) �p;q : C ! [0;1); �p;q (x) := v
p�q
p (x)hq (x)

is superadditive on C;
(ii) If p � q; p 2 (0; 1) and h : C ! [0;1) is subadditive on C; then the mapping

�p;q is subadditive on C:

Now, if we assume that p � q � 0; p � 1; then by denoting r := q
p 2 [0; 1] ; we

deduce that the functional

�p;r (x) := v
1�r (x)hpr (x)

is superadditive, provided v is additive and h is superadditive on C: In particular,
the functional

�t (x) := v
1
2 (x)ht (x)

is superadditive for t � 1
2 :

If p � q; p 2 (0; 1) and if we denote s := q
p 2 [1;1); then the functional

zp;s (x) :=
hsp (x)

vs�1 (x)

is subadditive provided v is additive and h is subadditive on C: In particular, the
functional

�z (x) :=
hz (x)

v (x)

is subadditive for z 2 (0; 2) :
Motivated by the above results, in this paper we establish some weighted integral

inequalities for subadditive (superadditive) functions de�ned on cones from linear
spaces that are hemi-Lebesgue integrable.
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2. Main Results

A superadditive or a subadditive function f de�ned on a cone C in the linear
space X will be called hemi-Lebesgue integrable on C if for any x 2 C the function
[0; 1] 3 t 7! f (tx) 2 R is Lebesgue integrable on [0; 1] :

Theorem 4. Assume that f : C ! R is subadditive (superadditive) and hemi-
Lebesgue integrable on C; a cone in the linear space X with 0 2 C: Then for all x;
y 2 C and a symmetric Lebesgue integrable and nonnegative function p : [0; 1] !
[0;1);

1

2
f (x+ y)

Z 1

0

p (t) dt � (�)
Z 1

0

p (t) f ((1� t)x+ ty) dt(2.1)

� (�)
Z 1

0

p (t) f (tx) dt+

Z 1

0

p (t) f (ty) dt:

In particular, for p � 1; we have

(2.2)
1

2
f (x+ y) � (�)

Z 1

0

f ((1� t)x+ ty) dt � (�)
Z 1

0

f (tx) dt+

Z 1

0

f (ty) dt:

Proof. From the subadditivity of f we have for x; y 2 C and t 2 [0; 1] that

f (x+ y) = f ((1� t)x+ ty + tx+ (1� t) y)
� f ((1� t)x+ ty) + f (tx+ (1� t) y)
� f ((1� t)x) + f (ty) + f (tx) + f ((1� t) y) :

If we multiply this inequality by p (t) � 0 and integrate over t 2 [0; 1] we get

f (x+ y)

Z 1

0

p (t) dt(2.3)

�
Z 1

0

p (t) f ((1� t)x+ ty) dt+
Z 1

0

p (t) f (tx+ (1� t) y) dt

�
Z 1

0

p (t) f ((1� t)x) dt+
Z 1

0

p (t) f (ty) dt

+

Z 1

0

p (t) f (tx) dt+

Z 1

0

p (t) f ((1� t) y) dt:

By the symmetry of p and changing the variable, we haveZ 1

0

p (t) f (tx+ (1� t) y) dt =
Z 1

0

p (1� s) f ((1� s)x+ sy) ds

=

Z 1

0

p (t) f ((1� t)x+ ty) dt;

Z 1

0

p (t) f ((1� t)x) dt =
Z 1

0

p (1� s) f (sx) ds =
Z 1

0

p (t) f (tx) dt

and Z 1

0

p (t) f ((1� t) y) dt =
Z 1

0

p (t) f (ty) dt:
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Then by (2.3) we obtain

f (x+ y)

Z 1

0

p (t) dt � 2
Z 1

0

p (t) f ((1� t)x+ ty) dt

� 2
Z 1

0

p (t) f (tx) dt+ 2

Z 1

0

p (t) f (ty) dt;

which is equivalent to (2.1). �

Remark 1. We observe, for the simple symmetrical weight p (t) =
��t� 1

2

�� ; t 2
[0; 1] ; we get from (2.1) that

1

8
f (x+ y) � (�)

Z 1

0

����t� 12
���� f ((1� t)x+ ty) dt(2.4)

� (�)
Z 1

0

����t� 12
���� f (tx) dt+ Z 1

0

����t� 12
���� f (ty) dt;

while for p (t) = t (1� t) ; t 2 [0; 1] ; we get

1

12
f (x+ y) � (�)

Z 1

0

t (1� t) f ((1� t)x+ ty) dt(2.5)

� (�)
Z 1

0

t (1� t) f (tx) dt+
Z 1

0

t (1� t) f (ty) dt

for x; y 2 C; where f : C ! R is subadditive (superadditive) and hemi-Lebesgue
integrable on C; a cone C in the linear space X with 0 2 C:

De�nition 1. Let C be a cone in the linear space X with 0 2 C: The function
f de�ned on C is called convex-starshaped if f (tx) � tf (x) for all t 2 [0; 1] and
x 2 C: It is called concave-starshaped if f (tx) � tf (x) for all t 2 [0; 1] and x 2 C:

Corollary 1. With the assumptions of Theorem 4 and, in addition, f is convex-
starshaped (concave-starshaped), then for all x; y 2 C

f

�
x+ y

2

�Z 1

0

p (t) dt � (�) 1
2
f (x+ y)

Z 1

0

p (t) dt(2.6)

� (�)
Z 1

0

p (t) f ((1� t)x+ ty) dt

� (�)
Z 1

0

p (t) f (tx) dt+

Z 1

0

p (t) f (ty) dt

� (�) [f (x) + f (y)]
Z 1

0

tp (t) dt:

In particular, for p � 1; we have

f

�
x+ y

2

�
� (�) 1

2
f (x+ y) � (�)

Z 1

0

f ((1� t)x+ ty) dt(2.7)

� (�)
Z 1

0

f (tx) dt+

Z 1

0

f (ty) dt � (�) f (x) + f (y)
2

for all x; y 2 C:
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If (X; k�k) is a normed space, then the function f is subadditive and convex-
starshaped, and for all x; y 2 X we have



x+ y2





Z 1

0

p (t) dt �
Z 1

0

p (t) k(1� t)x+ tyk dt(2.8)

� [kxk+ kyk]
Z 1

0

tp (t) dt:

Since p is symmetric, thenZ 1

0

tp (t) dt =

Z 1

0

(1� t) p (1� t) dt =
Z 1

0

(1� t) p (t) dt

=

Z 1

0

p (t) dt�
Z 1

0

tp (t) dt;

which shows that Z 1

0

tp (t) dt =
1

2

Z 1

0

p (t) dt:

Therefore the inequality (2.8) is the same with the inequality (1.4).

Remark 2. If f is a function of real variable de�ned on [0;1) that is subadditive
(superadditive) and continuous, and since for 0 < a < bZ 1

0

p (t) f ((1� t) a+ ty) dt = 1

b� a

Z b

a

p

�
u� a
b� a

�
f (u) du;

Z 1

0

p (t) f (ta) dt =
1

a

Z a

0

p
�v
a

�
f (v) dv

and Z 1

0

p (t) f (tb) dt =
1

b

Z b

0

p
�v
b

�
f (v) dv;

then by (2.1) we get

1

2
f (a+ b)

Z 1

0

p (t) dt � (�) 1

b� a

Z b

a

p

�
u� a
b� a

�
f (u) du(2.9)

� (�) 1
a

Z a

0

p
�v
a

�
f (v) dv +

1

b

Z b

0

p
�v
b

�
f (v) dv

for any symmetric Lebesgue integrable and nonnegative function p : [0; 1]! [0;1):
In particular, if p � 1; then we have the inequality

(2.10)
1

2
f (a+ b) � (�) 1

b� a

Z b

a

f (u) du � (�) 1
a

Z a

0

f (v) dv +
1

b

Z b

0

f (v) dv;

which was obtained in [18].

Corollary 2. Let C be a convex cone in the linear space X with 0 2 C and
v : C ! (0;1) an additive functional on C: Assume that h : C ! [0;1) is a
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superadditive (subadditive) functional on C and p; q � 1 (0 < p; q < 1) : If h and
v are hemi-Lebesgue integrable on C; then

1

2
hq (x+ y) vq(1�

1
p ) (x+ y)

Z 1

0

w (t) dt(2.11)

� (�)
Z 1

0

w (t)hq ((1� t)x+ ty) vq(1�
1
p ) ((1� t)x+ ty) dt

� (�)
Z 1

0

w (t)hq (tx) vq(1�
1
p ) (tx) dt+

Z 1

0

w (t)hq (ty) vq(1�
1
p ) (ty) dt;

where x; y 2 C and a symmetric Lebesgue integrable and nonnegative function
w : [0; 1]! [0;1):
In particular, we have

1

2
hq (x+ y) vq(1�

1
p ) (x+ y)(2.12)

� (�)
Z 1

0

hq ((1� t)x+ ty) vq(1�
1
p ) ((1� t)x+ ty) dt

� (�)
Z 1

0

hq (tx) vq(1�
1
p ) (tx) dt+

Z 1

0

hq (ty) vq(1�
1
p ) (ty) dt;

where x; y 2 C:

Proof. Observe, by Theorem 1, that the functional

	p;q : C ! [0;1) ; 	p;q (x) = hq (x) vq(1�
1
p ) (x)

is superadditive (subadditive) on C:
If we write Theorem 4 for the function f = 	p;q and p = w; we get (2.11). �

Corollary 3. Let C be a convex cone in the linear space X with 0 2 C and
v : C ! (0;1) an additive functional on C: Assume that h : C ! [0;1) is a
superadditive functional on C and 0 < p; q < 1. If h and v are hemi-Lebesgue
integrable on C; then

1

2

vq(1�
1
p ) (x+ y)

hq (x+ y)

Z 1

0

w (t) dt(2.13)

�
Z 1

0

w (t)
vq(1�

1
p ) ((1� t)x+ ty)

hq ((1� t)x+ ty) dt

�
Z 1

0

w (t)
vq(1�

1
p ) (tx)

hq (tx)
dt+

Z 1

0

w (t)
vq(1�

1
p ) (ty)

hq (ty)
dt;

where x; y 2 C, for a symmetric Lebesgue integrable and nonnegative function
w : [0; 1]! [0;1):
In particular, for w � 1; we have

1

2

vq(1�
1
p ) (x+ y)

hq (x+ y)
�
Z 1

0

vq(1�
1
p ) ((1� t)x+ ty)

hq ((1� t)x+ ty) dt(2.14)

�
Z 1

0

vq(1�
1
p ) (tx)

hq (tx)
dt+

Z 1

0

vq(1�
1
p ) (ty)

hq (ty)
dt;

where x; y 2 C:
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Similar results may be obtained by the use of Theorem 3 and its consequences,
however we do not provide them here.
We also have the double integral inequalities:

Theorem 5. Assume that f : C ! R is subadditive (superadditive) and hemi-
Lebesgue integrable on C; a cone in the linear space X with 0 2 C: Then for all x;
y 2 C and symmetric Lebesgue integrable and nonnegative functions p; q : [0; 1]!
[0;1); we have

1

2
f (x+ y)

Z 1

0

p (t) dt

Z 1

0

q (t) dt(2.15)

�
Z 1

0

Z 1

0

p (t) q (s) f ((1� t� s+ 2ts)x+ (s+ t� 2st) y) dtds

�
Z 1

0

Z 1

0

p (t) q (s) f (t (1� s)x+ tsy) dtds

+

Z 1

0

Z 1

0

p (t) q (s) f (tsx+ t (1� s) y) dtds

� 2
Z 1

0

Z 1

0

p (t) q (s) f (tsx) dtds+ 2

Z 1

0

Z 1

0

p (t) q (s) f (tsy) dtds:

In particular, for p; q � 1; we have

1

2
f (x+ y)(2.16)

�
Z 1

0

Z 1

0

f ((1� t� s+ 2ts)x+ (s+ t� 2st) y) dtds

�
Z 1

0

Z 1

0

f (t (1� s)x+ tsy) dtds+
Z 1

0

Z 1

0

f (tsx+ t (1� s) y) dtds

� 2
Z 1

0

Z 1

0

f (tsx) dtds+ 2

Z 1

0

Z 1

0

f (tsy) dtds:

Proof. If we replace x with (1� s)x+ sy and y with sx+(1� s) y, s 2 [0; 1] in the
inequality (2.1), then we get

1

2
f (x+ y)

Z 1

0

p (t) dt

� (�)
Z 1

0

p (t) f ((1� t) ((1� s)x+ sy) + t (sx+ (1� s) y)) dt

� (�)
Z 1

0

p (t) f (t ((1� s)x+ sy)) dt+
Z 1

0

p (t) f (t (sx+ (1� s) y)) dt:
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If we multiply this inequality by q (t) � 0; s 2 [0; 1], integrate and use Fubini�s
theorem, then we get

1

2
f (x+ y)

Z 1

0

p (t) dt

Z 1

0

q (t) dt(2.17)

� (�)
Z 1

0

Z 1

0

p (t) q (s) f ((1� t) ((1� s)x+ sy) + t (sx+ (1� s) y)) dtds

� (�)
Z 1

0

Z 1

0

p (t) q (s) f (t ((1� s)x+ sy)) dtds

+

Z 1

0

Z 1

0

p (t) q (s) f (t (sx+ (1� s) y)) dtds:

Observe thatZ 1

0

Z 1

0

p (t) q (s) f ((1� t) ((1� s)x+ sy) + t (sx+ (1� s) y)) dtds

=

Z 1

0

Z 1

0

p (t) q (s) f ((1� t) (1� s)x+ (1� t) sy + tsx+ t (1� s) y) dtds

=

Z 1

0

Z 1

0

p (t) q (s) f ((1� t� s+ 2ts)x+ (s+ t� 2st) y) dtds;

Z 1

0

Z 1

0

p (t) q (s) f (t ((1� s)x+ sy)) dtds

=

Z 1

0

Z 1

0

p (t) q (s) f (t (1� s)x+ tsy) dtds

�
Z 1

0

Z 1

0

p (t) q (s) f (t (1� s)x) dtds+
Z 1

0

Z 1

0

p (t) q (s) f (tsy)

=

Z 1

0

Z 1

0

p (t) q (1� u) f (tux) dtdu+
Z 1

0

Z 1

0

p (t) q (s) f (tsy)

=

Z 1

0

Z 1

0

p (t) q (u) f (tux) dtdu+

Z 1

0

Z 1

0

p (t) q (s) f (tsy)

and Z 1

0

Z 1

0

p (t) q (s) f (t (sx+ (1� s) y)) dtds

=

Z 1

0

Z 1

0

p (t) q (s) f (tsx+ t (1� s) y) dtds

�
Z 1

0

Z 1

0

p (t) q (s) f (tsx) dtds+

Z 1

0

Z 1

0

p (t) q (s) f (t (1� s) y) dtds

=

Z 1

0

Z 1

0

p (t) q (s) f (tsx) dtds+

Z 1

0

Z 1

0

p (t) q (1� u) f (tuy) dtds

=

Z 1

0

Z 1

0

p (t) q (s) f (tsx) dtds+

Z 1

0

Z 1

0

p (t) q (u) f (tuy) dtdu:

By utilising (2.17) we get the desired result (2.15). �
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3. Some Results Related to Jensen�s Inequality

Let C be a convex subset of the real linear space X and let ' : C ! R be
a convex mapping. Here we consider the following well-known form of Jensen�s
discrete inequality :

(3.1) '

 
1

PI

X
i2I

pixi

!
� 1

PI

X
i2I

pi' (xi) ;

where I denotes a �nite subset of the set N of natural numbers, xi 2 C; pi � 0 for
i 2 I and PI :=

P
i2I pi > 0:

Let us �x I 2 Pf (N) (the class of �nite parts of N) and xi 2 C (i 2 I) : Now
consider the functional fI : S+ (I)! R given by

(3.2) fI (p) :=
X
i2I

pi' (xi)� PI'
 
1

PI

X
i2I

pixi

!
� 0;

where S+ (I) :=
�
p = (pi)i2I

�� pi � 0; i 2 I and PI > 0
	
and f is convex on C:

We observe that S+ (I) is a convex cone and the functional JI is nonnegative
and positive homogeneous on S+ (I) :

Lemma 1 ([13]). The functional fI (�) is a superadditive functional on S+ (I) :

We have for p; q 2S+ (I) that

fI (p+ q) :=
X
i2I

(pi + qi)' (xi)� (PI +QI)'
 

1

PI +QI

X
i2I

(pi + qi)xi

!
;

and for a symmetric nonnegative Lebesgue integrable function w : [0; 1] ! [0;1)
we haveZ 1

0

w (t) fI ((1� t)p+ tq) dt

=
X
i2I

Z 1

0

w (t) ((1� t) pi + tqi) dt' (xi)

�
Z 1

0

w (t) ((1� t)PI + tQI)'
 

1

(1� t)PI + tQI

X
i2I

((1� t) pi + tqi)xi

!
dt

=
X
i2I

pi' (xi)

Z 1

0

w (t) (1� t) dt+
X
i2I

qi' (xi)

Z 1

0

w (t) tdt

�
Z 1

0

w (t) ((1� t)PI + tQI)'
 

1

(1� t)PI + tQI

X
i2I

((1� t) pi + tqi)xi

!
dt

=

"X
i2I

pi' (xi) +
X
i2I

qi' (xi)

#Z 1

0

w (t) tdt

�
Z 1

0

w (t) ((1� t)PI + tQI)'
 

1

(1� t)PI + tQI

X
i2I

((1� t) pi + tqi)xi

!
dt;
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0

w (t) fI (tp) dt

=
X
i2I

pi' (xi)

Z 1

0

tw (t) dt� PI'
 
1

PI

X
i2I

pixi

!Z 1

0

tw (t) dt

=

Z 1

0

tw (t) dt

"X
i2I

pi' (xi)� PI'
 
1

PI

X
i2I

pixi

!#

and Z 1

0

w (t) fI (tq) dt

=
X
i2I

qi' (xi)

Z 1

0

tw (t) dt�QI'
 
1

QI

X
i2I

qixi

!Z 1

0

tw (t) dt

=

"X
i2I

qi' (xi)�QI'
 
1

QI

X
i2I

qixi

!#Z 1

0

tw (t) dt:

From the inequality (2.1) we have

1

2
fI (p+ q)

Z 1

0

w (t) dt �
Z 1

0

w (t) fI ((1� t)p+ tq) dt(3.3)

�
Z 1

0

w (t) fI (tp) dt+

Z 1

0

w (t) fI (tq) dt;

for all p; q 2S+ (I) :
Therefore

1

2

"X
i2I

(pi + qi)' (xi)� (PI +QI)'
 

1

PI +QI

X
i2I

(pi + qi)xi

!#
(3.4)

�
"X
i2I

pi' (xi) +
X
i2I

qi' (xi)

# R 1
0
w (t) tdtR 1

0
w (t) dt

� 1R 1
0
w (t) dt

Z 1

0

w (t) ((1� t)PI + tQI)

� '
 

1

(1� t)PI + tQI

X
i2I

((1� t) pi + tqi)xi

!
dt

�
"X
i2I

pi' (xi)� PI'
 
1

PI

X
i2I

pixi

!# R 1
0
w (t) tdtR 1

0
w (t) dt

+

"X
i2I

qi' (xi)�QI'
 
1

QI

X
i2I

qixi

!# R 1
0
w (t) tdtR 1

0
w (t) dt

for all p; q 2S+ (I) :



12 S. S. DRAGOMIR

If w � 1 in (3.4), then we get, after some calculations, that

PI +QI
2

'

 
1

PI +QI

X
i2I

(pi + qi)xi

!
(3.5)

�
Z 1

0

((1� t)PI + tQI)'
 

1

(1� t)PI + tQI

X
i2I

((1� t) pi + tqi)xi

!
dt

� 1

2

"
PI'

 
1

PI

X
i2I

pixi

!
+QI'

 
1

QI

X
i2I

qixi

!#

for all p; q 2S+ (I) :
If (X; k�k) is a normed space and ' (x) = kxkr ; r � 1; then ' is convex and by

(3.5) we get

(PI +QI)
r�1

2






X
i2I

(pi + qi)xi







r

(3.6)

�
Z 1

0

((1� t)PI + tQI)r�1 k((1� t) pi + tqi)xikr dt

� 1

2

"
P r�1I






X
i2I

pixi







r

+Qr�1I






X
i2I

qixi







r#

for all p; q 2S+ (I) and xi 2 C (i 2 I) :
If xi 2 R, (i 2 I) and p; q 2S+ (I) ; then by taking ' (x) = expx; we get

PI +QI
2

exp

 
1

PI +QI

X
i2I

(pi + qi)xi

!
(3.7)

�
Z 1

0

((1� t)PI + tQI) exp
 

1

(1� t)PI + tQI

X
i2I

((1� t) pi + tqi)xi

!
dt

� 1

2

"
PI exp

 
1

PI

X
i2I

pixi

!
+QI exp

 
1

QI

X
i2I

qixi

!#
:

If xi > 0, (i 2 I) and p; q 2S+ (I) ; then by taking ' (x) = � lnx in (3.5) we get

PI +QI
2

ln

 
1

PI +QI

X
i2I

(pi + qi)xi

!
(3.8)

�
Z 1

0

((1� t)PI + tQI) ln
 

1

(1� t)PI + tQI

X
i2I

((1� t) pi + tqi)xi

!
dt

� 1

2

"
PI ln

 
1

PI

X
i2I

pixi

!
+QI ln

 
1

QI

X
i2I

qixi

!#
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or, equivalently, 
1

PI +QI

X
i2I

(pi + qi)xi

!PI+QI
2

(3.9)

� exp
�Z 1

0

((1� t)PI + tQI)

� ln
 

1

(1� t)PI + tQI

X
i2I

((1� t) pi + tqi)xi

!
dt

#

�

vuut 1

PI

X
i2I

pixi

!PI  
1

QI

X
i2I

qixi

!QI

for p; q 2S+ (I) and xi > 0, (i 2 I) :
De�ne the following functional

(3.10) Lp;q;I (p) := P
p�q
p

I

"X
i2I

pif (xi)� PIf
 
1

PI

X
i2I

pixi

!#q
for p � 1 and p � q � 0:
The following proposition can be stated via Theorem 3:

Proposition 1. The functional Lp;q;I (�) is superadditive on S+ (I) for any p � 1
and p � q � 0:
Remark 3. We observe that, in particular, the following functionals

Lp;�;I (p) := P
1��
I

"X
i2I

pif (xi)� PIf
 
1

PI

X
i2I

pixi

!#�p
and

~Lp;I (p) := P
1
2

I

"X
i2I

pif (xi)� PIf
 
1

PI

X
i2I

pixi

!# p
2

are superadditive on S+ (I) for any p � 1 and � 2 (0; 1) :

One can state similar results by utilising the functionals Lp;q;I ; Lp;�;I and ~Lp;I ,
however we do not provide the details here.
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